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Abstract

Data trustworthiness is a crucial issue in real-world
participatory sensing applications. Without consid-
ering this issue, different types of worker misbe-
havior, especially the challenging collusion attacks,
can result in biased and inaccurate estimation and
decision making. We propose a novel trust-based
mixture of Gaussian processes (GP) model for spa-
tial regression to jointly detect such misbehavior
and accurately estimate the spatial field. We de-
velop a Markov chain Monte Carlo (MCMC)-based
algorithm to efficiently perform Bayesian inference
of the model. Experiments using two real-world
datasets show the superior robustness of our model
compared with existing approaches.

1 Introduction

Recently, crowdsourcing has become a viable alternative to
outsourcing. Crowdsourcing platforms, e.g. Amazon Me-
chanical Turk (https://www.mturk.com) and CrowdFlower
(https://www.crowdflower.com), have demonstrated the ad-
vantages of crowdsourcing, such as being fast and inexpen-
sive. One notable crowdsourcing application is participatory
sensing, in which workers collect sensory information of spa-
tial phenomena (e.g. temperature, noise, air pollution, etc.)
via mobile devices [Zenonos et al., 2015]. Through collected
data, the field of spatial phenomenon can be estimated at any
given point in space via regression. However, trustworthiness
of collected data is a crucial issue [Mousa et al., 2015]. Faulty
sensors, inappropriate measurements, and worker misbehav-
iors (especially the challenging collusion attacks), all result in
unreliable (erroneous or malicious) data. Without considering
this issue, estimations can be negatively affected, becoming
biased and inaccurate.

Related Work. A number of approaches have been pro-
posed to address the reliability issue in crowdsourcing and
participatory sensing. They are related to different types of
tasks including object labelling, rating-based crowdsourcing,
parameter estimation, and spatial field regression.

In object labelling, workers are given images of objects,
such as text that contains mistakes [Tran-Thanh et al., 2015]
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and celestial objects [Kamar et al., 2012], and are asked to
classify them. There is usually a unique true answer for
each question, and each worker submits his/her guess of the
answer. In rating-based crowdsourcing, workers are asked
to provide subjective opinion about text, videos, or events
[Tarasov et al., 2014]. These questions have no unique an-
swers. In parameter estimation, the objective is to estimate
continuous-valued quantities, such as spatial locations of tar-
get objects [Salek er al., 2013] and Wi-Fi hotspots [Venanzi
et al., 2015]. Workers report noisy (and possibly erroneous)
observations of these quantities, which are aggregated to pro-
duce estimations. The most challenging task type in crowd-
sourcing and participatory sensing is spatial field regression,
in which the objective is to estimate a continuous spatial field
at every spatial location. In such tasks, workers report noisy
and potentially erroneous observations of spatial fields (e.g.
urban noise and air quality [Zenonos et al., 2016]). Subse-
quently, regression models are used to estimate these spatial
fields. This type of tasks is challenging because the inten-
sity of a spatial field varies across space, and worker obser-
vations are made at different spatial locations. Hence, there
is no unique ground truth, and methods in object labelling
that rely on consensus [Kamar and Horvitz, 2012], or prede-
fined gold standard questions with known answers [Shah and
Zhou, 2015] are not applicable. On the other hand, obser-
vations are not independent but spatially correlated, render-
ing methods that detect colluders via inter-worker similarities
[KhudaBukhsh ef al., 2014] in rating-based crowdsourcing
inapplicable. Trust-based robust estimation methods for esti-
mating continuous-valued quantities such as [Venanzi et al.,
2013b] and [Venanzi et al., 2015] are also inapplicable be-
cause a spatial field is a continuous function that is different
from a finite number of quantities.

Many robust models in regression have been developed in
the past. M-estimation [Huber, 2011] was developed to im-
prove the robustness of models to outliers. M-estimators are
obtained by minimising general cost functions, and are gen-
eralizations to the least-squares estimator (LSE). Other ro-
bust models replace the normal distribution of noises in or-
dinary LSE by heavy-tailed distributions such as Student’s
t-distribution [Jyldnki et al., 2011] and contaminated normal
distribution [Huber, 1964]. These methods can be applied to
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spatial field regression in participatory sensing to minimise
effects of outliers, but they fail to model complex human-like
behaviors, such as collusion. In [Venanzi et al., 2013al, a
trust-based regression model was proposed for spatial field
regression tasks in participatory sensing. It constructs a het-
eroscedastic Gaussian process (HGP) model, where the accu-
racies of worker observations are scaled by worker trustwor-
thiness. Attackers are assumed to have low trustworthiness,
and report observations with higher variances. A maximum
marginal likelihood method is used to jointly estimate model
parameters and worker trustworthiness. Due to overly sim-
plified assumptions, this model lacks the ability to mitigate
complex real-world malicious attacks, such as injecting bi-
ased observations. In addition, the method is unable to incor-
porate past trustworthiness of workers in future tasks.

Our Contributions. In this paper, we propose a novel
trust-based mixture of Gaussian processes (GP) model' to
yield accurate estimations of spatial fields in the presence of
various types of misbehaving workers. The mixture model
is the natural choice for this problem. By introducing mix-
ture components that are also spatial fields, the model is
made robust against various kinds of complex attacks, in-
cluding collusion attacks. Our contributions are as follows:
(i) We define attacks in spatial regression via a mixture of
GP model. (ii) We develop a Bayesian trust framework to
maintain and update trustworthiness of participatory sens-
ing workers. Updated trustworthiness improves reliability of
future tasks. (iii) We design a novel and efficient Markov
chain Monte Carlo (MCMC) sampling-based algorithm for
Bayesian inference of the proposed model. (iv) We compare
our model with state-of-the-art models using two real-world
datasets and demonstrate its robust predictive performance.

2 Problem Definition

We first define the spatial field regression problem in partic-
ipatory sensing. Suppose there are W potentially dishonest
workers in the system. A sequence of tasks are assigned to
these workers. We focus on one particular task, where we col-
lected N; data points {(x; ;, ¥y, j)}é\;1 from the ¢-th worker
N; > 1. x5 € X C R? represents the d-dimensional
vector-valued covariates (e.g. geographical coordinates), and
¥i,; € R represents an observation at x; ;. Each observation
could either be truthful or untruthful. Truthful observations
are made from the target spatial field f : X — R, while un-
truthful observations are unrelated to f (to be defined later).
The objective is to reliably estimate f(x.) for any x, € X
with its probability distribution.

To motivate the model, we show an example of the stated
problem. A participatory sensing task aims to estimate the
concentration of a certain air pollutant in a region. For a data
point (x; ;,y; ;) from the i-th worker, x; ; represents the ge-
ographical coordinates (longitude and latitude), and y; ; rep-
resents the concentration reading at x; ;. The target field f
corresponds to the spatial field of the concentration. Sup-
pose that the i-th worker reports observations that are higher

'A preliminary version of the model has been published in [Xi-
ang et al., 2017]
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than the actual concentrations. These observations would be
deemed as untruthful, and the ¢-th worker would be regarded
as dishonest.

3 Threat Model

We here discuss various kinds of threats that result in unre-
liable data. These include sensor faults, inappropriate mea-
surements, and dishonest workers [Mousa et al., 2015].

According to [Sharma et al., 20101, we identify three types
of sensor faults. Noisy: sensors produce readings with ab-
normally high variance. Outlier: sensors produce abnormally
high or low readings. Uncalibrated: sensors produce system-
atically biased readings. Some workers may perform mea-
surements inappropriately. For example, a sensing device
may be placed inside a pocket, which would systematically
bias the readings, similar to uncalibrated sensors. Dishonest
workers deliberately alters measurements at specific locations
by injecting data points that changes the estimation of the tar-
get field in their favor [Mousa et al., 2015]. They may work
in either collusive or non-collusive manner.

Since the task objective is to minimise estimation errors,
which could be due to bias and variance, we summarize
the effective threats by categorizing them into three types of
strategies, denoted by S/, S2 and S3. SI: introducing bias into
observations. S2: increasing variance in observations. S3: in-
troducing bias and increasing variance in observations. Be-
sides different strategies, the spatial distribution of untruthful
data points may be clustered or dispersed.

A collusion attack involves coalitions in which dishonest
workers behave cooperatively to achieve a common objec-
tive. For example, a coalition of dishonest workers may adopt
a common strategy to alter observations, or focus on a com-
mon sub-region. Among all types of threats, the collusion
attack that introduces bias is the most damaging type, as it
can cause estimations of spatial fields to be highly biased,
and is hard to detect using outlier detection-based methods.
In existing works related to collusion, the size of coalition is
usually upper bounded (e.g. O(logn) [Celis et al., 2016]),
or assumed to be the minority [Wang et al., 2013], which is
unrealistic. We do not make this assumption in our model.

4 Trust-based Mixture of GP Model

In this section, we introduce our trust-based mixture of GP
model and the Bayesian inference procedures. The model
maintains worker trustworthiness by beta prior distribution.
It models the probability of a worker reporting truthfully. We
differentiate truthful and untruthful observations by different
assumptions. It is assumed that there are K coalitions of
dishonest workers, each contributing untruthful observations
with distinct features. Truthful observations are made from
the underlying spatial field f, while untruthful observations
from a coalition follow a common strategy function that is
independent to f. The value of K is set sufficiently large
initially, and the actual value can be determined after the in-
ference.

Bayesian inference of the model is done via an efficient
Markov chain Monte Carlo (MCMC) sampling algorithm
with two phases. In the first phase, samples of latent variables
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Figure 1: Bayesian model DAG (white circles represent latent vari-
ables, shaded circles represent observed data, shaded squares repre-
sent known variables).

are simulated from the posterior distribution of the model. In
the second phase, predictions of the spatial field f is com-
puted by Monte Carlo integration using samples generated in
the first phase. After the inference, trustworthiness of work-
ers is updated. The updated trustworthiness is used in future
tasks as prior, resulting in more accurate estimations.
Trustworthiness of Workers. The directed acyclic graph
(DAG) of the model is shown in Figure 1. As observations are

either truthful or untruthful, we use ¢; ; € {0,1,--- , K} as
the indicator of the truthfulness of an observation y; ;, where
¢;; = O indicates y; ; is truthful and ¢; ; = k € {1,--- K}

indicates that y; ; is untruthful and is generated from the k-th
coalition. Letc := {¢;; : i =1,--- , W,j =1,--- ,N;}.
The truthfulness of y; ; depends on the honesty of the i-th
worker t;, defined to be the probability that the i-th worker
reports a truthful observation (t; € [0,1]). Hence, ¢; :=
PI(Ci’j = 0) When Ci,j 7é 0, we define € = PI'(CZ'J' =
klei;j # 0), for k € {1,--- , K}. All indicators in c are as-
sumed to be pairwise independent condition on {t;}}V; and

(1, ex).
We place a beta prior distribution on t;, with parameters
r; = (a4 0;), defined as the trustworthiness of the i-th

worker. When a worker first enters the system, he is assigned
an initial trustworthiness (e.g. based on his skill level and the
type of sensing device). After completion of each task, the
trustworthiness of workers will be updated, as elaborated later
in Section 4.2, and used in future tasks as priors. Workers
who have behaved dishonestly in the past are more likely to
be distrusted in future tasks, or are banned from entering the
system. A symmetric Dirichlet prior distribution with con-
centration parameter A is placed over (e, - ,€x ). We use
the beta trust model as it is intuitive for modelling the proba-
bility of binary events. It also results in a simple update rule
as shown in Section 4.2.

Observation Model. Truthful observations are generated
by the target function f. Untruthful observations from the k-
th coalition are generated by a strategy function s : X — R.
The strategies can be any of the aforementioned threats. We
assume that observations from both f and {s;}£ ;| contain
normally distributed noises,

(yijleiy = 0) ~ N(f(xi ;). 0m0), (1)
(yijlei; = k) ~ N(sp(xij),s0), k€ {l,--,K}. (2
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We model f and {sj}/_, as realizations from Gaussian
processes (GP) [Rasmussen, 2006]. Their priors are specified
by the following Gaussian processes,

f~GP(us,Cy), 3)
sk~ GP(us,,Cs,), for ke {1,--- K}, 4)

where fif, {s, } &, are mean functions, and Cy, {Cs, }H<_,
are covariance functions (Cy could be stationary or non-
stationary depending on assumptions about the f process).
Let 8 denote hyperparameters of the f process and let 8,
denote the hyperparameters of the s; process. Let m; and
75 denote the prior distributions of 6 and {0, }X_, respec-
tively. This creates a mixture of K + 1 Gaussian processes.
This versatile model caters to all types of aforementioned
threats, and captures untruthful observations using flexible
strategy functions {sj}_,. In reality, the number of coali-
tions K is unknown. We can set K sufficiently large ini-
tially, and set the prior on (€1, - ,€x) to be weakly infor-
mative. This will cause the redundant mixture components
to have close to zero posterior probabilities [Rousseau and
Mengersen, 2011], which allows us to estimate the actual
number of coalitions without performing Bayesian model de-
termination or implementing a trans-dimensional sampling
method, since both methods are computationally costly.

4.1 Bayesian Inference of Spatial Field

We can integrate out {¢;}!V, and (1, , €x) from the pos-
terior distribution of the model. Let L := (c7 0s,{0;, }szl)
denote remaining latent variables, and y = {y;; : i =
1,---,W,5 =1,---, N;} denote the collection of observa-
tions. The posterior distribution of L factorizes as follows,

p(Lly) =p(c, 05, {0 }iz1ly)
o Pr(e)p(yol07)m(05) [Tee, p(yr|0s,)7ms(6s,),

where y( represents truthful observations and yy, represents
untruthful observations from the k-th coalition.

To obtain posterior predictive distribution of f. := f(x.),
we need to marginalize over latent variables L, i.e.

(&)

p(fuly) = / p(f.ly. L)dp(Lly). ®)

The first term in the integral is a Gaussian density, as derived
by standard GP regression [Rasmussen, 20061, and p(L]y) is
the same as (5). Since it is intractable to perform the integra-
tion in (6) analytically, we apply Markov chain Monte Carlo
(MCMC) to simulate samples from (5) to approximate this
integral by Monte Carlo integration. The Bayesian inference
of the spatial field is done in two phases.

In the first phase, samples of latent variables L are gener-
ated from its posterior distribution (5). Each component of L
is sampled from its corresponding conditional posterior distri-
bution via Gibbs sampling. Truthfulness indicators c is sam-
pled component-wise. Letc_ :=c\{¢; ; },y— := y\{vi;}.
Forl e {0,--- ,K},

Pr(c;; =lc_, 0y, {Osk}szh y) @)
o< p(yijleij =1e—,05,{0s her, y—)Pr(cij = llc_).
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In (7), the first term is a Gaussian density derived via stan-
dard GP regression and can be computed by removing terms
related to x; ; from the covariance matrix. Note that rank
one update can be performed to compute the inverse of the
covariance matrix excluding x; ;, which makes sampling of
c computationally efficient. The second term in (7) can be

obtained by integrating out ¢; and (€1, - , €x),
ai"‘NiOf
Pr(c;; =0|c) = —————F—, 8
r(c;; = 0|c-) o B EN 1 ®)
ng_ +A
Pr(c;; = klc-) = =——[1 — Pr(¢;; = 0|c_)],
r(ci,; lc-) S +KA[ r(ci; c-)]
fork e {1,---, K}, )

where N; o_ is the total number of truthful observations from
the i-th worker excluding ¥; ;, ny— is the total number of
observations from the k-th coalition excluding y; ;. Hyper-
parameters of GP (0, {05, }/< ) can be efficiently sampled
via Hybrid Monte Carlo (HMC) [Duane et al., 1987].

The nature of the posterior distribution in (5) implies that
it may be multimodal. We introduce parallel tempering
[Swendsen and Wang, 1986] to facilitate convergence of the
Markov chain by including an auxiliary variable 7 as the tem-
perature (7 > 1). The joint posterior distribution is,

p(L,7ly) o p(r)p(Lly)~ - (10)

We set p(7) to be uniform. When 7 = 1, the marginal pos-
terior is the desired posterior as in (5). Chains with 7 > 1
simulate samples from flattened posterior distributions that
are easier to sample. We run multiple Markov chains with
different 7 in parallel, and periodically propose swapping of
states L between chains. A swap of states between two chains
(L, 7) and (L', 7") is accepted with probability as follows,

p(L', 7y)p(L, 7'|y)
p(L, 7y)p(L/, 'ly)’

to preserve the detailed balance. When the Markov chain has
mixed, we only take samples from the chain with 7 = 1 and
proceed to the next phase (initial samples are discarded).

In the second phase of the inference algorithm, the poste-
rior predictive distribution of f, is computed by approximat-
ing the integral in (6) via Monte Carlo integration. Suppose

Pr(accept) = (11)

we have generated (Q samples in the first phase {L(q)}f:1
The integral in (6) can be approximated by

P = 5 Zp(f*ly L@). (12)

The mean and variance of the distribution in (12) can be com-
puted analytically. Other statistics such as the median and
percentiles can be estimated from the histogram.

The time complexities of the two phases of the algo-
rithm are O(n?) and O(n?) respectively, which coincide with
other GP-based models. Therefore, our model is able to
handle datasets with thousands of data points. For larger
datasets, reduced-rank approximation [Rasmussen, 2006]
may be used.
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4.2 Update of Trustworthiness

Throughout different tasks, we maintain the trustworthiness
of workers via {r;}}¥,. For the i-th worker, his trustwor-
thiness before performing a task is r; = («ay, 3;). After the
task, the updated trustworthiness will become r; = («, 7).
We now derive the update rule. Since ¢; has been integrated
out from the posterior distribution, we need to approximate

p(t;]y) from samples generated through MCMC,
p(tily) Zp (tile)Pr(cly). (13)

The distribution in (13) is a mixture of beta distributions. We
then compute the updated trustworthiness by finding (o, 3})

that minimise the Kullback-Leibler (KL) divergence between
Beta(a, ;) and (13). Let P denote the distribution in (13)

and P denote the approximate distribution Beta(o, 5),

K2

(o), B _argmax/ P(t;)In P(t;)dt;. (14)
of,B

This is a convex optimization problem and can be computed
efficiently via Newton’s method.

Sometimes it is desirable to control the rate at which trust-
worthiness is updated. For example, we may associate a
weight to each task to indicate its relative importance, and
update trustworthiness according to the importance. We may
also set the dropping rate of trustworthiness to be faster than
the growing rate to increase the penalty for misbehaviors.
This control could be achieved by modifying the term p(¢;|c)
in (13) to take other factors into account. In this way, tempo-
ral strategies (e.g. building up trustworthiness in unimportant
tasks and subsequently misbehave in important ones) can be
effectively mitigated.

5 Experimentation

In this section, we demonstrate the robustness of our model
by applying it to two real-world datasets and comparing its
predictive performance with several state-of-the-art models.
Datasets and Experimental Settings. The first dataset
is the air quality index (AQI) data retrieved from the World
Air Quality Index project (http://agicn.org). It consists of
435 AQI readings from East Asia collected by Environmen-
tal Protection Agencies on January 10, 2017. In this dataset,
covariates are longitudes and latitudes where data were ob-
served, and observations are measured PM2.5 AQIs. The sec-
ond dataset is the US monthly precipitation dataset collected
by the Institute for Mathematics Applied to Geosciences, US
National Center for Atmospheric Research during 1895-1997
(http://www2.image.ucar.edu). In this dataset, covariates are
longitudes and latitudes of weather stations and observations
are the total monthly precipitation in millimeters. We use
a subset of data from October of 1997 in a region, consist-
ing of 1618 data points. Since these datasets are official, we
assume all readings are truthful and refer to these uncontam-
inated datasets as original datasets. From each dataset, we
randomly select a subset of data points (100 from the AQI
dataset and 200 from the US precipitation dataset) and use
them as predictive points for evaluating different models.
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We compare our regression model with three baseline mod-
els, including standard GP regression, robust GP regression
with Student’s t-distributed noises [Jyldnki e al., 2011], and
TrustHGP [Venanzi et al., 2013al. We adapted all three mod-
els into fully-Bayesian models and applied MCMC to sam-
ple latent variables and approximate the posterior predictive
distribution. The same weakly informative priors on GP hy-
perparameters are used for all models. By using MCMC as
the sole inference method, we focus only on the differences
in performance due to different model specifications, and ex-
clude the effects of inference techniques (e.g. Laplace ap-
proximate, expectation propagation, etc.)

In the experiments, we use anisotropic Matérn covariance
functions with v = % for all stationary GP priors, same as in
[Zenonos et al., 2015]. Additionally, non-stationary Matérn
covariance function introduced in [Paciorek and Schervish,
2004] is used in conjunction with the proposed model in
the first part of the experiment to demonstrate its applicabil-
ity in non-stationary spatial fields. Although most physical
phenomena are non-stationary due to their spatially varying
smoothness properties, we use stationary covariance func-
tions for comparing models due to the much higher compu-
tational cost of non-stationary regression. In practice, non-
stationary covariance functions work better with our model
as discussed later in this section, and is preferred when the
computational efficiency is not a major concern and the un-
derlying phenomenon is likely to be non-stationary.

To compare different models, we contaminate a subset of
observations in original datasets with three types of strate-
gies introduced in Section 3, changing them into untruthful
observations. Bias in observations is introduced by a linear
transformation of actual observations, and extra variance is
introduced by adding a zero-mean Gaussian noise term to the
reading. Performance is evaluated by both root-mean-square
error (RMSE) and mean of log predictive density (MLPD).
RMSE evaluates the point prediction (posterior mean) accu-
racies, while MLPD provides a more comprehensive mea-
surement of predictive performance by taking into account
posterior uncertainties. A higher MLPD indicates better per-
formance.

Experiments on AQI Dataset. We use the AQI dataset to
evaluate model performance when a single strategy is present.
We assign data points in the dataset to 20 imaginary work-
ers and then alter readings from 5 of the workers by one of
three strategies (S7, S2 or §3). For each strategy, we build
one dataset with clustered untruthful data points and another
with dispersed untruthful data points.

We first demonstrate the Bayesian inference results and
the updated trustworthiness of our model by an experiment
on a dataset with dispersed untruthful data points and strat-
egy S1. In Figure 2, the top-right, bottom-left and bottom-
right subfigures show the posterior mean resulted from stan-
dard GP and our model with non-stationary and stationary
covariance functions. The top-left subfigure shows the pos-
terior mean of standard GP on the original dataset as a ref-
erence. Our model has reconstructed a smooth spatial field
that explains the spatial phenomenon well, while the standard
GP produced a rapidly varying spatial field due to the pres-
ence of untruthful data points, resulting in poor predictive
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Figure 2: Contour plots of posterior mean from standard GP in
original dataset (top-left), and contaminated dataset (top-right), our
model with non-stationary (bottom-left) and stationary (bottom-
right) covariance in contaminated dataset. [Best Viewed in Color]

2 20

Honest workers
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Figure 3: Probability density functions of initial trustworthiness of
workers (left) and updated trustworthiness of honest and dishonest
workers (right). [Best Viewed in Color]

performance. In this experiment, the initial trustworthiness
of all workers was set as r;,;; = (2,1). After performing
Bayesian inference, our model updated the trustworthiness of
each worker. Figure 3 shows the probability density func-
tion p(t;) of the initial trustworthiness and updated trustwor-
thiness of all 20 imaginary workers. Honest workers were
more trusted, while dishonest workers became distrusted af-
ter the inference. The updated trustworthiness could be used
as prior in future tasks, which would further reduce the im-
pact of untruthful data points provided by dishonest workers.
The number of coalitions K was set as 8. The mean poste-
rior probability of (e1,--- ,ex) was (0.78, 0.09, 0.05, 0.03,
0.02, 0.01, 0.01, 0.01). Therefore, one major coalition could
be identified from this dataset.

Figure 4 shows the predictive performance (RMSE and
MLPD) of five models on different strategies and spatial dis-
tribution of untruthful data points in a bar chart, with the
performance on the original dataset on the leftmost column
for reference, and error bars indicating the standard deviation
of RMSEs and MLPDs. TrustMix(NS) and TrustMix(S) re-
fer to our trust-based model with non-stationary and station-
ary covariance functions, respectively. Both TrustMix(NS)
and TrustMix(S) consistently achieved good predictive per-
formances with low RMSEs and high MLPDs. Three base-
line models were shown to be susceptible to strategies that
involve biases, especially when untruthful data points are
clustered. Extra variances had insignificant effects on pre-
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Figure 4: RMSE and MLPD of predictions resulted from five models in contaminated AQI datasets. [Best Viewed in Color]

Table 1: MLPD of predictions on US precipitation datasets.

Data|S7|S2|S3| TrustMix| Std. GP| Robust GP| TrustHGP
A| 0] 0] 0] -2.0439|-2.0588 -2.0217] -2.0821
B1|{10{10(10| -2.1110{-2.9723 -4.3511| -2.3060
B2(18| 6| 6| -2.1259|-2.7952 -3.4426| -5.4699
B3| 6[18| 6| -2.1646|-2.4841 -3.8650] -2.1348
B4| 6| 6|18 -2.1310|-2.8929 -3.5105] -2.2868
B5(24| 3| 3| -2.1550{-2.9895 -3.1315] -7.3516
B6| 3({24| 3| -2.1593|-2.3940 -2.2644  -2.0986
B7| 3| 3|24| -2.1487|-7.8555 -3.5302] -2.3003
C|(20(20({20| -2.1153 - - -

dictive performances. One notable aspect of the results is
that our model with non-stationary covariance function out-
performed the stationary version. We speculate that this is
due to model mis-specification, as the AQI dataset is likely
to be non-stationary. Since a mixture of stationary GP may
fit a non-stationary function well, mixture components in our
model may be used to fit the non-stationary function instead
of real strategies. Thus, in practice, non-stationary covariance
functions are preferred when using this model.

Experiments on US Precipitation Dataset. We use this
dataset to demonstrate the capability of our model to handle
multiple strategies. We create nine datasets for the experi-
ment, A, B1, B2, B3, B4, B5, B6, B7 and C in a similar
way as in the previous experiments. Dataset A is the original
uncontaminated dataset. Dataset B1-B7 are datasets contam-
inated by 30 dishonest workers forming three coalitions with
varied proportions of dishonest workers and strategies S/, S2
and S3. Dataset C demonstrates a special case where the
majority of workers are dishonest, but honest workers have
higher trustworthiness resulted from past behaviors. These
datasets are used to evaluate the predictive performance of
our model and three baseline models (all four models use sta-
tionary covariance functions).

Table 1 shows the performance in MLPD of four models
on nine datasets (Dataset C is inapplicable to baseline mod-
els). RMSE results give the same conclusions, and thus are
omitted for saving space. Columns 2 to 4 show the number of
dishonest workers in the coalition following strategies S/, S2
and S3. Our model has achieved good predictive performance
in all datasets. While TrustHGP achieved slightly better per-
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formance when the majority of dishonest workers follow S2,
its performance was significantly affected when the major-
ity of dishonest workers follow S/, which could be the case
when there is collusion attack. Apart from being more robust
than baseline models when dishonest workers are present,
the performance of our model on dataset C demonstrates its
ability to incorporate past trustworthiness maintained in the
model to improve its identification of misbehaviors, even in
the extreme case where dishonest workers become the major-
ity. This could not be achieved in baseline models. Same as
the experiments on the AQI dataset, in the experiment with
dataset C, the number of coalitions K was initially set as 8§,
and the mean posterior probability of (1, - - - , € ) was (0.35,
0.29, 0.23, 0.07, 0.03, 0.02, 0.01, 0.00), and roughly three
coalitions could be identified from this dataset.

Although the spatial field of precipitation is likely to be
non-stationary considering the fact that the data comes from
a large geographical area with a variety of terrain features,
we used only stationary models for efficiency considera-
tions. Nevertheless, we could expect a better predictive per-
formance if non-stationary models were used, as we have
demonstrated in the experiments on the AQI dataset.

6 Conclusion and Future Work

This paper introduced a novel trust-based mixture of Gaus-
sian processes model to resolve the problem of spatial field
regression in the presence of untruthful data in participatory
sensing. Bayesian inference of the model is done via an effi-
cient MCMC-based algorithm. We demonstrated the predic-
tive performance of the model using two real-world datasets,
comparing with three baseline models. Our model was shown
to be significantly more effective than baseline models against
various attacks, which can cause detrimental effects if not
mitigated. The trustworthiness of workers is efficiently up-
dated after each task, which improves the accuracy of future
tasks. For future work, we will investigate the possibility of
using reduced-rank approximation to improve the scalability
of the model, especially in the non-stationary case.
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