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Abstract
The advantage of modular robot systems lies in their
flexibility, but this advantage can only be realized if
there exists some reliable, effective way of generating
configurations (shapes) and behaviors (controlling pro-
grams) appropriate for a given task. In this paper, we
present an end-to-end system for addressing tasks with
modular robots, and demonstrate that it is capable of
accomplishing challenging multi-part tasks in hardware
experiments. The system consists of four tightly in-
tegrated components: (1) A high-level mission planner,
(2) A design library spanning a wide set of function-
ality, (3) A design and simulation tool for populating
the library with new configurations and behaviors, and
(4) Modular robot hardware. This paper condenses the
material originally presented in [Jing et al., 2016] into
a shorter format suitable for a broad audience.

1 Introduction
Modular self-reconfigurable robots (MSRR) are systems
composed of repeated robot elements (called modules) that
connect together to form larger robotic structures. They
distinguish themselves from traditional robots through their
ability to self-reconfigure: changing the connective structure
of the modules to assume different shapes with different
capabilities. Over the last three decades, many kinds of MSRR
have been built [Østergaard et al., 2006; Kurokawa et al., 2008;
Lipson and Pollack, 2000], and many different approaches
have been introduced for controlling and programming them
[Salemi et al., 2001; Stoy et al., 2002]. In this work, we use the
SMORES-EP robot, pictured in Figures 1 and 2.

In principal, MSRR systems can transform to meet the needs
of each new task and environment they encounter. For example,
such a system operating in a home setting might configure itself
into a car to cross the kitchen floor, a snake to crawl into a cabinet
and retrieve cooking ingredients, and an arm to help stir cake
batter. The ability to reconfigure poses an obvious challenge:
given a task, is it possible to automatically select an appropriate
configuration (robot shape) and behavior (controlling program)
to address it? This is an important unsolved problem in the
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Figure 1: Left: A single SMORES-EP module. Right: Modules
connected in the SwerveLifter configuration.

field, and remains a significant barrier to using MSRR to solve
real-world problems [Yim et al., 2007].

In this paper, we present a system that addresses this problem.
Our system takes into account the capabilities of different robot
configuration and behaviors, properties of the environment, and
high-level task objectives specified by a user in order to select
appropriate configurations and behaviors to complete the task.
Through hardware experiments with the SMORES-EP robot,
we demonstrate that it is capable of addressing a multi-part
room-cleaning task.

The system includes four tightly integrated components: (1)
A high-level mission planner, (2) A large design library spanning
a wide set of functionality, (3) A design and simulation tool for
populating the library with new configurations and behaviors, and
(4) Modular self-reconfigurable robot hardware. While our work
uses SMORES-EP, the system could be adapted to other modular
robot platforms as well.

We leverage ideas from recent work on automatic con-
troller synthesis with correctness guarantees from high-level
task specification [Belta et al., 2007; Bhatia et al., 2010;
Kloetzer and Belta, 2008; Kress-Gazit et al., 2009;
Raman et al., 2015; Wongpiromsarn et al., 2010]. These
methods have proven effective for addressing high-level tasks
with traditional robots; applying them in the context of modular
robotics introduces an additional layer of complexity due to the
fact that the morphology of the robot is not fixed. [Castro et al.,
2011] introduce a high-level control framework for the CKBot
modular robot, which lays the theoretical foundations for our
high-level mission planner, one of the four major components
of our system. We also build upon [Tosun et al., 2015], which
introduces a physics-based simulator, design creation tool, and a
small hierarchically organized library for the SMORES-EP robot.

This paper presents the details of the system, discusses its
strengths and weaknesses, and provides a roadmap forward to

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

4879



apply a similar system in a real-world setting.

2 System Structure
Here we provide an overview of each system component.

2.1 SMORES-EP Modular Robot
Our system is validated using the SMORES-EP modular
self-reconfigurable robot. Four faces of the module are equipped
with electro-permanent magnets (EP magnets) that allow modules
to connect. EP magnets combine the advantages of permanent
magnets and electromagnets - the magnetic force between two
modules can be switched on (attractive) and off (no force) by
applying a very short pulse of current. The magnets will then
maintain either state indefinitely without consuming any energy.
Some motions that the modules can perform are limited by the
strength of the magnetic connectors, which can support three
modules held out horizontally against gravity [Tosun et al., 2016].

SMORES-EP has four actuated joints (Figure 1). The left
and right faces of the module can be used as wheels to drive on
smooth surfaces. The circular top face (called the pan joint) is
also able to rotate continuously. A central bending joint (the tilt
joint) has a 180◦ range of motion, allowing the top face to bend
forward or backward until it is perpendicular to the bottom face.
Each of the joints is equipped with a custom potentiometer for
feedback control [Tosun et al., 2017]. Each module has its own
battery, microcontroller, and WiFi radio, allowing it to operate
independently or as part of a cluster. A central computer running
a Python program sends wireless messages to all modules.

2.2 Design and Simulation Tool - VSPARC
We developed an interactive software tool called VSPARC, which
stands for Verification, Simulation, Programming And Robot
Construction. Using graphical user interfaces and a physics
engine, VSPARC allows users to design and test configurations
and behaviors with unlimited number of modules in a simulated
3D environment. Moreover, users can command positions or
velocities for each joint of all modules. VSPARC is available
for free online at www.vsparc.org. Users can save and share
their designs on a web server, allowing VSPARC to be used
as a crowdsourcing tool to generate a large robot design library.
Behaviors created in VSPARC can be run without modification
on either the simulator or the physical SMORES-EP robot.

2.3 Design Library
Here we present the formalisms used to define our design library.

Modular Robot Systems A modular robot system consists
of a set of basic units called modules, that can move and
connect to other modules. Modules can be controlled by joint
commands. We assume modules have feedback controllers
(e.g. PID controllers) that can drive the corresponding joint to
satisfy each command. A set of connected modules forms a
configuration, which we treat as a single robot. A behavior for
a configuration is a sequence of joint commands for all modules
in the configuration, commanding it to perform an action.

Property A property is a descriptive label of the robot behavior
or the environment. A property is defined as p=(pn,Ω), where
pn is in an English description as the name of the property and
Ω is the set of values of the property. For example, we use a robot
property p = (Action,{Climb, Push}) to describe the robot’s
ability to Climb and Push. Properties are also used to describe
the environment state in which the robot performs the behavior.
For example, the property p = (BoxMass,[2,5]) specifies that
the mass of a box in the environment could be between 2 and
5 module-weights. We say a property p1 =(pn1,Ω1) satisfies a
property p2=(pn2,Ω2) if and only if pn1 =pn2 and Ω1⊆Ω2.

Robot Design Library The robot design library is a collection
of configurations and behaviors labeled with environment
and behavior properties. The design library is defined as
L= {l1,l2,...} consisting of a set of library entries. A library
entry l=(C,B,Pe,Pr) consists of a configuration C, a behavior
B, and sets of environment and behavior properties Pe and Pr

respectively. As an example, the library entry:

l=(C=snake,B=climb,Pe,Pr)

where: Pe={(Ledge Height,[3])}
and: Pr ={(Action,[Climb]),(Speed,[1])}

represents a snake shape configuration performing a climb
behavior with the speed of one module-length per second in the
environment with a three module-length-high ledge. Moreover,
we say a library entry l satisfies a property p if there exist a
property p′∈Pe∪Pr such that p′ satisfies p.

To populate our design library we distributed VSPARC to
student volunteers, and hosted three hackathons to designing
configurations and behaviors for various robot tasks. The library
currently includes 52 designs and 97 behaviors contributed by 20
volunteers. We provide a representative sampling of the design
library in Fig. 2.

2.4 Reactive Controller Synthesis and Execution
Controller synthesis refers to the process of generating a controller
to satisfy a given declarative specification, or proving such
controller does not exist. Existing work in [Finucane et al., 2010;
Kress-Gazit et al., 2009] provides a framework to automatically
generate robot controllers from high-level user specifications.
We extend the framework to allow controller synthesis from the
design library for modular robot systems.

In controller synthesis, environment events and robot capabil-
ities are abstracted into sets of boolean variables, which represent
sensed environment information or current robot actions. For
example, the environment variable Person is True if and only if
the robot is currently sensing a person with its camera. Similarly,
the robot variable Pickup is True if and only if the robot is
currently performing a pick up action. A wide range of robot
tasks can be specified using Linear Temporal Logic (LTL). A tool
called LTLMoP introduced in [Finucane et al., 2010] allows inex-
perienced users to use a fixed English grammar instead of LTL to
specify robot tasks. The framework introduced in [Kress-Gazit et
al., 2009] can automatically generate a high-level robot controller
from a task specification, or decide such controller does not exist.
The synthesized controller is a finite-state automaton, which is
implemented continuously to satisfy the task specification.
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Configuration Name Single module Rolling Loop DoubleDriver Stair Climber Swerve Lifter backhoe
Number of modules 1 8 7 4 9 9

Locomotion
Max robot height 1 2.5 1.5 2 2 4
Max robot width 1 1 3 1 4 4
Max robot length 1 5 3 3.5 3 7
Terrain - Rough X X
Terrain - Sloped X X X
Driving - Straight X X X X X

Driving - Di↵erential drive X X X X
Driving - Holonomic X

Manipulation
Attachment - Push X X X X X X

Attachment - Magnetic X X X X
Attachment - Carry X

Workspace size
X : [� inf, inf]
Y : [� inf, inf]

Z : [0, 1]

X : [� inf, inf]
Y : [0, 1]
Z : [0, 2.5]

X : [� inf, inf]
Y : [� inf, inf]
Z : [0, 1.5]

X : [� inf, inf]
Y : [� inf, inf]

Z : [0, 2]

X : [� inf, inf]
Y : [� inf, inf]

Z : [0, 2]

X : [�3, 3]
Y : [�3, 3]
Z : [0, 4]

Payload mass 1 2 4 2 3 1

Figure 2: Matrix of designs and properties. (Unit Length = the side length of a module. Unit Mass = the mass of a module)

Figure 3: Controller synthesis and execution.

To use the robot design library with the controller synthesis
framework, we allow users to assign a set of environ-
ment and behavior properties to each robot variable. For
example, an action variable “Pickup” can be mapped to
{(Box Mass, [3]), (Action, [Pickup])}. Then we can search
through the design library to find a set of library entries that
satisfies all given properties. Once each robot action variable
is mapped to a set of library entries, we need to ensure multiple
robot actions can be executed simultaneously if needed. For
example, consider two robot action variables “Pickup” and
“Push”. If there does not exist a library entry mapped to
both variables, we must guarantee that “Pickup” and “Push”
actions cannot be executed simultaneously. This constraint is
automatically encoded in an LTL formula and appended to the
original task specification for synthesis.

3 Experimental Results

We demonstrate the capabilities of our system through experi-
ments. An accompanying video can be found at http://www.
modlabupenn.org/2016/09/15/end-to-end/.

rollingLoop.backward rollingLoop.forward rollingLoop.forward

backhoe.pressButton doubleDriver.turnAndDrive stairClimber.climb

Figure 4: Simulated Demo

3.1 Simulated Demonstrations
Scenario 1 The environment for Scenario 1 consists of a button,
a lightweight block, a gap in the ground, and a ramp, all in a
straight line. The robot’s objective is to move from its starting
point to the goal area at the top of the ramp. When the button
is pushed, it causes the block (which begins floating in the air)
to fall to the ground, where it can be pushed into the gap, forming
a bridge between the flat region and ramp. The action definitions
for this task are: pushButton (height = 1.5); pushBox
(payload = 2, distance x = 3); climb (drive = Straight, terrain
= Sloped). The high-level mission planner determines that all the
properties are fulfilled by the rollingLoop configuration.
In the top row of Figure 4 (and in the accompanying video), we
see the rolling loop complete the task.

Scenario 2 The environment for Scenario 2 is similar to the
environment from Scenario 1, but with several small changes that
make the task more difficult. The button is now on the left side
of the environment, and floats at a height of 4 module-lengths
above the ground. The box is twice as heavy, weighing 4
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Figure 5: Map of hardware demo

module-weights rather than 2. The ramp has been replaced with
stairs with the step height of 0.75.

The rollingLoop can no longer complete this task - it
can’t reach the button, it’s not strong enough to push the box, and it
can’t ascend steps higher than 0.25. When the specification is com-
piled, our system selects three different configurations from the
library to complete the task. The backhoe is used to push the
button, because it is the only configuration with a large enough ver-
tical workspace. It then reconfigures into the doubleDriver
to drive over and push the box into the hole, because it is able to
drive, turn, and push objects as heavy as 5 module-weights. Then,
it reconfigures into the stairClimber to climb the stairs. In
the bottom row of Figure 4 and the accompanying video, we see
how the task is completed. For the purposes of this paper, we
assume that reconfiguration between any two configurations is
possible as long as the final configuration does not have more
modules than the initial configuration.

3.2 Hardware Demonstrations
In these scenarios, a cluster of SMORES-EP modules is directed
to clean the top of a table. The map is shown in Fig. 5. There
are two components to this task: first, the robot must move a
waste bin near the table, and then, the robot must climb up to
the top of the table, explore the surface, and react appropriately
to the objects it encounters. These two scenarios showcase the
translation of behaviors from the simulator to hardware, and the
ability to use LTLMoP to create and execute mission plans with
the hardware. Since the modules have no sensors, localization
is provided by AprilTags [Olson, 2011] mounted to the modules
and objects of interest, tracked by an overhead camera.

Moving the Waste Bin In the first scenario, the cluster starts
in region Start1 and needs to move a waste bin from region
Pickup to region DropOff (a distance of 10 module
lengths) to be near the table, and then travel to the table edge
(region Start2). The task is made more difficult by the fact
that the waste bin is supported by four legs, so it cannot be pushed
by designs with a height of two modules or less. The workspace
requirement (10 modules lengths) rules out all stationary manipu-
lators in the library, and height requirement rules out most car-like
designs. Fortunately, the swerveLifter design, which can
carry objects by driving under them and lifting up, is perfect for
the job (Fig. 1). As seen in the accompanying video, the high-level
controller directs the robot to complete the task. The robot waits
until it senses the waste bin (marked with an AprilTag). Then
it lowers itself, drives under the waste bin, carries it next to the
table, and performs omnidirectional drive to travel to the table.

snake7.climb module.spin module.push snake7.descend

Figure 6: Cleaning the Table

Table Exploration With the waste bin in place, the cluster can
clean the top of the table. It should explore the tabletop and react
to what it finds: if it senses a piece of trash, it should push it
off the table, and if it senses a coffee mug, it should back up and
spin in place (alerting the mug’s owner that it should be removed).
After exploring both locations on the table, it should return to
the ground.

The snake7 configuration is selected to complete this
task. it can use its climbup and climbdown behaviors to
ascend and descend ledges up to 3 module-heights tall. However,
it is unable to lift its entire body up to the tabletop, and even if
it could, it would be too large to effectively explore. Instead, the
robot reconfigures, detaching the front module of the snake to
act as a module1 configuration that can use its differen-
tialDrive behavior to explore the tabletop, and its spin,
and push behaviors to clean. The robot to successfully cleans
the table, as shown in the accompanying video and Fig. 6. An
overhead camera system tracks AprilTags attached to the first
module of the snake, allowing LTLMoP to servo the left and right
wheels of the module in differential drive and sense proximity
to the coffee mug and trash (also marked with AprilTags).

4 Conclusion and Future Work
We presented an end-to-end system that is among the first
to address complex, reactive, high-level tasks with modular
self-reconfigurable robots. By providing this framework and
demonstrating its success in the lab, we hope to lay the foundation
for future systems to address tasks in the real world.

Environment and behavior properties provide an expressive
way to specify task requirements, but the fact that a behavior
is labeled with a specific property does not guarantee it will
perform as intended if the environment is not similar enough
to the one in which it was designed. Developing methods to
automatically characterize new environments using sensor data
is another avenue of future work.
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