
Omniscient Debugging for GOAL Agents in Eclipse
(Demonstration)

Vincent J. Koeman, Koen V. Hindriks and Catholijn M. Jonker
Delft University of Technology, Mekelweg 4, 2628CD, Delft, The Netherlands

{v.j.koeman, k.v.hindriks, c.m.jonker}@tudelft.nl

Abstract

The main goal of our demonstration is to show
how omniscient debugging can be applied in prac-
tice to cognitive agents. A concrete implementa-
tion of the mechanisms proposed in [Koeman et
al., 2017] has been created for the GOAL agent
programming language in the Eclipse environment,
integrated with the source-level debugger of [Koe-
man et al., 2016], thus fully implementing the pro-
posal within a state-of-the-art setting. The imple-
mentation will be used together with typical agent
programs to demonstrate its practical use.

1 Introduction
Running the same agent system again more often than not re-
sults in a different program run or trace, which complicates
the iterative process of debugging [Bracha, 2012]. There-
fore, in [Koeman et al., 2017], we propose a tracing mecha-
nism that supports omniscient debugging for cognitive agents.
This mechanism facilitates debugging by allowing a devel-
oper to move backwards in time through a program’s ex-
ecution. Such a ‘time travelling debugger’ is regarded as
one of the most powerful debugging tools [Zeller, 2009;
Bracha, 2012]. We show in [Koeman et al., 2017] that the
proposed tracing mechanism for cognitive agent programs is
efficient and does not affect the runs of agent programs in
the sense that the same failures can be reproduced when the
mechanism is turned on and off. This means that the mecha-
nism is fast enough to be used in practice for debugging fail-
ures in cognitive agents, opposed to existing implementations
(e.g., for Java) that have a significant performance impact.

In [Koeman et al., 2017] we also introduce a trace vi-
sualization method tailored to cognitive agents based on a
space-time view of the execution history [Azadmanesh and
Hauswirth, 2015]. A developer can navigate this view, eval-
uate queries on a trace, and apply filters to it to obtain views
of only the relevant parts of a trace. The approach is inte-
grated with a source-level debugger and traces source code
locations, which enables a developer to single-step through a
program’s execution history, facilitating fault localization.

Prototypes of the proposed mechanisms have been imple-
mented for the GOAL agent programming language [Hin-

driks, 2009], embedded in the GOAL plug-in for Eclipse
[Koeman and Hindriks, 2015].

In this demonstration proposal, we will describe the om-
niscient debugging mechanisms that have been implemented
for the GOAL agent programming plug-in in Eclipse. A typ-
ical example will be used in the demonstration1 to provide an
insight into the practical use of these features, integrated with
the source-level debugger [Koeman et al., 2016].

2 Demonstration
In [Koeman et al., 2017], we discuss how to efficiently facil-
itate reverting an agent to any previous state by recording its
execution (i.e., tracing). This recording can be toggled on or
off in the development environment. For efficient fault local-
ization, however, it also needs to be easy for a developer to
identify states in a program’s execution that are related to the
failure under investigation. Moreover, a developer should not
get lost in navigating between these states, but always have a
sense what point in the execution s/he is evaluating and how
the current state affected the execution.

Therefore, in [Koeman et al., 2017], we adapt the con-
cept of a space-time view first developed in [Azadmanesh and
Hauswirth, 2015] in the context of Java programming to cog-
nitive agent programming. A space-time view is a table that is
structured along space and time dimensions, where the rows
in the table correspond to the space dimension, which is com-
posed of the different elements in a state that are traced. The
columns entail each step in the agent’s execution history.

For cognitive agents in GOAL, the elements in a space-
time view (i.e., that are traced) are the agent’s events, beliefs,
goals, actions, and modules. We use the corresponding sig-
natures as the rows in the space dimension. For example, the
signature print/1 in Fig. 1 represents a print action with
one parameter. Each point in a trace represents a step (col-
umn) in the time dimension. Multiple space elements (sig-
natures) can be used in a single step, e.g., evaluating a query
may require accessing several beliefs and goals. The cells in
our space-time view contain information about how an ele-
ment was used at a particular step, which differs per type of
element (e.g., a belief can be modified or inspected, an ac-
tion or plan can be called and performed, a module can be

1A short demonstration video of the tool is available at:
https://www.youtube.com/watch?v=qAhtnGtczVM

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

5232



Figure 1: An example of the space-time view of an execution history integrated in the debugger for GOAL in Eclipse.

entered or exited). Empty cells indicate the element was not
used. To prevent cluttering the table, events (i.e., percepts or
messages) are not given a row in the table, whilst for exam-
ple receiving a new message does entail a separate step and
thus an empty column in the table. Moreover, a single letter
is used in each cell to ensure more information fits in a lim-
ited space: Entered a module, Left a module, Modified of a
belief or goal, Inspected of a belief or goal, Called an action,
or Action executed. We note that calling an action is different
from executing an action, as the action’s precondition might
fail after calling it (after which the action is not executed). An
example of such a space-time view is shown in Fig. 1.

A developer can use and manipulate the space-time view in
several ways. The signatures listed in the space-time view’s
rows can be ordered based on type (e.g., beliefs next to be-
liefs), alphabetically, or by order of occurrence (the default).
A developer can also apply a filter to a trace by for example
selecting the signatures of interest (i.e., hiding rows) or en-
tering a query that should hold in each state of interest (i.e.,
hiding columns). By clicking on any cell in the table, the
debugger will reverse the agent to the state matching the col-
umn, allowing a developer to use all debugging tools (e.g.,
inspecting an agent’s beliefs and goals) in that specific his-
toric state. This feature is also highlighted in Fig. 1.

We illustrate the use of these features for analysing a fail-
ure of the following example test condition associated with
an agent program for the Blocks World for Teams (BW4T)
[Johnson et al., 2009], which is one of the environments
used for educational purposes2: “goal(holding(B)),
bel(atBlock(B)) leadsto done(pickUp(B))”.
This condition expresses that if the agent has the goal to hold
block B, and believes it is at the block, that it should (eventu-
ally) pick up B. A failure to do so will lead to failure of the

2All (educational) agent environments are freely available at
https://github.com/eishub. Most of these projects in-
clude an assignment for (novice) agent programmers.

test condition (i.e., when the agent is terminated). Without an
omniscient debugger, a developer would need to restart the
agent, navigate to a point where the goal-belief query holds,
and continue by manually stepping to try to understand why
the action is not performed. With an omniscient debugger,
we do not need to restart the agent, and can use the clues
provided by the test condition itself to navigate to the last
time that holding/1 and atBlock/1 were modified in
the space-time view. We can do so either by double-clicking
the corresponding cell, or, even faster, by using the filter
query goal(holding(B)), bel(atBlock(B)).

The goal is to facilitate locating bugs in an efficient manner,
especially when dealing with very dynamic environments.
An example of such an environment that we will also use in
our demonstration is StarCraft [Griffioen and Plenge, 2016],
i.e., we will use GOAL agent programs for StarCraft to il-
lustrate how history-based source-level debugging facilitates
fault localization for highly dynamic agent programs.

3 Conclusion
A concrete implementation of the mechanisms proposed in
[Koeman et al., 2017] has been created for the GOAL
agent programming language in the Eclipse environment, in-
tegrated with the source-level debugger of [Koeman et al.,
2016], thus fully implementing the proposal within a state-
of-the-art setting. The implementation will be used together
with typical agent programs to demonstrate its practical use.
This implementation and its source are publicly available3,
thus together with this demonstration providing a valuable ex-
ample for the adaptation of omniscient debugging into other
agent programming languages.

3See https://goalapl.atlassian.net/wiki for
more information. Note, however, that the omniscient debugging
features are still under development, and thus not released in the
latest stable version(s) of the GOAL plug-in at the time of writing.

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

5233



References
[Azadmanesh and Hauswirth, 2015] Mohammad R. Azad-

manesh and Matthias Hauswirth. Space-time views for
back-in-time debugging. Technical Report 2015/02, Uni-
versity of Lugano, 2015.

[Bracha, 2012] Gilad Bracha. Debug mode is the only
mode. https://gbracha.blogspot.nl/2012/
11/debug-mode-is-only-mode.html, Novem-
ber 2012. Accessed: 2017-02-19.

[Griffioen and Plenge, 2016] H.J. Griffioen and D. Plenge.
Multi-agent systems in StarCraft. Bachelor thesis, Delft
University of Technology, 2016.

[Hindriks, 2009] Koen V. Hindriks. Programming rational
agents in GOAL. In Amal El Fallah Seghrouchni, Jürgen
Dix, Mehdi Dastani, and Rafael H. Bordini, editors, Multi-
Agent Programming: Languages, Tools and Applications,
pages 119–157. Springer US, 2009.

[Johnson et al., 2009] Matthew Johnson, Catholijn Jonker,
Birna van Riemsdijk, Paul J. Feltovich, and Jeffrey M.
Bradshaw. Joint activity testbed: Blocks World for
Teams (BW4T). In Huib Aldewereld, Virginia Dignum,
and Gauthier Picard, editors, Engineering Societies in
the Agents World X: 10th International Workshop, ESAW
2009, Utrecht, The Netherlands, November 18-20, 2009.
Proceedings, pages 254–256. Springer Berlin Heidelberg,
Berlin, Heidelberg, 2009.

[Koeman and Hindriks, 2015] Vincent J. Koeman and
Koen V. Hindriks. A fully integrated development
environment for agent-oriented programming. In Yves
Demazeau, Keith S. Decker, Javier Bajo Pérez, and
Fernando de la Prieta, editors, Advances in Practical
Applications of Agents, Multi-Agent Systems, and Sustain-
ability: The PAAMS Collection, volume 9086 of LNCS,
pages 288–291. Springer International Publishing, 2015.

[Koeman et al., 2016] Vincent J. Koeman, Koen V. Hindriks,
and Catholijn M. Jonker. Designing a source-level debug-
ger for cognitive agent programs. Autonomous Agents and
Multi-Agent Systems, 2016.

[Koeman et al., 2017] Vincent J. Koeman, Koen V. Hindriks,
and Catholijn M. Jonker. Omniscient debugging for cog-
nitive agent programs. In Proceedings of the Twenty-Sixth
International Joint Conference on Artificial Intelligence,
IJCAI ’17, Palo Alto, CA, USA, 2017. AAAI Press.

[Zeller, 2009] Andreas Zeller. Why Programs Fail, Second
Edition: A Guide to Systematic Debugging. Morgan Kauf-
mann Publishers Inc., San Francisco, CA, USA, 2nd edi-
tion, 2009.

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

5234


