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Abstract
Multi-keyword query is widely supported in text
search engines. However, an analogue in im-
age retrieval systems, multi-object query, is rarely
studied. Meanwhile, traditional object-based
image retrieval methods often involve multiple
steps separately. In this work, we propose a
weakly-supervised Deep Multiple Instance Hash-
ing (DMIH) framework for object-based image re-
trieval. DMIH integrates object detection and hash-
ing learning on the basis of a popular CNN model
to build the end-to-end relation between a raw im-
age and the binary hash codes of multiple objects in
it. Specifically, we cast the object detection of each
object class as a binary multiple instance learn-
ing problem where instances are object propos-
als extracted from multi-scale convolutional fea-
ture maps. For hashing training, we sample im-
age pairs to learn their semantic relationships in
terms of hash codes of the most probable propos-
als for owned labels as guided by object predic-
tors. The two objectives benefit each other in learn-
ing. DMIH outperforms state-of-the-arts on pub-
lic benchmarks for object-based image retrieval and
achieves promising results for multi-object queries.

1 Introduction
Content-based image retrieval (CBIR) has become an active
topic in multimedia community since the early 1990s [Smeul-
ders et al., 2000]. Classic CBIR systems take a single query
image, and retrieve similar images in a holistic sense from an
image repository. However, a user’s search interest is usu-
ally an object or multiple objects in an image, rather than the
entire image. Therefore, object-based (or localized content-
based) image retrieval has been defined in [Rahmani et al.,
2008], where the user is only interested in a portion of an im-
age. Previous object-based image retrieval methods [Zheng
et al., 2006; Rahmani et al., 2008; Li and Liu, 2015] usually
involve multiple steps, such as image segmentation, feature
extraction and index creation. However, these steps are in-
dependent with one another, which would lead to unsatisfac-
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Figure 1: Querying about multiple objects.

tory results. In particular, the errors in the segmentation step
will be propagated to the index, and it is difficult to find op-
timal hand-crafted features for index creation. On the other
hand, most existing object-based image retrieval approaches
concentrate on querying by a single object. However, users
may also want to query about multiple objects, as illustrated
in Fig. 1: in the upper example the user is interested in pho-
tos containing both human and horses, as in the query; in the
lower case the user may want to write a political commentary
about Obama and Putin but there is no group photo of them
at hand. Due to the lack of ability to detect various objects,
previous approaches will incur poor performance when they
are directly used to cope with multi-object queries.

Recent advances in deep learning have proved that convo-
lutional neural networks (CNNs) trained end-to-end can learn
powerful feature representations. In terms of object detec-
tion, a number of techniques based on deep CNNs have been
proposed [Ren et al., 2015; Liu et al., 2016] and achieved
good results on some high-quality public image datasets like
ImageNet, PASCAL VOC and MS COCO. However, these
approaches necessitate large-scale training data with labels
of object locations to learn models to harvest “objectness”,
whereas the labeling work is very tedious and expensive. It
is often the case that we only have image-level object labels
without object locations, i.e. weak labels for object detection
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[Ren et al., 2016]. Multiple Instance Learning (MIL) [Russell
et al., 2006] is a particular form of weakly supervised method
which can solve the problem above. In MIL, data are labeled
in the bag level, where each bag (image in our case) consists
of multiple instances (object proposals). MIL assumes that a
bag is positive if at least one instance in it is positive, and neg-
ative if all the instances in it are negative. The goal of a con-
ventional MIL algorithm is to generate a classifier that will
classify unseen bags correctly. Very recently, some CNN-
based MIL methods have been proposed to solve the object
detection problem by using weak labels [Ren et al., 2016;
Kraus et al., 2016]. However, these methods are not suitable
to address our problem. First, their objective is to reduce the
error rate of object detection, while our task is to construct an
object index such that similar objects have similar hash codes.
It would result in inefficiency and low accuracy when using
the learned CNN features (i.e. outputs of the layer before the
prediction layer) from these methods for object retrieval di-
rectly, since those features are real vectors and not optimized
for similarity search. Second, most of these methods gen-
erate large proposals from raw images and feed them into a
pretrained CNN to obtain their features. The time cost is un-
acceptable for image retrieval tasks.

In this paper, a novel weakly-supervised Deep Multiple In-
stance Hashing (DMIH) framework is proposed for object-
based image retrieval. We integrate MIL and hashing learn-
ing on the basis of a popular CNN model to build the end-to-
end relation between a raw image and the binary hash codes
of objects in it. Specifically, we cast the object detection of
each object class as a binary MIL problem in which object
proposals extracted from trainable multi-scale CNN feature
maps (approximately representing sub-areas of different sizes
in the input image) are considered as instances and the entire
image is treated as a bag. Images containing objects of the
class are positive bags, while the remaining ones are negative
bags. Together with object predictor learning for each class,
a global hash function is also trained to capture the semantic
relationships among objects. To this end, we sample image
pairs to decrease/increase the embedding distances between
same-class/different-class objects in them, where we treat the
most probable object proposal assessed by the correspond-
ing object predictor as the object of the class. The whole
deep model is optimized via back propagation. In this way,
DMIH performs image feature learning, object detection and
hash code learning jointly. Object detection helps hashing
find correct object proposals and hashing learning provides a
regularization for object detection by constraining semantic
relationships, thus benefiting each other. After training, we
use the hash codes of object proposals judged to be positive
by object predictors to represent and index an image.

The main contributions are: (1) we propose a novel learn-
ing framework for object-based image retrieval which can
well handle multi-object queries; (2) we unify feature learn-
ing, hashing learning and MIL based object detection via
deep CNNs. The model can effectively generate hash codes
of objects in images for retrieval; (3) experiments on three
benchmark datasets demonstrate the learned hash codes well
preserve the object-level similarity and DMIH outperforms
baselines on both single-object and multi-object queries.

2 Related Work

Considering the high dimensionality of images, one criti-
cal challenge in CBIR is how to efficiently generate search
results. Recently, hashing is recognized as an important
technique for fast approximate similarity search. Gener-
ally speaking, hashing methods can be categorized into two
classes: unsupervised and supervised methods. Unsupervised
hashing methods generate compact hash codes by using ran-
dom projection or training on unlabeled data [Gionis et al.,
2000; Weiss et al., 2008; Lee et al., 2010]. The most repre-
sentative one is Locality-Sensitive Hashing (LSH) [Gionis et
al., 2000], which aimed at maximizing the probability that
similar data instances are mapped to similar binary codes.
In order to search for all groups of partial duplicate images
in an image repository, Lee et al. [Lee et al., 2010] di-
vided images into multi-scale regions and extracted min-hash
[Chum et al., 2008] values for each region independently.
Recent studies have shown that using supervised information
can boost the performance of binary hash codes. Supervised
hashing methods [Kulis and Darrell, 2009; Liu et al., 2012;
Zhao et al., 2015] usually incorporate label information into
pairwise similarity estimation for training effective hash func-
tions. However, previous hashing methods were focused on
mapping whole images or fixed regions of images into the
Hamming space. Our work is different from theirs in that our
goal is to learn a hash function for objects in images where
the objects are detected automatically.

MIL has been leveraged for object-based image retrieval.
Rahmani et al. [Rahmani et al., 2008] took images as bags
and regions in images as instances. They required users to
provide a set of query images with positive and negative la-
bels (or via feedback), and then used MIL to train a set of
hypotheses online to rank images. Zhang et al. [Zhang et al.,
2009] integrated active learning into MIL to efficiently obtain
bag labels from the query user. Recently, Li and Liu [Li and
Liu, 2015] proposed a graph-based MIL framework which
constructed two graphs to describe the affinity relationships
between images and between regions respectively. The two
graphs provided regularization for MIL. Similar to previous
work, it also required a set of labeled images from the query
user. The major drawback of these methods is that they hin-
der user experience by asking for labels. Moreover, all the
above MIL methods use hand-crafted features and segment
raw images to generate instances. These low level features
may not well capture the conceptual objects in images.

Recently, researchers explored using MIL and deep learn-
ing to address object detection problems. Kraus et al. [Kraus
et al., 2016] proposed an MIL approach based on CNNs for
classifying and segmenting microscopy images. Their work
showed that CNNs combined with MIL can be well trained
end-to-end using whole microscopy images with image level
labels. However, their approach can only deal with fixed-size
cells in microscopy images, while objects in natural images
can have arbitrary sizes. In comparison, DMIH can capture
objects in multi-scales by generating proposals from multi-
scale convolutional feature maps. Wu et al. [Wu et al., 2015]
used BING [Cheng et al., 2014] for generating object propos-
als from raw images. These proposals were taken as instances
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Figure 2: The deep multiple instance hashing learning framework.

and fed into a CNN which was trained in an MIL fashion with
image level object labels. Another related work was con-
ducted by Ren et al. [Ren et al., 2016], which combined a
large pre-trained CNN with MIL for object detection without
bounding box annotations. They first produced object pro-
posals on raw images, and each candidate proposal was then
encoded by the pre-trained CNN. Finally, the encoded can-
didate proposals were examined by a SVM classifier which
was trained with an MIL objective. However, the above two
works aimed to locate and classify objects. The learned high
level features were not optimized for retrieval. Second, the
methods are inefficient in that each proposal produced from
raw images will be encoded by a CNN. The time cost is un-
acceptable for query processing. In comparison, DMIH gen-
erates proposals from high level feature maps, which is more
efficient.

3 The Method
3.1 Notations and Architecture Overview
Fig. 2 shows the network architecture. We take VGG-16 [Si-
monyan and Zisserman, 2015] as our base network to provide
high level 2D feature inputs for images. On top of VGG-16
we build multi-scale convolutional layers from which object
proposals are extracted via a 3×3 sliding window with stride
1. This scheme for proposal generation has been successfully
applied for real-time object detection [Liu et al., 2016]. As in
[Liu et al., 2016], the sizes of convolutional filters are set to
3×3×pwhere p is the number of feature maps in the previous
layer. Finally, object proposals are fed to the MIL/hashing
layers for objectness prediction/hash code generation. Note
the proposals are generated on feature maps rather than raw
images. Their size is much smaller compared to extracting
from raw images. This facilitates fast processing of proposals
and helps keep the model compact.

Formally, let Ii be the image in the training dataset with
index i and Xi = {xi1, . . . , xiM} be the set of M object pro-
posals extracted for Ii, where xim ∈ Rd is the feature vec-
tor for proposal m. Let N be the number of object classes.
Each image can contain objects from multiple classes. We use

tic ∈ {0, 1} to denote whether Ii contains objects from class c.
If tic = 0, ∀c ∈ {1, . . . , N}, then Ii has no concerned objects.
The top layer of DMIH contains two sub-layers: the hashing
layer and the objectness evaluation (MIL) layer. The object-
ness evaluation layer defines an evaluation function lc(·) for
each class c to judge whether a proposal represents an object
of c. The hashing layer maps proposals judged to be objects
into the Hamming space through the hash function f(·) for
indexing. In the following, we show how to train DMIH.

3.2 Optimization
The parameters of DMIH include f(·), {lc(·)}Nc=1 and con-
volutional filters on top of VGG-16. Firstly, we formulate
the objectness evaluation for each class c as an MIL problem
where object proposals are treated as instances and images
with tic = 1/tic = 0 are positive/negative bags, respectively.
Given Ii, the evaluation function lc(·) outputs the probability
of a proposal xi

m belonging to class c:

pic,m = lc(x
i
m) = σ(wT

c x
i
m + bc) (1)

where wc and bc are the parameters of lc(·) and σ(·) is the
sigmoid function. After obtaining the probability estimates
for all the proposals in Xi, the image level prediction is cal-
culated by applying a global pooling function g (·) over all
pic,m’s as follows

P i
c = g

(
pic,1, p

i
c,2, . . .

)
(2)

The global pooling function g (·) maps the instance space
probabilities to the bag space. Commonly adopted pool-
ing functions include maxm(pic,m), avgm(pic,m), log[1 +∑

m exp(pic,m)], among others. An image would not con-
tain many positive instances. Hence, we adopt max(·) which
means we are concerned with the most probable object pro-
posals. The loss function for the MIL layer is summarized as
follows

JMIL = −
∑
i

∑
c

(
tic logP i

c + (1− tic) log(1− P i
c)
)

(3)

Eq. (3) sums over the loss of each training image. For each
image, the loss is a summation of the cross-entropy losses
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for all classes. If an image Ii contains no objects (i.e. tic =
0, ∀c ∈ {1, . . . , N}), all the P i

c ’s for Ii will be suppressed.
Next, we discuss the training of the hash function f(·). The

general idea is that we treat the hashing layer outputs as an
embedding Hamming space where we train the semantic re-
lationships between images according to their class labels in
terms of the corresponding hash codes. Let hi

m ∈ {0, 1}k
denote the k bits hash code of object proposal xi

m in image
Ii, i.e. hi

m = f(xi
m). We use Hi = {hi

1, . . . ,h
i
M} to denote

the hash set of the object proposals of image Ii. The intuition
is that, if two images Ii and Ij share object labels, we let the
corresponding object hash codes be near each other, while we
keep objects belonging to different classes away from each
other. However, tic’s are weak labels at image level. We there-
fore take the most probable object proposal according to lc(·)
as the object for class c in image Ii with tic = 1. For a pair of
training images (Ii, Ij), the loss function is defined as:

Jpair−hash(Ii, Ij) = −
∑

{(c,c′)|tic=tj
c′=1}

Φ(Hi, Hj , c, c′)

(4)
where the summation is over all possible combinations of
class labels contained in Ii and Ij . Motivated by a margin-
based loss proposed by [Hadsell et al., 2006], Φ(·) is defined
as:

Φ(Hi, Hj , c, c′)

=


Dst(hi

Idx(P i
c ),h

j

Idx(P j

c′ )
), if c = c′

max

(
0, β −Dst(hi

Idx(P i
c ),h

j

Idx(P j

c′ )
)

)
, otherwise

(5)

where Idx(P i
c) denotes the index of the proposal in Ii

with the maximum objectness probability for class c, i.e.
Idx(P i

c) = arg maxm pic,m, and Dst(·, ·) is a distance metric
for hash codes. Eq. (5) means that we encourage the most
probable same-class objects to be as near as possible, while
keeping the most probable different-class objects at least β
away. Since the hamming space is discrete and not differen-
tiable, we relax the activation of f(·) to its continuous ana-
logue, the sigmoid function σ(·). The approximate hash code
of xi

m is computed as [Lin et al., 2015]

h̃i
m = f(xi

m) = σ(WT
f x

i
m + bf ) (6)

where Wf ∈ Rk×d and bf ∈ Rk×1 are the parameters of
f(·). The hash codes used for indexing are obtained by bina-
rizing h̃. Dst(·, ·) is set to be the Euclidean distance accord-
ingly.

Finally, we formulate the joint objective function of DMIH
by synthesizing Eqs. (3) and (4):

J =
∑
(i,j)

Jpair−hash(Ii, Ij) + λJMIL (7)

Such a joint optimization scheme could benefit both objec-
tives: the training of the MIL part can help hashing learning
locate the correct proposals; the pair-hashing part provides
a regularization for objectness evaluation through underlying
learnable convolutional filters.

Training. We employ stochastic gradient descent with image
pair sampling to optimize DMIH. The hyper-parameter λ in
Eq. (7) controls the balance between the two task losses. β
and λ are set to 1.25 and 1 respectively by cross validation.
The gradient calculation is straightforward. We omit the de-
tails due to space limitation.

3.3 Ranking Criterion
After training, we can then use the model for image indexing
and query processing. In particular, hash codes of the object
proposals whose objectness probabilities are greater than a
certain threshold θ are selected to represent an image. For
an image Ii in an image repository, we obtain a number of
hash codes according to θ and put them together to form a
hash bag H̄i to index Ii. A user can use one or multiple
images as queries. The queries will be fed into DMIH and a
set of hash codes will be outputted. Given a set Q of query
images, we obtain n hash codes to form the hash bag H̄Q =

{hQ
1 ,h

Q
2 , . . . ,h

Q
n }. We design a United Hamming distance

UHammDst between H̄Q and the hash bag H̄i of an image
Ii in the image repository:

UHammDst(H̄Q, H̄i) =

n∑
r=1

min
hi

j∈H̄i

∥∥hi
j − hQ

r

∥∥
1

(8)

Images in the repository will be ranked in ascending order by
UHammDst(·, ·) and the top ranked images are returned to
the user.

4 Experiments
In this section, we evaluate DMIH on both single-object
queries (which is the focus of previous work) and multi-
object queries, to show its superiority over baseline methods.

4.1 Datasets
SIVAL. It is a benchmark dataset that emphasizes the task
of object-based image retrieval. It consists of 25 different
categories, and each category includes 60 images. The object
can occur anywhere against highly diverse backgrounds in
each image.
Pascal VOC 2007 [Everingham et al., 2007]. It contains
9,963 images with 20 different object categories. This dataset
is more challenging than SIVAL, because there are more vari-
ations in scale, posture and angle. Images in it can con-
tain multiple labels, so we run experiments with multi-object
queries on this dataset.
ILSVRC 2013 detection set. This dataset has a similar task
and style with PASCAL VOC, but contains more images and
categories. It contains nearly 400K images in 200 object cat-
egories. We use this dataset to primarily evaluate the runtime
efficiency of DMIH and baseline algorithms.

4.2 Settings and Evaluation Measures
We compare DMIH to state-of-the-art hashing methods, in-
cluding PmH [Lee et al., 2010] and DSRH [Zhao et al.,
2015]. PmH generates hash codes for multiple regions for an
image. In addition to the hand-crafted features used in [Lee
et al., 2010], we also apply PmH on features computed by
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Figure 3: Results on SIVAL; (a) Precision@30 vs. bits; (b) Preci-
sion@k vs. k using 64-bit codes.

Figure 4: Results on Pascal VOC 2007; (a) Precision@100 vs. bits;
(b) Precision@k vs. k using 64-bit codes.

VGG-16 [Simonyan and Zisserman, 2015], denote as PmH-
CNN. For DSRH, we first use BING [Cheng et al., 2014] to
generate object proposals, and then obtain their hash codes
by DSRH [Zhao et al., 2015]. We also compared DMIH
to two variants of it. The first one omits the hashing layer
and uses Euclidean distance on CNN features (x) for search.
It performs deep object detection by MIL in nature and is
named `2-scan. The second one, DMIH-ind, performs MIL
and hashing learning separately as two steps. It is used to test
whether joint learning leads to better performance. We do not
involve traditional object-based retrieval methods since the
settings are very different (i.e. they ask for labels from users
rather than making use of labeled image datasets). We em-
pirically set the objectness threshold θ = 0.7 for DMIH and
its variants. Parameters of PmH and DSRH are set to the best
values reported. For fair comparison, we use Eq. (8) as the
ranking criterion for all the methods except PmH (it generates
a large number of regions for an image). Regarding evalua-
tion metrics, we employ mean average precision (MAP) and
precision@k [Lin et al., 2015], where an image is deemed to
be relevant to a query if it contains the labels of the query.

Method TIME(ms) MAP(%)
O H+S F+O+H+S 64 bits

DMIH - - 18.32 74.06
DSRH 6.32 - 27.76 68.12

PmH+CNN - 18.45 22.97 62.26
PmH - 19.76 297.43 52.22
`2-scan - - 975.91 66.51

Table 1: Comparison of the average query time and MAP by fixing
the code length to 64 bits on ILSVRC 2013.

Multi-object Query PASCAL VOC 2007 (MAP %)

DMIH DSRH PmH+
CNN PmH

bottle + tv 78.6 67.1 61.2 54.3
horse + person 81.2 69.3 64.3 56.6

bus + car 83.1 71.4 66.0 58.4
dog + cat 79.9 64.2 57.8 58.1

bottle + chair + tv 85.7 72.4 69.1 56.1
dog + cat + person 84.3 71.1 67.9 55.2

bus + car + bike 87.1 73.5 70.5 58.4
horse + person +

car + dog 91.8 79.2 74.4 61.2

chair + plant +
sofa + tv 93.4 80.5 74.9 62.5

Average 85.7 72.6 68.9 57.1

Table 2: Image retrieval results (MAP) for multi-object queries on
PASCAL VOC 2007 by fixing the code length to 64 bits.

4.3 Experiments with Single-object Queries
For a single-object query, we assume the whole query image
is an object. Each method process query images by taking
this prior knowledge into account. We first report results for
the SIVAL dataset. We randomly extract 8 images from each
object class to form a total of 200 query images. The rest
images are used for training and indexing. Fig. 3(a) shows
the precision@30 performance of each method when vary-
ing hash code length from 8 bits to 64 bits. We find DMIH
is consistently better than all the compared methods at each
code length. These results illustrate the superior ability of
DMIH in extracting and encoding objects from images. In
Fig. 3(b), we fix code length to 64 bits and plot precision@k
with varying k. Again, DMIH outperforms all the compared
methods in all cases. The superiority of DMIH over DMIH-
ind demonstrates the usefulness of joint optimization of hash-
ing and MIL objectness prediction. Although the CNN fea-
tures boost the performance of PmH by an obvious margin,
it still performs worse than DMIH. Finally, the mediocre per-
formance of `2-scan indicates that features trained for object
detection are not suitable for retrieval.

We next test on the Pascal VOC 2007 dataset. We ran-
domly sample 50 images from each object category, resulting
in a total of 1K query images and 8963 training images. Since
each image can contain multiple objects, we only take the ob-
ject in a query image for the category from which the image
was sampled as the query input (the bounding box is given
in the dataset). The results for Pascal VOC 2007 are shown
in Fig. 4. Since this dataset is much larger than SIVAL with
each query having a larger set of relevant images, we report
precision@100 and vary k from 50 to 300 in Fig. 4. The ob-
servations are similar with those for SIVAL. We also test the
performance differences between DMIH and baselines by t-
test and find the differences are significant under significance
level α = 0.05. For the following experiments, we fix hash
code length to 64 bits.

For ILSVRC 2013, we randomly extract 100 images from
each class as queries. The rest images are used for train-
ing and indexing. We use query time to refer to the time
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(a) queries (b) DMIH (c) BING+DSRH (d) PmH+CNN (e) PmH (f) l2-scan

person+horse

sofa+dog+person

bus+car+
bike+person

Figure 5: Case studies on PASCAL VOC 2007 for queries with different combinations of object types. Red border denotes false positive.

cost for processing one query, including feature extraction,
object/region generation, hash codes calculation and search
(abbreviated as “F”, “O”, “H” and “S” respectively). We re-
port in Table 1 the average query time (and also the retrieval
MAP) for each method on ILSVRC 2013. All the methods
are run on a PC with NVIDIA GTX 1070 GPU, Inter Core
i7-7700 CPU and 16GB memory. Since DMIH is an end-
to-end method, we simply report its query time in whole. In
DSRH, the time cost of “O” mainly comes from BING (only
one proposal generated since the whole image is an object).
We use GPUs to only accelerate CNN computation. From
Table 1, We can see that DMIH is very efficient compared to
baseline methods. This is because DMIH integrates feature
extraction, object generation and hash code computation in
one deep model. The computation can be well accelerated
on GPUs. We omit the results for DMIH-ind since its query
time is the same as DMIH. Regarding retrieval performance,
DMIH again beats all the other methods.

4.4 Experiments with Multi-object Queries
A user can select one or more images to form a multi-object
query. The query images are then processed by each method
in the same way as images in the image repository, i.e. gen-
erating a bag of hash codes. The returned images should con-
tain different types of objects that appear in the query images.
Because most of the images in Pascal VOC 2007 contain mul-
tiple objects, it is very suitable for this task. We randomly
sample 1K images and randomly combine at most 4 images
from them to form queries. An image is judged to be relevant
if it contains all types of objects in the query. Table 2 gives
the MAP results for different combinations of object types
in queries. We can see DMIH outperforms baseline methods
by an obvious margin. DMIH also beats DMIH-ind and `2-
scan. We omit them due to space limitation. An interesting

phenomenon in Table 2 is that the quality of search results
gets improved when using more types of objects as queries.
This could be because more types of objects can more clearly
express a user’s interest, just like multi-keyword queries in
text search. Fig. 5 shows top ranked images for queries with
different combinations of object types. We can see DMIH
generates better results than the baseline methods.

5 Conclusion

In this paper, we propose to construct a deep hashing learn-
ing framework for object retrieval in a weakly supervised
learning setting. Unlike previous object-based image retrieval
methods, our framework builds an end-to-end relation be-
tween a raw image and the binary hash codes of objects
in it for fast indexing. A joint optimization scheme which
integrates feature learning, multiple instance learning and
hashing learning is presented for learning the deep model.
We demonstrate the superiority of the proposed approach
over state-of-the-art methods on both single-object and multi-
object retrieval problems on three benchmark datasets. To
further speedup retrieval, we will investigate indexing in fu-
ture work.
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