
Optimal Escape Interdiction on Transportation Networks
Youzhi Zhang1, Bo An1, Long Tran-Thanh2, Zhen Wang3, Jiarui Gan4, Nicholas R. Jennings5

1School of Computer Science and Engineering, Nanyang Technological University, Singapore
2Department of Electronics and Computer Science, University of Southampton, UK

3School of Cyberspace, Hangzhou Dianzi University, China
4Department of Computer Science, University of Oxford, UK

5Departments of Computing and Electrical and Electronic Engineering, Imperial College, UK
1{yzhang137,boan}@ntu.edu.sg, 2ltt08r@ecs.soton.ac.uk, 3wangzhen@hdu.edu.cn, 4jiarui.gan@cs.ox.ac.uk, 5n.jennings@imperial.ac.uk

Abstract
Preventing crimes or terrorist attacks in urban ar-
eas is challenging. Law enforcement officers need
to respond quickly to catch the attacker on his es-
cape route, which is subject to time-dependent traf-
fic conditions on transportation networks. The at-
tacker can strategically choose his escape path and
driving speed to avoid being captured. Existing
work on security resource allocation has not con-
sidered such scenarios with time-dependent strate-
gies for both players. Therefore, in this paper, we
study the problem of efficiently scheduling securi-
ty resources for interdicting the escaping attacker.
We propose: 1) a new defender-attacker security
game model for escape interdiction on transporta-
tion networks; and 2) an efficient double oracle al-
gorithm to compute the optimal defender strategy,
which combines mixed-integer linear programming
formulations for best response problems and effec-
tive approximation algorithms for improving the s-
calability of the algorithms. Experimental evalua-
tion shows that our approach significantly outper-
forms baselines in solution quality and scales up
to realistic-sized transportation networks with hun-
dreds of intersections.

1 Introduction
Preventing crimes or terrorist attacks in urban areas is chal-
lenging, since the number of potential targets in cities and
large towns is huge. For example, the large number of bank
branches, especially those offering many escape routes, could
be highly profitable targets for bank robbers. In case of such
an event, e.g., bank robbery or terrorist attack on buildings, it
is critical for police officers to respond quickly and catch the
attacker on his escape route. In this paper, we aim to help law
enforcement agencies (defender) with efficiently scheduling
security resources to interdict the escaping attacker.

It is a significant challenge to develop an effective re-
sponse plan given the limited security resources and the at-
tacker’s strategic actions. Given the initial locations of the
security resources, the defender needs to consider traffic-
dependent travel time in planning the schedules. In addi-
tion, one defender resource may capture the attacker at d-

ifferent intersections on his possible escape routes. There-
fore, to make the best use of her limited resources, the de-
fender needs to dynamically relocate them among poten-
tial intersections during the event. Moreover, the attacker
may strategically choose his escape path and dynamically
change his driving speed on different roads along the path
to avoid being captured, which makes the attacker’s strate-
gy space continuous. This type of problems is typically re-
ferred to as pursuit-evasion games (PEGs) within the game
theory literature, where the evader tries to minimize the prob-
ability of encountering the pursuer but the pursuer wants to
thwart the evader’s plans by capturing him [Adler et al., 2002;
Nowakowski and Winkler, 1983]. However, PEGs do not
consider realistic traffic dynamics, where the travel time is
influenced by the traffic flow. Furthermore, the evader in
PEGs cannot escape to the external world, thus the goal of
the pursuer is to minimize the number of rounds needed to
catch the evader. In contrast, our domain consists of a de-
fender who aims to maximize the probability of capturing
the attacker before he escapes. While there has been a vari-
ety of research work on applying game theoretic approach-
es to security domains [Tambe, 2011; Shieh et al., 2012;
Letchford and Conitzer, 2013; Blum et al., 2014; Vorobey-
chik et al., 2014; Yin et al., 2014; 2015; Zhao et al., 2016;
Guo et al., 2016], most of these unrealistically assume that at
most one player takes paths [Basilico et al., 2009; Fang et al.,
2016], and the time dynamics are irrelevant [Tsai et al., 2010;
Jain et al., 2013]. As such, these models are not suitable for
our problem. In particular, the attacker can exploit the fact
that traffic is slower in some places, and then can choose a
path, which could have been covered by the police in current
models with no time dynamics, but not in our setting.

To fill this gap, we introduce a novel Escape Interdic-
tion Game (EIG) to model time-dependent strategies for both
players, where the defender chooses a sequence of inter-
sections for each police officer to protect, while the attack-
er chooses an escape path and his travel time on differen-
t edges along the path. However, due to these extension-
s, both the defender strategy space and the continuous at-
tacker strategy space suffer an exponential growth. These
lead to major challenges in the computation of the opti-
mal solution, as we will prove this problem is NP-hard. In
particular, state-of-the-art security game solutions, such as
the current double oracle type algorithms [Jain et al., 2013;

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

3936

Wang et al., 2016], can only be applied to our problem at very
small scales. To overcome this computational challenge, we
first propose our solution, EIGS, which incorporates the fol-
lowing key components: 1) a new double oracle structure to
avoid calling the hard oracle, i.e., the best response attacker o-
racle, frequently; 2) novel mixed-integer linear programming
(MILP) formulations to compute the best response strategies
for both players; and 3) a greedy algorithm and an efficient
modified Dijkstra algorithm to efficiently generate improving
strategies. To further improve the scalability to solve large-
scale scenarios with hundreds of intersections, we introduce a
novel defender algorithm RedAD that reduces the strategy s-
pace by deploying each defender resource to protect only one
node, assuming that the attacker travels with maximum speed,
and using a novel algorithm to contract the graph before us-
ing the MILP to compute the attacker response strategy. We
conduct extensive experiments showing that EIGS can effi-
ciently obtain a robust solution significantly outperforming
existing approaches in problems of related small scales and
RedAD can scale up to realistic-sized transportation networks
of hundreds of intersections with good solution quality.

2 Modelling Traffic Network
In this section, we introduce a realistic macroscopic traffic
model to illustrate how the traffic flow influences the trav-
el time in a transportation network [Daganzo, 1994; 1995;
Skabardonis and Dowling, 1997; Coogan and Arcak, 2015].
Network Structure: The urban road network is modeled as
a directed graph G = (V,E) consisting of a set of directed
links E to represent the roads, and a set of nodes V to repre-
sent the intersections. For each link e = (σe, τe), the traffic
flows from its start node σe to its end node τe. An extra n-
ode v∞ ∈ V represents the external world, which is both the
source of the flow entering the network and the sink of flow
exiting it. In particular, the sets of entry and exit links are de-
noted by Eentry = {e|σe = v∞} and Eexit = {e|τe = v∞},
respectively. Accordingly, the remaining subset of the links
is the set of internal links Einter = {e|σe, τe ∈ V \ {v∞}}.
It assumes that there are no self-loops, i.e., σe 6= τe for each
link e ∈ E. For each link e ∈ E, Te is the minimal travel
time when the road is empty, Ce is the link capacity, and the
sets of upstream links and downstream links are denoted by
E−e = {e′|τe′ = σe} and E+

e = {e′|σe′ = τe}, respectively.
Traffic Flow: Each entry link e ∈ Eentry is associated with
a constant traffic demand de ≥ 0 modelling the rate of ve-
hicles entering the node τe from the external world1. Traffic
flows among consecutive links according to a static turning
preference matrix R ∈ RE×E

+ whose entry Ree′ represents
the fraction of vehicles flowing out of link e that are routed
to link e′. These turning ratios model the route choice behav-
ior of drivers, justified by empirical observations [Lebacque,
2005]. Conservation of mass implies that

∑
e′∈E+

e
Ree′ = 1

for all e ∈ E. Moreover, the natural topological constraints
imply that Ree′ = 0 if τe 6= σe′ . To avoid trivial cases, we
assume that for every node v, there exists at least one directed

1This rate is possibly time-varying. For simplicity we consider it
as constant during the relatively short time period of interest.

path from v to the node v∞, so that every vehicle will even-
tually exit. The rate of vehicles passing link e is denoted by
traffic flow fe. According to [Coogan and Arcak, 2015], there
exists a unique equilibrium flow f = {fe, e ∈ E} such that:

fe = de ∀e ∈ Eentry (1)

fe =
∑

e′∈E−e
fe′R(e′, e) ∀e ∈ Einter ∪ Eexit (2)

For any given demand vector d and turning preference ma-
trix R, the induced equilibrium flow f is used to calculate the
minimal travel time te on link e. This solution can be easily
extended to handle more complex traffic models [Aboudolas
et al., 2009; Daganzo, 1994; 1995].
Travel Time: te on a link e, strictly increasing with fe, is
defined by the commonly used Bureau of Public Roads (BPR)
function [Manual, 1964; Skabardonis and Dowling, 1997]:

te = Te(1 + 0.15× (fe/Ce)
4) (3)

3 The Escape Interdiction Game
The EIG is played between the escapee (attacker), and the
police officers (defender). The attacker tries to escape to the
external world v∞ via any exit node d ∈ D ⊂ {v|∃e =
(v, v∞) ∈ E} after conducting some criminal activity at n-
ode va0 ∈ V . There are m defender resources (police officer-
s/teams), initially located at intersections v10 , . . . , v

m
0 ∈ V .

To only consider nontrivial problems, we assume that va0 6=
vr0 , for all r ∈ R = {1, . . . ,m}. W.l.o.g., we assume that the
event starts at time 0 and ends at time tmax > 0. The traf-
fic flow on each edge e is likely to affect the corresponding
travel time te of players, which is measured by Eq.(3). The
traffic network, the initial positions of the bank and the police
officers are common knowledge, but both players cannot see
each other until the attacker gets caught.
Strategies: A pure attacker strategy is a sequence of s-
tates A = 〈a1 = (va0 , 0), . . . , aj = (vj , t

a
j), . . . , ak−1 =

(d ∈ D, tak−1), ak = (v∞, t
a
k ≤ tmax)〉, where each s-

tate aj = (vj , t
a
j) represents the situation that the attack-

er arrives at node vj at time taj . For every two consecu-
tive states aj = (vj , t

a
j) and aj+1 = (vj+1, t

a
j+1) in an at-

tacker strategy A, it is satisfied that vj+1 ∈ N(vj), where
N(vj) = {u ∈ V |(vj , u) ∈ E}, and taj+1 ≥ taj + t(vj ,vj+1).
This means the attacker can spend any time longer or equal
to the minimal travel time t(vj ,vj+1) and makes the attacker’s
strategy spaceA continuous. A mixed attacker strategy is de-
noted by y = 〈yA〉, with yA representing the probability that
A is played.

A state of defender resource dr is a tuple sr = (vr,
tr,in, tr,out), representing the situation that dr is protecting
node vr during [tr,in, tr,out]. We assume that dr can only s-
tay at a node for a multiple of a constant time interval δ (e.g.,
10 seconds), i.e., tr,out−tr,in = κδ, where κ is a nonnegative
integer. To simplify our analysis, we assume that dr captures
the attacker at a node. Thus, for every two consecutive s-
tates sri = (vri , t

r,in
i , tr,outi) and sri+1 = (vri+1, t

r,in
i+1 , t

r,out
i+1),

tr,ini+1 − t
r,out
i = dist(vri , v

r
i+1), which is the minimal travel

time between vri and vri+1. This can easily be computed using
Dijkstra’s shortest path algorithm.

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

3937

A pure strategy for the defender is a set of m schedules,
i.e., S = {Sr : r ∈ R}. The schedule for dr is a sequence of
states Sr = 〈sr1, . . . , sri , . . . , srk〉, where sr1 = (vr0, 0, t

r,out
1)

and srk = (vrk, t
r,in
k , tmax). Moreover, dr cannot drive to the

external world v∞ to capture the attacker, i.e., vri ∈ V \{v∞},
∀sri ∈ Sr. The defender’s pure strategy space is denoted
by S . A defender’s mixed strategy is x = 〈xS〉, with xS
representing the probability that S is played.
Utility: We are only concerned with whether the attacker can
be captured or not, so we assume a zero-sum game. For aj =

(vj , t
a
j) and sri = (vri , t

r,in
i , tr,outi), we say the attacker is cap-

tured by dr at node vri if vri = vj and tr,ini ≤ taj ≤ tr,outi . In
such a case, zsri ,aj

= 1, otherwise zsri ,aj
= 0. If an attacker

successfully escapes to the external world, he gains a utility
of 1 and the defender gets −1; otherwise both players get a
utility of 0. Formally, the defender utility is given by:

Ud(S,A)=

{
0 if ∃zsri ,aj

=1, aj∈A, sri∈Sr, r∈R
−1 otherwise

(4)

Given x and A, the expected utility of the defender is
Ud(x, A) =

∑
S∈S Ud(S,A)xS . Accordingly, we can define

Ud(x,y) =
∑

A∈A yAUd(x, A). Note that Ua = −Ud.
Equilibrium: We use Nash equilibrium (NE) as the solution
concept of this game as both players decide their strategies
simultaneously. The NE is the same as the maxmin equilibri-
um given the zero-sum assumption. Thus, the optimal mixed
strategy x of the defender can be computed by solving the
following linear program (LP).

max U∗ (5)
s.t. U∗ ≤ Ud(x, A) ∀A ∈ A (6)∑

S∈S
xS = 1, xS ≥ 0 ∀S ∈ S (7)

4 Solution Approach
Solving the LP in Eqs.(5)–(7) under the exponentially large
S and the continuous A is challenging. To handle this chal-
lenge, we develop a novel double oracle algorithm EIGS (EIG
Solver). Now, we first show that solving EIG is NP-hard.

Proposition 1. Computing the NE of EIG is NP-hard.

Proof. We reduce 3-SAT to the computation of NE of EIG.
3-SAT asks if there exists an assignment of values to a set
of boolean variables that satisfies a given boolean formula in
3CNF (i.e., a conjunctive normal form where each clause is
limited to at most three literals). Let the variables of the 3-
SAT be x1, . . . , xn, and the clauses be C1 ∧ C2 ∧ · · · ∧ Ck.
We construct an EIG on a road network shown in Figure 1,
such that, as we will show later, the 3CNF is satisfiable if and
only if (denoted as⇔1) there exists a defender pure strategy
intercepting all attacker pure strategies if and only if (denot-
ed as ⇔2) the attacker gets caught with probability 1 in NE
(under the mixed strategy setting). Particularly, we will focus
the proof on “⇔1” as “⇔2” is trivial. If there exists such a
defender pure strategy, then the defender can simply play a
mixed strategy incorporating only this pure strategy regard-
less of which strategy the attacker plays. Otherwise, for any

…
…

𝑥1

true false

𝑥2 𝑥𝑛… …

… …

𝐶1 𝐶2 𝐶𝑘

Figure 1: Reduce 3-SAT to EIG.

defender strategy, the attacker can always find a pure strate-
gy not being intercepted by at least one pure strategy in the
support of the defender strategy, which gives the attacker a
non-zero probability of escaping successfully.

In this graph, the
⊙

on the top represents the source n-
ode va0 where the attacker begins to escape; each of the

⊗
’s

on the bottom and in the red boxes represent an exit node
through which the attacker can escape to the external world;
each diamond represents a police station, where one police
car is available.

For each variable xi of the 3-SAT problem, we create a
gadget shown in the blue box, in which there is a police sta-
tion with two outbound roads. The police car from this sta-
tion can choose either to move left or right, corresponding to
xi = true or false, respectively. The choice of directions
of all the police cars in these blue boxes corresponds to an
assignment of values to x1, . . . , xn in the 3-SAT problem.

For each clauseCj , we create a gadget consisting of a road,
call it the clause road, from va0 to an exit node and three com-
ponents each corresponding to a literal of the clause. In each
of the red boxes, there is a police station with two outbound
roads. The one to the right links to the road of the clause, so
that choosing this direction, the police car can intercept at-
tacker pure strategies passing through the clause road. The
one to the left leads to an exit node, and joints in the middle
with another road coming from one of the blue boxes and cor-
responding to: xi = true if the literal is ¬xi; and xi = false
if the literal is xi. Namely, for example, if in the blue box xi
is chosen to be true, the false direction is left open for the
attacker to pass through, so that to the police cars in the red
boxes corresponding to ¬xi have to move left to intercep-
t the attacker. In such a way, attacker pure strategies passing
through a clause road can be intercepted (without missing any
attack pure strategy exiting from the red boxes) only when
one of its literals is made true by choices of directions in the
blue boxes.

We show that: the 3CNF is satisfiable⇔ there exists a de-
fender pure strategy intercepting all attacker pure strategies.

1. The “⇒” direction. Suppose there exists a satisfying
assignment for the 3-SAT problem. What the defender can do

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

3938

Algorithm 1: EIGS
1 Initialize S ′, A′.
2 repeat
3 (x,y)← CoreLP (S ′,A′);
4 S∗ ← {betterDO(y)};
5 if S∗ = ∅ then S∗ ← {bestDO(y)};
6 S ′ ← S ′ ∪ S∗;
7 A∗ ← {betterAO(x)};
8 if A∗ = ∅ ∧ S∗ = ∅ then A∗ ← {bestAO(x)};
9 A′ ← A′ ∪ A∗;

10 until convergence;
11 return (x,y).

is let the police car in each blue box move to the direction that
is the same as the value of xi in the satisfying assignment and
stay at the first intersection. The other direction in each blue
box is left open, but the roads passing through it eventually
lead to the red boxes and can be intercepted by moving police
cars in the red boxes to the left. Finally, since each clause
contains at least one literal which is made true, the police
cars in the corresponding red box do not need to move left
to intercept the attacker as the attacker is already intercepted
in the blue boxes; therefore, letting these police cars move to
the clause road, all attacker pure strategies passing through
the clause roads get intercepted as well.

2. The “⇐” direction. If there is not a satisfying assign-
ment, then no matter how the defender moves the resources,
there exists at least one clause such that the police cars in the
red boxes of its literals all have to move left to intercept the
incoming attacker. The clause road is left open. Then the
attacker strategy passing through the clause road reaches the
exit node successfully.

4.1 A Novel Double Oracle Framework
Now we develop EIGS, which first computes the equilibrium
strategy for a significantly smaller restricted game, then iter-
atively computes improving strategies for both players, and
finally converges to a global equilibrium.

EIGS is sketched in Algorithm 1. Line 1 initializes S ′
and A′, which are small sets of pure strategies for both
players. Then, CoreLP computes the maximin strategies
x and y for the restricted game 〈S ′,A′〉 (Line 3) by solv-
ing the LP in Eqs.(5)–(7). To improve both players’ utili-
ties, the defender oracle (DO) (Lines 4–6) and the attack-
er oracle (AO) (Lines 7–9) are repeatedly used to find oth-
er strategies out of 〈S ′,A′〉 until no improving strategy can
be found (Line 10). DO first calls efficient betterDO (bet-
ter response DO) trying to find an improving strategy that
may be suboptimal. If betterDO fails, it proceeds to best-
DO (best response DO) that is optimal. Similarly, AO first
calls efficient betterAO (better response AO), and if betterAO
and DO both fail, it proceeds to bestAO (best response AO).
This structure at Line 8 is different from the classic dou-
ble oracle employed in security games [Jain et al., 2013;
Wang et al., 2016], where the best oracle will be called if the
corresponding better oracle fails. However, it is not efficient
if one runs much slower than the other between best oracles.

Algorithm 2: betterDO (y)
1 A ←A′; ∀r ∈ R : Sr←〈(vr0 , 0, 0)〉, Lr←1, tr,out1 ← 0;
2 while A 6= ∅ do
3 for r ∈ R do
4 for v ∈ V \ {v∞} do
5 t[r][v]← tr,outLr + dist(vLr , v), ∆y[r][v]← 0;
6 for A ∈ A do
7 if ∃aj = (v, taj) ∈ A, t[r][v] ≤ taj then
8 ∆y[r][v]← ∆y[r][v] + yA;

9 vr,∗ ← arg maxv ∆y[r][v];

10 r∗ ← arg maxr ∆y[r][vr,∗];
11 if ∆y[r∗][vr,∗] > 0 then
12 Lr

∗
← Lr

∗
+ 1, vLr∗ = vr,∗;

13 for A ∈ A do
14 if ∃aj = (vLr∗ , t

a
j) ∈ A then

15 tr
∗,out
Lr∗ ←max{t[r∗][vLr∗],taj },A←A\{A};

16 κ←
⌈
tr
∗,out
Lr∗ − t[r∗][vLr∗]/δ

⌉
, tr
∗,out
Lr∗ ←t[r∗][vLr∗]+ δ·κ;

17 Sr
∗
← Sr

∗
∪ 〈
(
vLr∗ , t[r

∗][vLr∗], tr
∗,out
Lr∗

)
〉;

18 else break;

19 return {Sr, r ∈ R}.

4.2 Defender Oracle
The defender needs to find an improving path with a stop time
such that it can intercept as many attacker paths as possible,
i.e., increase the probability of catching the attacker. For-
mally, given (x,y) provided by CoreLP, S is added to S ′
if Ud(S,y) > Ud(x,y). This can be formulated as an MILP,
i.e., bestDO. It first constructs a path attaching travel time and
stop time, and then checks if it can intercept the given attack-
er path, i.e., both players meet at the same time and the same
node. If there are more attacker paths being intercepted by
this new defender path, the defender will get a higher utility.
This procedure is represented by the following MILP:

max−
∑

A∈A′
(1− zA)yA (8)

s.t. sr1,vr
0

= 1,
∑

v∈V \{v∞} s
r
i,v = 1 ∀r, i (9)

ωr,i,(v,u) ≤ min(sri,v, s
r
i+1,u) ∀r, i, v, u (10)

ωr,i,(v,u) ≥ sri,v + sri+1,u − 1 ∀r, i, v, u (11)

tr,in1 = 0, tr,out
Ld

max
= tmax, t

r,out
i = tr,ini +κr,iδ ∀r, i (12)

tr,ini+1 = tr,outi +
∑

v,u∈V \{v∞}dist(v, u)ωr,i,(v,u) ∀r, i (13)

−MαA,j
r,i ≤ t

r,in
i − t

A
j ≤M(1−αA,j

r,i) ∀r, i, A, j (14)

−MβA,j
r,i ≤ t

A
j− t

r,out
i ≤M(1−βA,j

r,i) ∀r, i, A, j (15)

γA,j
r,i ≤ (αA,j

r,i + βA,j
r,i + sri,vA

j
)/3 ∀r, i, A, j (16)

γA,j
r,i ≥ α

A,j
r,i + βA,j

r,i + sri,vA
j
− 2 ∀r, i, A, j (17)

zA ≤
∑

j,r,i γ
A,j
r,i ∀A (18)

sri,v, ωr,i,(v,u), α
A,j
r,i , β

A,j
r,i , γ

A,j
r,i , zA ∈ {0, 1} (19)

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

3939

Algorithm 3: betterAO (x)
1 ∀ v ∈ V \ {va0}, ∆x[v]←∞, ta[v]←∞;
2 ∆x[va0]← 0, ta[va0]← 0, Sva0 ← S

′, Q← V ;
3 while Q 6= ∅ do
4 v ← arg minu∈Q ∆x[u];
5 if v = v∞ then break;
6 Q← Q \ {v};
7 for each neighbor u of v do
8 t← arg mint′≥ta[v]+t(v,u)

Φ(t′):=
∑
S∈Sv

xS ·φu(S, t′);

9 if ∆x[v] + Φ(t) < ∆x[u] then
10 ∆x[u]← ∆x[v] + Φ(t);
11 ta[u]← ta[v] + t;
12 prev[u]← v;
13 Su ← Sv \ {S|u ∈ S, ta[u] ∈ [tinS,u, t

out
S,u]};

14 A← 〈(v0, 0), (v1, t
a[v1]), . . . , (vη, t

a[vη])〉 such that
v0 = va0 , vη = v∞, and vi = prev[vi+1] ∀ i = 0, . . . , η − 1;

15 return A.

κr,i ∈ Z≥0, tr,ini , tr,outi ∈ [0, tmax] (20)

Here, sri,v = 1 indicates that dr arrives at v by the i-th state of
Sr. Eq.(9) indicates that dr starts at vr0 and stays on only one
node in any state of Sr. In Eqs.(10) and (11), the 0/1 variable
ωr,i,(v,u) encodes whether there is a path v-u between the i-th
state and (i+ 1)-th state of Sr. Eq.(12) forces the strategy to
start at time 0 and end at tmax, where Lmax is a sufficient-
ly large number to estimate the maximum length allowed of
the defender strategy sequence, and the time that dr stays on
the i-th state is κr,iδ. Eq.(13) ensures that dr travels one stop
to another through the shortest path. With Eqs.(14)–(18), zA
determines whether the attacker using A is caught. Specifi-
cally, (vAj , t

A
j) represents the attacker’s j-th state in A; γA,j

r,i

indicates whether the attacker using A, meets dr at his j-th s-
tate’s position while dr is at her i-th stop; αA,j

r,i (respectively,
βA,j
r,i) indicates whether the attacker arrives at his j-th state’s

position after dr arrives (respectively, before dr leaves); and
M is a very large number.

To speed up the above MILP, we propose a faster oracle
betterDO as shown in Algorithm 2. It is a greedy algorith-
m, i.e., at each step, the defender goes to the nodes with the
highest marginal value. This marginal value on each node is
the probability of intercepting the remaining attacker paths if
the defender moves to that node. As shown in Algorithm 2,
A stores the attacker’s paths that are not caught by any Sr.
Initially, dr is at her initial position vr0 (Line 1). Lines 2–18
are the main loop, where we repeatedly allocate police offi-
cers to interdict the attacker’s paths with the highest marginal
value. Specifically, Lines 3–9 enumerate all the combinations
〈r, v〉 ∈ R × V , and check how much value dr can obtain if
she moves to v and stays there as long as possible (therefore,
in Lines 6–8, all attacker paths in which the attacker arrives
at v later than t[r][v] are intercepted, and the corresponding
values are added to ∆y[r][u]). dr∗ who can obtain the highest
value among defender resources is chosen (Line 10). The re-
maining part is to update the finalized movement (Lines 13–
15), where the attacker paths caught by the movement are

removed from A, and tr
∗,out

Lr∗ is updated to the time that this
movement can intercept as many attacker paths as possible.
dr∗ stays at a node for κδ (Line 16) and then updates her new
state to the strategy sequence (Line 17).

4.3 Attacker Oracle
The attacker needs to find an improving path with a travel
time such that it can minimize the probability of being caught.
Formally, given (x,y) provided by CoreLP, A is added toA′
if Ua(x, A) > Ua(x,y). This can be formulated as an MILP,
i.e., bestAO. It first constructs a path attaching travel time,
and then checks if it is intercepted by the given defender path,
i.e., both players meet at the same time and the same node. If
there are more defender paths intercepting this new attacker
path, the attacker will get a lower utility. This procedure is
represented by the following MILP:

max
∑

S∈S′
(1− zS)xS (21)

s.t. A1,va
0

= 1, ALa
max,v∞ = 1,

∑
v∈V Aj,v = 1 ∀j (22)

Aj+1,v∞ ≥ Aj,v∞ ∀j (23)∑
u∈N(v)Aj+1,u ≥ Aj,v ∀v ∈ V, j (24)

ωj,(v,u) ≤ min(Aj,v, Aj+1,u) ∀(v, u) ∈ E, j (25)

ωj,(v,u) ≥ Aj,v +Aj+1,u − 1 ∀(v, u) ∈ E, j (26)

ta1 = 0 (27)
taj+1 ≥ taj +

∑
(v,u)∈E t(v,u)ωj,(v,u) ∀j (28)

−Mαj
S,r,i ≤ t

r,in
i − taj ≤M(1− αj

S,r,i) ∀S, r, i, j (29)

−Mβj
S,r,i ≤ t

a
j − t

r,out
i ≤M(1− βj

S,r,i) ∀S, r, i, j (30)

zS ≥ αj
S,r,i + βj

S,r,i +Aj,vSr
i
− 2 ∀S, r, i, j (31)

Aj,v,α
j
S,r,i,β

j
S,r,i,ωj,(v,u), zS∈{0,1},taj ∈ [0, tmax] (32)

Here Aj,v indicates whether the attacker arrives at v in the
j-th state. Eq.(22) ensures that the attacker starts at va0 , ter-
minates at v∞, and only arrives at one node in each state.
Eqs.(23)–(24) fix the attacker at the sink node v∞ in the fol-
lowing states after he reaches v∞ and ensure that the attack-
er’s strategy is a path; namely, the attacker can visit some
node u in state j + 1 only if it is a neighbour of the node v in
state j recorded by ωj,(v,u) in Eqs.(25)–(26). Eqs.(27)–(28)
initialize the time and update it at the following states. Fi-
nally, with Eqs.(29)–(31), zS captures whether the attacker is
caught by S.

Now we propose betterAO to efficiently achieve a better re-
sponse. This algorithm is similar to Dijkstra’s algorithm (see
Algorithm 3). Let’s say the length of an attacker path is the
probability of being caught by the given x. Variable ∆x[v]
maintains, for all v ∈ V , the shortest so-far-known acyclic
path from va0 to v. In the main loop, the node with minimum
∆x is extracted from Q (Line 4). Then in Lines 7–13, ∆x of
each neighbor of v is updated with ∆x[v], where in Line 8 a
best time point t is calculated such that reaching u at t mini-
mizes the probability of attacker being caught (φu(S, t) = 1
if in S at least one defender resource stays at u at time t, and
0 otherwise). prev[u] maintains the previous node of u in

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

3940

the so-far-known shortest path, with which an attacker path is
constructed in the end (Line 14).

5 Improving the Scalability
EIGS has improved its scalability by deploying efficient bet-
ter oracles. However, it it cannot efficiently solve the best
oracle of large scale games due to the large strategy spaces.
In this section, we further improve scalability without signif-
icantly sacrificing the defender’s utility much. Our approach
is motivated by the intuition that the attacker wants to escape
as soon as possible and, correspondingly, each police officer
goes to one certain node with maximum speed and then waits
for the attacker.

5.1 A Reduced Game of EIG
A is reduced toA, which satisfies the condition that for every
two consecutive states aj = (vj , t

a
j) and aj+1 = (vj+1, t

a
j+1)

of each attacker strategy A ∈ A, taj+1 = taj + t(vj ,vj+1).
That is, the attacker travels with the maximum speed. S
is reduced to S , which satisfies the condition that for each
defender strategy S ∈ S , the schedule Sr has the follow-
ing form: Sr = 〈(vr0, 0, 0), (vr1, dist(v

r
0, v

r
1), tmax)〉, where

vr1 ∈ V \ {v∞}. That is, the defender goes to some node
with maximum speed and waits there. Obviously, A ⊆ A
and S ⊆ S . Now we have the following property about the
relation of A and S .
Proposition 2. Given a defender strategy x with its support
set Sx ⊆ S , there is an attacker optimal strategy A∗ ∈ A.

Proof. Suppose that there is not an optimal strategy A∗ ∈ A.
This means that if A is an optimal strategy, then A ∈ A \ A
and Ua(x, A∗) < Ua(x, A).

In any strategy S ∈ S , the schedule Sr has the follow-
ing form: Sr = 〈(vr0, 0, 0), (vr, tr,in, tmax)〉, where 0 ≤
tr,in = dist(vr0, v

r
1) ≤ tmax. Suppose the optimal strategy

A = 〈a1 = (va0 , t
a
0 = 0), . . . , aj = (vj , t

a
j), . . . , ak−1 =

(vk−1, t
a
k−1), ak = (v∞, t

a
k)〉. Keeping the nodes’ se-

quence order of A , we can obtain A’s strategy A∗ =
〈a∗1 = (va0 , t

a∗

0 = 0), . . . , a∗j = (vj , t
a∗

j), . . . , a∗k−1 =

(vk−1, t
a∗

k−1), a∗k = (v∞, t
a∗

k)〉, where ta∗j = t(vj−1,vj) +

ta∗j−1(j > 0). Then ta
∗

j ≤ taj (∀a∗j ∈ A∗, aj ∈ A) as
taj ≥ t(vj−1,vj) + taj−1(j > 0).

Moreover, we define z∗Sr,a∗j
∈ {0, 1} and zSr,aj

∈
{0, 1} (a∗j ∈ A∗, aj ∈ A) as: z∗Sr,a∗j

= 1 if vr = vj , t
r,in ≤

ta∗j , otherwise z∗Sr,a∗j
= 0; and zSr,aj

= 1 if vr = vj , t
r,in ≤

taj , otherwise zSr,aj
= 0. Then, z∗Sr,a∗j

≤ zSr,aj
as ta

∗

j ≤ taj
(∀a∗j ∈ A∗, aj ∈ A).

Furthermore, we define z∗S ∈ {0, 1} and zS ∈ {0, 1} (S ∈
Sx) as: z∗S = 1 if ∃z∗Sr,a∗j

= 1(r ∈ R, a∗j ∈ A∗), other-
wise z∗S = 0; and zS = 1 if ∃zSr,aj = 1(r ∈ R, aj ∈ A),
otherwise zS = 0. Then, z∗S ≤ zS as z∗Sr,a∗j

≤ zSr,aj

(∀a∗j ∈ A∗, aj ∈ A).
So the attacker’s utility Ua(x, A∗) =

∑
S∈Sx(1−z∗S)xS ≥∑

S∈Sx(1 − zS)xS = Ua(x, A), which causes a contradic-
tion.

Algorithm 4: advancedAO(x)

1 Vx ← {vri | xS > 0, (vri , t
r,in
i , tr,outi) ∈ Sr ∈ S};

2 Vf ← DFS(G,Vx, v
a
0), Vx,f ← Vx ∩ Vf ;

3 if v∞ ∈ Vf then A∗ ← {P (dist(Vf ,Vx,f)(v
a
0 , v∞))};

4 else
5 Vb ← DFS((V, {(u, v) | (v, u) ∈ E}), Vx, v∞);
6 Vx,b ← Vx ∩ Vb;
7 E ← E ∪ {(va0 , v) | v ∈ Vx,f} ∪ {(v, v∞) | v ∈ Vx,b};
8 tva0 ,v ← dist(Vf ,Vx,f)(v

a
0 , v), ∀v ∈ Vx,f ;

9 tv,v∞ ← dist(Vb,Vx,b)(v, v∞), ∀v ∈ Vx,b;
10 Vc ← (V \ (Vf ∪ Vb)) ∪ (Vx,f ∪ Vx,b ∪ {va0 , v∞});
11 Ec ← {(u, v) | u, v ∈ Vc, (u, v) ∈ E};
12 A ← {RedbestAO(x)};
13 if A 6= ∅ then A∗ ← {P (dist(Vf ,Vx,f)(v

a
0 , v1)) ∪

(va2 , t
a
2),· · · ,(val−2,t

a
l−2) ∪ P (dist(Vb,Vx,b)(v

a
l−1,v∞)) |

(va0 , t
a
0), · · · , (v∞, tal) ∈ A};

14 return A∗.

Therefore, the utility obtained from the optimal defender
strategy of the reduced game (S,A) is the same as the one in
the semi-reduced game (S,A) by Proposition 2. This means
that bestAO cannot find an improving strategy for the attacker
if the defender strategy is an equilibrium of (S,A).

5.2 An Approximate Algorithm of EIG
Based on the reduced game (S,A), we can redesign the ora-
cles in Algorithm 1. Here the new best DO, RedbestDO, has
the same objective function as bestDO and it has the follow-
ing constraints:∑

v∈V \{v∞} s
r
v = 1 ∀r (33)∑

r∈R s
r
v ≤ 1 ∀v ∈ V \ {v∞} (34)

zA ≤
∑

j,r,dist(vr
0 ,v

A
j)≤tAj

sr
vA
j
∀A (35)

srv, zA ∈ {0, 1} (36)

srv = 1 indicates that resource r is deployed to node v.
Eq.(33) ensures that each resource will be assigned to one
node, which is protected by at most one resource (Eq.(34)).
zA indicates whether the attacker’s path is intercepted by the
defender. zA = 1 only when there is one node on the path
where there is one resource reaching there before the attacker
(reflected by dist(vr0, v

A
j) ≤ tAj) enforced by Eq.(35).

The new better DO, RedbetterDO, is similar to betterDO,
except that RedbetterDO only deploys each resource to one
node. The new best AO, RedbestAO, is obtained from bestAO
by changing the method for updating time in Eq.(28) to
taj+1 = taj +

∑
(v,u)∈E t(v,u)ωj,(v,u) to reflect the fact that the

attacker will travel with maximum speed. Similarly, the new
better AO, RedbetterAO, is obtained from betterAO by modi-
fying Line 8 in Algorithm 3 to: if ∃Srs.t.zsr2,(u,ta[v]+tv,u) =

1, ∀S ∈ Sv , then Φ(t)← Φ(t) + xS .
In the above new oracles, RedbestAO still has to add |V |

variables (i.e., Aj,v) for each state in A, which will dramat-
ically slow it down. To speed it up, we further reduce the
attacker strategy space by graph contraction.
advancedAO: The advanced AO is based on the following
intuition: for the nodes where no defender will appear, the at-

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

3941

Figure 2: An scenario: the defender will only randomly ap-
pear at the triangle nodes to interdict the attacker but will not
appear at other nodes; now the attacker needs to find an op-
timal strategy considering travel time from his current posi-
tion (the square node on the left) to the external world (the
hexagon node on the right).

tacker can travel freely through them without being caught at
any time; but, for the node where the defender will appear, he
has to find an optimal strategy, e.g., the optimal time, to travel
through these nodes to avoid being caught. For example, as
shown in Figure 2, to reach the external world, the attacker
needs to travel through the circle and triangle nodes. The at-
tacker knows that he will not be caught at the circle nodes but
will probably be caught at the triangle nodes. So he can freely
take any strategy (path) to travel through the circle nodes but
wants to take an optimal strategy (path) to travel through the
triangle nodes. To reflect these facts in a simplified network,
the circle nodes and their adjacent edges can be deleted. Then
four new edges from the square node to each blue triangle n-
ode and from each red triangle node to the hexagon node will
be added with the travel time of the corresponding special
shortest path2 in the original network.

This contraction procedure is shown in Algorithm 4. Vx
stores nodes in the support set of x (Line 1). Vf , a set of
nodes that can be reached from va0 without traversing the
nodes in Vx, is given by DFS(G,Vx, v

a
0) (Line 2), where

DFS(G,Vx, v
a
0) is obtained from the classic Depth First

Search algorithm by ending each path at the nodes in Vx. That
is, a node v is pushed into the stack only if v is unvisited and
v /∈ Vx. If v∞ ∈ Vf , then P (dist(Vf ,Vx,f)(v

a
0 , v∞)) is an

optimal strategy that will not be intercepted by the defend-
er (Line 3). Here P (dist(Vf ,Vx,f)(v

a
0 , v∞)) is the shortest

path from va0 to v∞ on the network (Vf , {(u, v) | (u, v) ∈
E, u ∈ Vf \ Vx,f , v ∈ Vf}) with corresponding travel time
dist(Vf ,Vx,f) (va0 , v∞). Otherwise, the networkG is contract-
ed (Lines 5–11) and RedbestAO(x) is called for the contract-
ed network (Line 12). Vb stores nodes reached from v∞ in the
backward network of G (Line 5). After that, new edges are
added (Line 7) with corresponding travel time (Lines 8 and
9), and then, the contracted network (Vc, Ec) is generated in
Lines 10 and 11. Finally, Line 13 maps the generated strategy
(Line 12) to the original network.

Now we can obtain RedAD, an efficient algorithm based
on the reduced game of EIG, from Algorithm 1 by replacing
bestDO, betterDO, bestAO, and betterAO with RedbestDO,
RedbetterDO, advancedAO3, and RedbetterAO, respectively.

2They are not necessary the shortest paths in the network because
they do not contain the triangle nodes, except for the start or end
node.

3advancedAO can be applied to the full game (S,A) by replac-
ing RedbestAO with bestAO in Line 12 of Algorithm 4. Actually, we
also propose a two-stage approach for the full game (S,A) which

6 Experimental Evaluation
We evaluate our model and algorithms with numerical exper-
iments. All LPs and MILPs are solved with CPLEX (version
12.6). All computations are performed on a machine with a
3.20GHz quad core CPU and 16.00GB memory. All points
in the figures are averaged over 30 samples. We use the Grid
model with Random Edges (GRE) to generate urban road net-
work topologies [Peng et al., 2014]. GRE is a planar con-
nected graph made of a L ×W square grid of nodes, where
horizontal/vertical edges between neighbors are controlled by
probability p, and diagonal ones by q. The values of p spread
in [0.3, 0.9] and q in [0.1, 0.7] to best match realistic road net-
works. We add a node v∞ that is connected to all the nodes
at the border of the area to generate the entry and exit links.

In the traffic model, Ce = 6, and Te is randomly chosen
in [1,10]. The traffic demand of each entry link is randomly
chosen in [0,6], and the turning preference matrix R is uni-
formly generated. In EIG, va0 is fixed to the center node of
the area, and all the m defender resources are initially uni-
formly distributed on the network. The exit nodes D are ran-
domly chosen from the nodes at the border of the area. The
defender travels faster than the attacker because the police
can circumvent traffic constraints unless otherwise specified.
Central parameter values are chosen as L×W = 8×8 nodes,
(p, q) = (0.4, 0.2), |D| = 10 exit nodes andm = 4 resources
unless otherwise specified.

6.1 Solution Quality
We compare the solution quality of our approaches with t-
wo baselines. The first baseline is Rugged [Jain et al., 2011],
where the defender resources are deployed to intercept the
attacker’s path without considering the travel time on path-
s. Rugged is a representative solution in the urban network
security domain for the following reasons: 1) it is an exten-
sion of the min-cut method that the defender resources are
uniformly distributed on the va0 − v∞ min-cut [Washburn and
Wood, 1995] without the travel time constraint; 2) it has the
same solution quality as its variation of Snares [Jain et al.,
2013] because Snares deploys Rugged’s best response ora-
cles, i.e., Snares is just an improvement of Rugged in scal-
ability; 3) its performance in solution quality is better than
MiCANS [Iwashita et al., 2016], which is an approximate al-
gorithm for urban network security based on multiple cut-
s. The second baseline is the approximate algorithm bettAD
where EIGS does not call the best response oracles. Compar-
ing bettAD with RedAD in solution quality will further show
the importance of developing RedAD. The solution quality of
strategy x in Rugged, RedAD, and bettAD is assessed in terms
of Ua(x, A), where A is obtained by using bestAO. A lower
attacker utility indicates a higher defender utility given the
zero-sum assumption.

Figures 3(a)–3(d) compare the solution quality obtained
from our approaches with those obtained from baselines vary-
ing: the number of intersections, denoted by L × W , with

uses RedAD to initialize (S ′,A′) in Line 1 of Algorithm 1 to obtain
algorithm EIGS-TS, and then obtain a heuristic algorithm EIGS-TS-
H where bestAO is replaced by advancedAO. However, they cannot
improve much in solution quality and scalability.

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

3942

5x5 6x6 7x7 8x8 9x9
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

At
ta

ck
er

 U
til

ity

 EIGS
 RedAD
 bettAD
 Rugged

(a) Attacker utility: L×W
(0.3,0.1) (0.5,0.3) (0.7,0.5) (0.9,0.7)

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

At
ta

ck
er

 U
til

ity

 EIGS
 RedAD
 bettAD
 Rugged

(b) Attacker utility: (p, q)

6 10 14 18 22
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

At
ta

ck
er

 U
til

ity

 EIGS
 RedAD
 bettAD
 Rugged

(c) Attacker utility: |D|
4 5 6 7 8

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

At
ta

ck
er

 U
til

ity

 EIGS
 RedAD
 bettAD
 Rugged

(d) Attacker utility: m

(0.3,0.1) (0.4,0.2) (0.5,0.3) (0.6,0.4) (0.7,0.5) (0.8,0.6)
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

At
ta

ck
er

 U
til

ity

 EIGS
 EIGS(0.05)
 EIGS(0.1)
 EIGS(0.15)
 Rugged

(e) Robustness: (p, q)

4x4 6x6 8x8 10x10 12x12 14x14 16x16 18x18
0

50

100

150

200

250

300

350

400

R
un

ni
ng

 T
im

e(
s) EIGS-O

 EIGS
 Reduce
 RedAD

(f) Running time: L×W
(0.3,0.1)(0.4,0.2)(0.5,0.3)(0.6,0.4)(0.7,0.5)(0.8,0.6)(0.9,0.7)
0

50

100

150

200

250

300

R
un

ni
ng

 T
im

e(
s)

 EIGS
 Reduce
 RedAD

(g) Running time: (p, q)

4 7 10 13 16 19 22 25 28
0

50

100

150

200

250

300

R
un

ni
ng

 T
im

e(
s)

 EIGS
 Reduce
 RedAD

(h) Running time: |D|

Figure 3: Solution quality: (a)–(d); Robustness: (e); Scalability: (f)–(h).

|D| = L in Figure 3(a); edge probabilities in Figure 3(b); the
number of exit nodes in Figure 3(c); and the number of re-
sources in Figure 3(d). Results show that Rugged performs
the worst in all cases because it is designed without consider-
ing players’ travel time on roads. Meanwhile, EIGS perform-
s the best. bettAD performs significantly worse than EIGS.
However, RedAD achieves good solution quality, which has
similar performance to EIGS and significantly outperforms
bettAD in most cases.

In terms of robustness, the defender may face execution un-
certainty caused by the unpredictable delays associated with
congestion, traffic signals, etc. To analyze the performance
of EIGS in the presence of uncertainty, we add noise θ to the
travel time. So the actual travel time t̂e = te × (1 + θ).
Figure 3(e) shows the attacker utility of EIGS under different
degrees of uncertainty. Here we can see that while the perfor-
mance of EIGS decreases as θ is increased, it still outperforms
Rugged.

6.2 Scalability
We compare the scalability of EIGS with a baseline, EIGS-O,
which runs EIGS under the double oracle framework adopt-
ed by [Jain et al., 2013; Wang et al., 2016]. This shows the
effectiveness of our new double oracle framework. In addi-
tion, we evaluate the efficiency of RedAD with another base-
line, Reduce, where RedAD calls RedbestAO instead of ad-
vancedAO.4

Figures 3(f)–3(h) present the runtime in seconds varying
different variables similar to the setting of solution quality.
From Figure 3(f), we can see that EIGS-O does not scale up
to the network with 8 × 8 intersections, so we do not show
the result of EIGS-O in Figures 3(g) and 3(h). Results show
that: 1) Our new double oracle framework outperforms the

4We do not show the running time of Snares because it has the
same solution quality as Rugged, which performs significantly worse
than our algorithm in solution quality.

old one by comparing EIGS with EIGS-O; 2) RedAD outper-
forms EIGS and Reduce significantly; 3) The running time
generally increases with the size of the network and the edge
probabilities, but it reflects the easy-hard-easy pattern in se-
curity games [Jain et al., 2012]; 4) RedAD can scale up to
realistic-sized problems, i.e., an urban road network with 324
intersections. Note that in real world examples, police forces
typically focus on patrolling their own wards, which typically
have the size of up to hundreds of intersections5. Thus, our
algorithm can scale up to problems with realistic size.

7 Conclusions
We present a novel game-theoretic model for interdicting the
escaping attacker on urban traffic networks. We show finding
NE is NP-hard. Therefore, we propose an efficient double
oracle framework, EIGS, based on novel MILPs for best re-
sponse oracles and heuristic algorithms for better response
oracles. To solve large-scale problems, we develop RedAD to
significantly reduce the strategy space for both players. Ex-
perimental results show that our algorithms obtain a robust
solution that significantly outperforms baselines and can s-
cale up to realistic-sized problems.

Acknowledgments
This research is supported by NRF2015 NCR-NCR003-
004. Long Tran-Thanh was supported by the EPSRC fund-
ed project EP/N02026X/1, Zhen Wang was supported by
the NSFC funded project 61403059, and Jiarui Gan was
funded by EPSRC International Doctoral Scholars Grant
EP/N509711/1 and his department.

5E.g., Singapore Police Force has six divisions, and each division
has up to dozens of neighbourhood police posts or police centers
distributed in the city.

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

3943

References
[Aboudolas et al., 2009] Konstantinos Aboudolas, Markos

Papageorgiou, and Elias B. Kosmatopoulos. Store-and-
forward based methods for the signal control problem in
large-scale congested urban road networks. Transporta-
tion Research Part C: Emerging Technologies, 17(2):163
– 174, 2009.

[Adler et al., 2002] Micah Adler, Harald Räcke, Naveen
Sivadasan, Christian Sohler, and Berthold Vöcking. Ran-
domized pursuit-evasion in graphs. In ICALP, pages 901–
912, 2002.

[Basilico et al., 2009] Nicola Basilico, Nicola Gatti, and
Francesco Amigoni. Leader-follower strategies for robot-
ic patrolling in environments with arbitrary topologies. In
AAMAS, pages 57–64, 2009.

[Blum et al., 2014] Avrim Blum, Nika Haghtalab, and
Ariel D Procaccia. Learning optimal commitment to over-
come insecurity. In NIPS, pages 1826–1834, 2014.

[Coogan and Arcak, 2015] S. Coogan and M. Arcak. A com-
partmental model for traffic networks and its dynami-
cal behavior. IEEE Transactions on Automatic Control,
60(10):2698–2703, 2015.

[Daganzo, 1994] Carlos F. Daganzo. The cell transmission
model: A dynamic representation of highway traffic con-
sistent with the hydrodynamic theory. Transportation Re-
search Part B: Methodological, 28(4):269 – 287, 1994.

[Daganzo, 1995] Carlos F. Daganzo. The cell transmission
model, part II: Network traffic. Transportation Research
Part B: Methodological, 29(2):79 – 93, 1995.

[Fang et al., 2016] Fei Fang, Thanh Hong Nguyen, Rob
Pickles, Wai Y Lam, Gopalasamy R Clements, Bo An,
Amandeep Singh, Milind Tambe, and Andrew Lemieux.
Deploying PAWS: Field optimization of the protection as-
sistant for wildlife security. In IAAI, pages 3966–3973,
2016.

[Guo et al., 2016] Qingyu Guo, Bo An, Yair Zick, and Chun-
yan Miao. Optimal interdiction of illegal network flow. In
IJCAI, pages 2507–2513, 2016.

[Iwashita et al., 2016] Hiroaki Iwashita, Kotaro Ohori, Hi-
rokazu Anai, and Atsushi Iwasaki. Simplifying urban net-
work security games with cut-based graph contraction. In
AAMAS, pages 205–213, 2016.

[Jain et al., 2011] Manish Jain, Dmytro Korzhyk, Ondřej
Vaněk, Vincent Conitzer, Michal Pěchouček, and Milind
Tambe. A double oracle algorithm for zero-sum security
games on graphs. In AAMAS, pages 327–334, 2011.

[Jain et al., 2012] Manish Jain, Kevin Leyton-Brown, and
Milind Tambe. The deployment-to-saturation ratio in se-
curity games. In AAAI, pages 1362–1370, 2012.

[Jain et al., 2013] Manish Jain, Vincent Conitzer, and Milind
Tambe. Security scheduling for real-world networks. In
AAMAS, pages 215–222, 2013.

[Lebacque, 2005] Jean-Patrick Lebacque. Intersection mod-
eling, application to macroscopic network traffic flow

models and traffic management. In Traffic and Granular
Flow’03, pages 261–278. 2005.

[Letchford and Conitzer, 2013] Joshua Letchford and Vin-
cent Conitzer. Solving security games on graphs via
marginal probabilities. In AAAI, pages 591–597, 2013.

[Manual, 1964] Traffic Assignment Manual. Bureau of pub-
lic roads. US Department of Commerce, 1964.

[Nowakowski and Winkler, 1983] Richard Nowakowski and
Peter Winkler. Vertex-to-vertex pursuit in a graph. Dis-
crete Mathematics, 43(2):235 – 239, 1983.

[Peng et al., 2014] Wei Peng, Guohua Dong, Kun Yang, and
Jinshu Su. A random road network model and its effect-
s on topological characteristics of mobile delay-tolerant
networks. IEEE Transactions on Mobile Computing,
13(12):2706–2718, 2014.

[Shieh et al., 2012] Eric Shieh, Bo An, Rong Yang, Milind
Tambe, Ben Maule, and Garrett Meyer. PROTECT: An
application of computational game theory for the security
of the ports of the United States. In AAAI, pages 2173–
2179, 2012.

[Skabardonis and Dowling, 1997] Alexander Skabardonis
and Richard Dowling. Improved speed-flow relationships
for planning applications. Transportation Research
Record: Journal of the Transportation Research Board,
1572:18–23, 1997.

[Tambe, 2011] Milind Tambe. Security and Game Theory:
Algorithms, Deployed Systems, Lessons Learned. Cam-
bridge University Press, 2011.

[Tsai et al., 2010] Jason Tsai, Zhengyu Yin, Jun-young K-
wak, David Kempe, Christopher Kiekintveld, and Milind
Tambe. Urban security: Game-theoretic resource alloca-
tion in networked physical domains. In AAAI, pages 881–
886, 2010.

[Vorobeychik et al., 2014] Yevgeniy Vorobeychik, Bo An,
Milind Tambe, and Satinder P. Singh. Computing solu-
tions in infinite-horizon discounted adversarial patrolling
games. In ICAPS, pages 314–322, 2014.

[Wang et al., 2016] Zhen Wang, Yue Yin, and Bo An. Com-
puting optimal monitoring strategy for detecting terrorist
plots. In AAAI, pages 637–643, 2016.

[Washburn and Wood, 1995] Alan Washburn and Kevin
Wood. Two-person zero-sum games for network interdic-
tion. Operations Research, 43(2):243–251, 1995.

[Yin et al., 2014] Yue Yin, Bo An, and Manish Jain. Game-
theoretic resource allocation for protecting large public
events. In AAAI, pages 826–834, 2014.

[Yin et al., 2015] Yue Yin, Haifeng Xu, Jiarui Gan, Bo An,
and Albert Xin Jiang. Computing optimal mixed strategies
for security games with dynamic payoffs. In IJCAI, pages
681–687, 2015.

[Zhao et al., 2016] Mengchen Zhao, Bo An, and Christo-
pher Kiekintveld. Optimizing personalized email filtering
thresholds to mitigate sequential spear phishing attacks. In
AAAI, pages 658–665, 2016.

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

3944

