Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

Model Accuracy and Runtime Tradeoff in Distributed Deep Learning: A
Systematic Study

Suyog Gupta*, Wei Zhang*
IBM T. J. Watson Research Center
Yorktown Heights, NY 10598, USA
*Equal Contribution
{suyog,weiz} @us.ibm.com

Abstract

Deep learning with a large number of parameters
requires distributed training, where model accuracy
and runtime are two important factors to be consid-
ered. However, there has been no systematic study
of the tradeoff between these two factors during the
model training process. This paper presents Rudra,
a parameter server based distributed computing
framework tuned for training large-scale deep neu-
ral networks. Using variants of the asynchronous
stochastic gradient descent algorithm we study the
impact of synchronization protocol, stale gradient
updates, minibatch size, learning rates, and num-
ber of learners on runtime performance and model
accuracy. We introduce a new learning rate mod-
ulation strategy to counter the effect of stale gra-
dients and propose a new synchronization proto-
col that can effectively bound the staleness in gra-
dients, improve runtime performance and achieve
good model accuracy. Our empirical investiga-
tion reveals a principled approach for distributed
training of neural networks: the mini-batch size
per learner should be reduced as more learners are
added to the system to preserve the model accu-
racy. We validate this approach using commonly-
used image classification benchmarks: CIFAR10
and ImageNet.

1 Introduction

Deep neural network based models have achieved unparal-
leled accuracy in cognitive tasks such as speech recogni-
tion, object detection, and natural language processing Le-
Cun et al. [2015]. Recent years have seen a resurgence of
interest in deploying large-scale computing infrastructure de-
signed specifically for training deep neural networks. Some
notable efforts in this direction include distributed comput-
ing infrastructure using thousands of CPU cores Chilimbi et
al. [2014]; Dean et al. [2012], high-end graphics processors
(GPUs) Krizhevsky et al. [2012], or a combination of CPUs
and GPUs Coates et al. [2013].

Contrary to the popular belief, among the system re-
searchers, that asynchrony necessarily improves model ac-
curacy, we find that adopting the approach of scale-out deep

4854

Fei Wang
Weill Cornell Medical College
New York City, NY 10065, USA
feiwang03 @gmail.com

learning using asynchronous-SGD, gives rise to complex in-
terdependencies between the training algorithm’s hyperpa-
rameters and the distributed implementation’s design choices
(synchronization protocol, number of learners), ultimately
impacting the neural network’s accuracy and the overall sys-
tem’s runtime performance.

In this paper we present Rudra, a parameter server based
deep learning framework to study these interdependencies
and undertake an empirical evaluation with public image clas-
sification benchmarks. Our key contributions are:

1. A systematic technique (vector clock) for quantifying
the staleness of gradient descent parameter updates.

2. An investigation of the impact of the interdependence of
training algorithm’s hyperparameters (mini-batch size,
learning rate (gradient descent step size)) and distributed
implementation’s parameters (gradient staleness, num-
ber of learners) on the neural network’s classification ac-
curacy and training time.

3. A new learning rate tuning strategy that reduces the ef-
fect of stale parameter updates.

4. A new synchronization protocol to reduce network
bandwidth overheads while achieving good classifica-
tion accuracy and runtime performance.

5. An observation that to maintain a given level of model
accuracy, it is necessary to reduce the mini-batch size as
the number of learners is increased. This suggests a hard
limit on the amount of parallelism that can be exploited
in training a given model.

2 Design and Implementation

2.1 Terminology

e Parameter Server: a server that holds the model weights.
The parameter server collects gradients from learners
and updates the weights accordingly.

Learner: A computing process that can calculate weight
updates (gradients).

(4 mini-batch size.
e «: learning rate.

e \: number of learners.

Epoch: a pass through the entire training dataset.

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

Timestamp: each weight update increments the times-
tamp by 1. The timestamp of a gradient is the same as
the timestamp of the weight used to compute the gradi-
ent.

o: staleness of the gradient. A gradient with timestamp
ts; is pushed to the parameter server with current weight
timestamp ¢s;, where ts; > ts;. We define the staleness
of this gradient o as j — 1.

(o), average staleness of gradients. The timestamps
of the set of n gradients that triggers the advancement
of weights timestamp from ts;_; to ts; form a vector
clock(ts;,, tSiy, ..., tsi,), where max{iy,ia,...,in} <
i. The average staleness of gradients (o) is defined as:

)]

(o) = (i — 1) — mean(i1, iz, ..., in)

Hardsync protocol: To advance weights timestamp from
ts; to ts;y+1, each learner calculates exactly one mini-
batch and sends its gradient V6, to the parameter server.
The parameter server averages the gradients and updates
the weights according to Equation (2), then broadcasts
the new weights to all learners. Staleness in the hardsync
protocol is always zero.

1 =X

Vo (i) = 5 Vo

=1
0" (i +1) = 0™ (3) — aVo™ (i)

@)

Async protocol: Each learner calculates the gradients
and asynchronously pushes/pulls the gradients/weights
to/from parameter server. The Async weight update rule
is given by:

vo® (i) = VoW L, € Ly, ..., Ly

0M (i 4+1) = 0% (i) — aVO™ (3) @

Gradient staleness may be hard to control due to the

asynchrony in the system. Dean et al. [2012] describe

Downpour SGD, an implementation of the Async proto-

col for a commodity scale-out system in which the stal-
eness can be as large as hundreds.

n-softsync protocol: Each learner pulls the weights from
the parameter server, calculates the gradients and pushes
the gradients to the parameter server. The parame-
ter server updates the weights after collecting at least
¢ = |(A/n)] gradients. The splitting parameter n can
vary from 1 to A\. The n-softsync weight update rule is
given by:

c=1(\/n)]
N Ie
vor (4) = Ezz=1 VO LjeLi,...Lx (4
M (i 4+1) = 0% (i) — aVO™ (3)
In a homogeneous cluster where each learner proceeds
at roughly the same speed, the staleness of the model is
expected to be n. Note that when n is equal to A, the

weight update rule at the parameter server is exactly the
same as in Async protocol.

4855

W' =W —af(AW...)

Parameter Server|

WEE,..
Stats Server | 4
. ‘// wewms yv@ms
TrainErr®WB L e
Mm%balch@r\:lk /

S
Data Server
W: Model Weights

@MB: Per Mini-batch
@E: Per Epoch

Figure 1: Rudra-base architecture

W'=W-af(SAW,..)

W'=W-af(SAW...)

S0/ \N\ s onf \ W/L\
- ;) 47N
VO o\ TN [

L: Learner
PS: Parameter Server

(a) Rudra-adv architecture

L: Learner
PS: Parameter Server

(b) Rudra-adv™ architecture
Figure 2: Rudra-adv and Rudra-adv* architecture

2.2 Rudra System Architecture

Rudra-base Figure 1 illustrates the base-line parameter server
design that we use to study the interplay of hyperparameter
tuning and system scale-out factor. Parameter Server is a
multithreaded process, that accumulates gradients from each
learner and applies update rules according to Equations (2—4)
(i.e., hardsync and n-softsync protocols). Learner is a single-
process multithreaded SGD solver, it calculates the gradients
and sends the gradients along with their timestamp to the pa-
rameter server. Learner retrieves weights from the Parameter
Server when newer weights are generated. Data Server hosts
training and testing data. Statistics Server records training
statistics (e.g., training error).

Rudra-adv To alleviate the network traffic to parameter
server, we build a parameter server group that forms a tree.
We co-locate each tree leaf node on the same node as the
learners for which it is responsible. Each node in the parame-
ter server group is responsible for averaging the gradients sent
from its learners and relaying the averaged gradient to its par-
ent. The root node in the parameter server group is responsi-
ble for applying weight update and broadcasting the updated
weights. Each non-leaf node pulls the weights from its parent
and responds to its children’s weight pulling requests. Fig-
ure 2(b) illustrates the system architecture for Rudra-adv.

Rudra-adv*. We built Rudra-adv* to further improve the
runtime performance of Rudra-adv in two ways: (1) Broad-
cast weights within learners to utilize network links be-
tween learners. (2) Asynchronous pushGradient and
pullWeights. Figure 2(b) illustrates the system architec-
ture for Rudra-adv*. Different from Rudra-adv, each learner
continuously receives weights from the weights downcast
tree, which consists of the top level parameter server node
and all the learners.

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

3 Methodology

3.1 Hardware and Software Environment

We deploy the Rudra distributed deep learning framework
on a P775 supercomputer. Each node of this system con-
tains four eight-core 3.84 GHz POWER? processors, one op-
tical connect controller chip and 128 GB of memory. A sin-
gle node has a theoretical floating point peak performance
of 982 Gflop/s, memory bandwidth of 512GB/s and bi-
directional interconnect bandwidth of 192 GB/s.The cluster
operating system is Red Hat Enterprise Linux 6.4. To com-
pile and run Rudra we used the IBM xIC compiler version
12.1 with the -03 -g64 -gsmp options, ESSL for BLAS
subroutines, and IBM MPI (IBM Parallel Operating Environ-
ment 1.2).

3.2 Benchmark Datasets and Neural Network
Architectures

To evaluate Rudra’s scale-out performance we employ two
commonly used image classification benchmark datasets:
CIFAR10 Krizhevsky and Hinton [2009] and ImageNet et
al [2015]. The neural network architecture that we used
for CIFAR1O0 closely mimics the CIFAR10 model (ci-
far10_full.prototxt) available as a part of the open-source
Caffe deep learning package Jia er al. [2014]. The neural
network is trained using momentum-accelerated mini-batch
SGD with a batch size of 128 and momentum set to 0.9. The
base learning rate oy is set to 0.001 are reduced by a factor
of 10 after the 120%™ and 130™ epoch. For ImageNet, we
use the neural network architecture introduced in Krizhevsky
et al. [2012] consisting of 5 convolutional layers and 3 fully-
connected layers. The initial learning rate «y is set equal to
0.01 and reduced by a factor of 10 after the 15" and 25%
epoch.

4 Evaluation

In this section we present results of evaluation of our scale-
out deep learning training implementation. For an initial de-
sign space exploration, we use the CIFAR10 dataset and
Rudra-base system architecture (Section 4.1 and Section 4.2).
Subsequently we extend our findings to the ImageNet
dataset using the Rudra-adv and Rudra-adv* system architec-
tures (Section 4.3).

4.1 Staleness-Aware Learning Rate Tuning
In our experiments with the n-softsync protocol we found it
beneficial, and at times necessary, to modulate the learning
rate « to take into account the staleness of the gradients. For
the n-softsync protocol, we set the learning rate as:

a=ao/{oc) =a/n)]

where o is the learning rate used for the baseline (con-
trol) experiment: p = 128, A = 1. Figure 3 shows a set
of representative results illustrating the benefits of adopting
this learning rate modulation strategy. We show the evolu-
tion of the test error on the CIFAR10 dataset as a function
of the training epoch for two different configurations of the
n-softsync protocol (n = 4, n = 30) and set the number
of learners, A = 30. In both these configurations, setting

100

90 v -

80

v TR
\"u"l'/"‘ll W ‘l,‘.
L R L Y
D S e TV IC L 4
1 v, NI AN
R4
[

70

Test error(%)

60+ 1
50+
40T —— 30, A=30)
- - -n=4, =30
0 ‘ ‘ ‘ ‘ ‘ ‘
0 20 40 60 80 100 120 140

Training epoch

Figure 3: Effect of learning rate modulation strategy: Dividing the
learning rate by the average staleness aids in better convergence and
achieves lower test error when using the n-softsync protocol. Num-
ber of learners, A = 30; mini-batch size p = 128.

the learning rate in accordance with equation (5) results in
lower test error as compared with the cases where the learning
rate is set to ap. Surprisingly, the configuration 30-softsync,
A = 30, a = o fails to converge and shows a constant
high error rate of 90%. Reducing the learning rate by a factor
(o) = n = 30 makes the model with much lower test error.

4.2 u) = constant

It is trivial to conclude that training with different configura-
tions, in which u\ = constant, yields similar (if not the same)
model accuracy for the hardsync protocol.

Interestingly, we find that even for the n-softsync protocol,
configurations that maintain u\ = constant achieve compa-
rable test errors. In Table 2 we report the test error at the end
of 140 epochs for configurations with uA = constant. For
instance, Table 2 shows that when puA ~ 128, the test error
stays ~18-19%. Table 2 also shows that the test error in-
creases monotonically with the p product. These results re-
veal the scalability limits under the constraints of preserving
the model accuracy. These results help define a principled ap-
proach for distributed training of neural networks: the mini-
batch size per learner should be reduced as more learners are
added to the system in way that keeps p\ product constant.
In addition, the learning rate should be modulated to account
for stale gradients. From machine learning perspective, this
points to an interesting research direction on designing opti-
mization algorithm and learning strategies that perform well
with large mini-batch sizes.

4.3 Results on TmageNet Benchmark

The computational cost of training ImageNet prohibits an
exhaustive state space exploration of the interplay between
model accuracy and system runtime performance. The base-
line configuration (1 = 256, A = 1) takes 54 hours/epoch.
Guided by the results of section 4.2, we first consider a con-
figuration with 4 = 16, A = 18 and employ the Rudra-base
architecture with hardsync protocol (base-hardsync). This
configuration performs training at the speed of ~330 min-
utes/epoch and achieves a top-5 error of 20.85%, matching
the accuracy of the baseline configuration (1 = 256, A = 1).

4856

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

Configuration Architecture 1 A Synchronization ~ Validation Validation Training time
protocol error(top-1) error (top-5) (minutes/epoch)
base-hardsync Rudra-base 16 18 Hardsync 44.35% 20.85% 330
base-softsync Rudra-base 16 18 1-softsync 45.63% 22.08% 270
adv-softsync Rudra-adv 4 54 1-softsync 46.09% 22.44% 212
adv*-softsync Rudra-adv* 4 54 1-softsync 46.53% 23.38% 125

Table 1: Results on ImageNet benchmark: Validation error at the end of 30 epochs and training time per epoch for different configurations.

Test Training
“ H A error time(s)
1 4 30 18.09% 1573
30 4 30 18.41% 2073
pX ~ 128 18 8 18 18.92% 2488
10 16 10 18.79% 3396
4 32 4 18.82% 7776
2 64 2 17.96% 13449
1 8 30 20.04% 1478
30 8 30 19.65% 1509
18 16 18 20.33% 2938
pX ~ 256 10 32 10 20.82% 3518
4 64 4 20.70% 6631
2 128 2 19.52% 11797
1 128 2 19.59% 11924
1 16 30 23.25% 1469
30 16 30 22.14% 1502
pX ~ 512 18 32 18 23.63% 2255
10 64 10 24.08% 2683
4 128 4 23.01% 7089
1 32 30 27.16% 1299
30 32 30 27.27% 1420
puX ~ 1024 18 64 18 28.31% 1713
1 128 10 29.83% 2551
10 128 10 29.90% 2626

Table 2: Results on CIFAR10 benchmark: Test error at the end
of 140 epochs and training time for (o, u, A) configurations with
A = constant.

Training using the 1-softsync protocol with mini-batch size
of ;1 = 16 and 18 learners takes ~270 minutes/epoch, reach-
ing a top-1 (top-5) accuracy of 45.63% (22.08%) by the end
of 30 epochs (base-softsync).

A = 54 learners, each processing a mini-batch size y = 4,
train at ~212 minutes/epoch when using Rudra-adv architec-
ture and 1-softsync protocol (adv-softsync). As in the case
of Rudra-base, the average staleness in the gradients is close
to 1 and this configuration also achieves a top-1(top-5) error
of 46.09% (22.44%). The Rudra-adv* improves the runtime
performance to ~125 minutes/epoch, and its top-1 validation
error is (46.53%).

Table 1 summarizes the results obtained for the 4 con-
figurations discussed above. Figure 4 compares the evolu-
tion of the top-1 validation error during training for the 4
different configuration summarized in Table 1. The train-
ing speed follows the order adv*-softsync > adv-softsync >
base-softsync > base-hardsync. As a result, adv*-softsync is
the first configuration to hit the 48% validation error mark.
Configurations other than base-hardsync show marginally
higher validation error compared with the baseline.

5 Conclusion

In this paper, we empirically studied the interplay of hyper-
parameter tuning and scale-out in three protocols for commu-
nicating model weights in asynchronous stochastic gradient
descent. We divide the learning rate by the average stale-

4857

85 : T T T T

80] —— base-hardsync

| —{+ base-softsync
—/— adv-softsync

70 Y —O— adv*-softsync -

75+

Validation error (top-1) (%)

40 Il Il Il Il Il Il Il Il Il Il
0 20 40 60 80 100 120 140 160 180

Training time (hours)

Figure 4: Results on ImageNet benchmark: Error on the valida-
tion set as a function of training time for the configurations listed in
Table 1

ness of gradients, resulting in faster convergence and lower
test error. Our experiments show that the 1-softsync protocol
(in which the parameter server accumulates A gradients be-
fore updating the weights) minimizes gradient staleness and
achieves the lowest runtime for a given test error. We found
that to maintain a model accuracy, it is necessary to reduce
the mini-batch size as the number of learners is increased.
This suggests an upper limit on the level of parallelism that
can be exploited for a given model, and consequently a need
for algorithms that permit training over larger batch sizes. We
provide theoretical justification of these empirical results in a
separate paper Zhang et al. [2017].

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

References

Trishul Chilimbi, Yutaka Suzue, Johnson Apacible, and Karthik
Kalyanaraman. Project Adam: Building an efficient and scalable
deep learning training system. OSDI’ 14, pages 571-582, 2014.

Adam Coates, Brody Huval, Tao Wang, David Wu, Bryan Catan-
zaro, and Ng Andrew. Deep learning with cots hpc systems. In
Proceedings of the 30th ICML, pages 1337-1345, 2013.

Jeffrey Dean, Greg S. Corrado, Rajat Monga, Kai Chen, Matthieu
Devin, Quoc V. Le, Mark Z. Mao, MarcAurelio Ranzato, Andrew
Senior, Paul Tucker, Ke Yang, and Andrew Y. Ng. Large scale
distributed deep networks. In NIPS, 2012.

Olga Russakovsky et al. ImageNet Large Scale Visual Recognition
Challenge. 1JCV, pages 1-42, 2015.

Yangqing Jia, Evan Shelhamer, Jeff Donahue, Sergey Karayev,
Jonathan Long, Ross Girshick, Sergio Guadarrama, and Trevor
Darrell. Caffe: Convolutional architecture for fast feature em-
bedding. arXiv preprint arXiv:1408.5093, 2014.

Alex Krizhevsky and Geoftrey Hinton. Learning multiple layers of
features from tiny images. Computer Science Department, Uni-
versity of Toronto, Tech. Rep, 1(4):7, 2009.

Alex Krizhevsky, Ilya Sutskever, and Geoftrey E Hinton. Imagenet
classification with deep convolutional neural networks. In Ad-
vances in neural information processing systems, pages 1097—
1105, 2012.

Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning.
Nature, 521(7553):436-444, 2015.

Wei Zhang, Suyog Gupta, Xiangru Lin, Ji Liu, and Fei Wang. Model
accuracy and runtime tradeoff in distributed deep learning: A sys-
tematic study and its theoretical underpinning. Knowledge and
Information Systems, (In submission), 2017.

4858

