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Abstract
Robotic technology has transformed manufacturing
industry ever since the first industrial robot was put
in use in the beginning of the 60s. The challenge
of developing flexible solutions where production
lines can be quickly re-planned, adapted and struc-
tured for new or slightly changed products is still
an important open problem. Industrial robots to-
day are still largely preprogrammed for their tasks,
not able to detect errors in their own performance
or to robustly interact with a complex environment
and a human worker. The challenges are even more
serious when it comes to various types of service
robots. Full robot autonomy, including natural in-
teraction, learning from and with human, safe and
flexible performance for challenging tasks in un-
structured environments will remain out of reach
for the foreseeable future. In the envisioned fu-
ture factory setups, home and office environments,
humans and robots will share the same workspace
and perform different object manipulation tasks in
a collaborative manner. We discuss some of the
major challenges of developing such systems and
provide examples of the current state of the art.

1 Introduction
Industrial robots today are still largely preprogrammed for
their tasks and most of the commercial robot applications
have a very limited ability to interact and physically engage
with humans. Full robot autonomy for challenging tasks in
unstructured environments will remain out of reach for the
foreseeable future. Therefore, development of various as-
pects of collaborative robot systems where a human can take
over parts of the task that are too hard for a robot to do is of
great interest. Consequently, in the envisioned future factory
setups, humans and robots will share the same workspace and
perform different object manipulation tasks in a collaborative
manner.

Classical robot programming requires an experienced pro-
grammer and the amount of work needed is infeasible for
rapidly changing tasks. Programming robots through human
demonstration has been promoted as a flexible framework
that reduces the complexity of programming robot tasks and

Figure 1: Interactive Lego picking setup: The robotic setup for our
use-case is centered around a dual-arm ABB YuMi manipulator that
is attached to a static table. The manipulator offers advanced force
control to ensure safety during human-robot collaboration tasks. Ad-
ditionally, the platform is equipped with a Kinect structured-light
sensor for perceiving objects in the workspace.

allows end-users to control robots in a natural and easy way
without the need for explicit programming. The traditional
approach is to let the robot be a passive agent in the inter-
action while the human agent controls the motion of the ob-
ject. For human-robot collaboration to become as efficient as
human-human collaboration, a robot must be able to perform
both the active and passive parts of the interaction, just as a
human would. We presented an example of this for the task
of human-augmented mapping in [Kruijff et al., 2006]. How-
ever, when it comes to physical interaction and collaboration
in a assembly or a service robot setting, the existing work is
still rather limited.

For the robot to take the active part in the interaction, and
to be able to plan and execute appropriate trajectories of ob-
jects and its own motion, it must have knowledge about the
partnering agent, its internal state and what constraints the
human imposes on the object. Unlike in the conventional
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III

II

I
C1:      Joint limit avoidance

C2:     Obstacle avoidance

C3:     Move end-effector to grasp point

C4:     Align approach vector with object

C5:     Align gripper horizontal

C6:      Reference joint configuration

REACH-TO-GRASP SKILL

Figure 2: Skill example: Reach-to-grasp behavior can emerge from
6 concurrent controllers (C1 . . . C6) running on 3 different hierarchy
levels (I-III).

program development process, when programming robots
through demonstration the user may not be familiar with the
syntax and semantics of the programming language. Thus,
we need methodologies for learning and encoding tasks from
multiple demonstrations and base learning on both explicit
communication (natural language) as well as implicit com-
munication (motion).

However, there are still a number of challenges to tackle:
interaction modalities such as speech, gaze or gestures need
to be grounded in a formalism that can be interpreted by the
robots control algorithms and disambiguities need to be re-
solved; motion planning and control has to be performed in
(or near) real-time to ensure a natural workflow and interac-
tion. This is something that cannot be done with classical
sense-plan-act architectures which form the current state-of-
the art in applied robotics. Furthermore, robotic manipula-
tion tasks require models capturing the interaction dynamics.
These cannot be acquired by sparse human demonstrations
alone. The most promising approach to this dilemma seems
to be exploration learning. Here, the robot interacts with its
environment and tries to build a corresponding model (or di-
rectly a control policy) using the gathered information. How-
ever, gathering data in robotics is time consuming and ran-
dom exploration is potentially dangerous for the robot and
its surroundings. Therefore, the main interest lies in sample-
efficient reinforcement learning methods to find local models
and control policies. How to generalize these results is an
active area of research.

The purpose of this paper is to highlight these challenges
as well as to suggest a framework for human-robot collabora-
tion which utilizes the aforementioned ideas of using explicit
communication, exploration learning and reactive control-
based approaches to motion generation. The framework is
rooted in historic ideas such as Brooks subsumption architec-
ture [Brooks, 1986] and we demonstrate its applicability by
means of an interactive pick & place use-case (see Fig. 1).

2 Motion Planning and Control
One core aspect of collaborative robotics is the necessity
for reactive robot behavior generation. Classical monolithic
sense-plan-act structures do not meet this demand. In con-
trast, it seems more promising to use reactive control-based

motion generation [Kappler et al., 2018]. At the core, the
problem is to instantaneously generate control commands
such that the resulting robot behavior satisfies the user re-
quirements in interactive manipulation settings. One solution
we are experimenting with is to base the motion planning and
control architecture on a library of offline-trained/optimized
controllers (policies) which can be grouped together to form
skills which the user can parametrize and sequence online.

2.1 Skills

Similar in spirit to Brooks classical subsumption architec-
ture [Brooks, 1986], we envision complex robot behavior to
emerge in real time from the interplay of several concurrently
running elemental controllers (policies). These controllers
can potentially act in different operational spaces such as 6D
task space, joint space, 3D Cartesian space or along a ray.
Also, they can use different state descriptions (e. g., joint
positions/velocities, interaction forces/moments, raw image
data . . . ). To resolve redundancy and possible conflicts be-
tween controllers they can be ordered according to a user-
defined hierarchy. Here the intent is that lower-ranked con-
trollers (e. g., responsible for motion generation) are only
executed “as good as possible” such that higher-ranked ones
(e. g., for obstacle avoidance) are not affected. Figure 2 out-
lines an example of a skill composed of a set of hierarchically
ordered controllers. Embedded optimization [Escande et al.,
2014] provides a possibility to invert each controllers com-
mands from their respective operational spaces to joint space
(in which the robot is controlled) in real time. Here, enforcing
a hierarchy is accomplished by executing lower-ranked con-
trollers as good as possible (in the least-square sense) in the
null-space of higher ranked ones.

To accomplish complex tasks, skills need to be sequenced
appropriately. To do so in a reactive manner we suggest to
encapsulate skills together with appropriate success/failure
conditions in Behavior Trees (BT) [Colledanchise and Ögren,
2017]. BTs are a directed tree where, at a given period, en-
abling signals (ticks) are sent from the root node down the
tree. The main organizational units in a BT are Sequence
nodes (denoted by →) and Fallback nodes (denoted by ?).
These are memoryless and test, each time they are executed,
an ordered list of associated actions that can respond with one
of the following statuses: running, success or failure. A Fall-
back node returns success if the first of its children succeeds
or failure if all children fail (and running otherwise). In con-
trast, a Sequence node returns failure if the first child fails
and returns success only if all children succeed. Apart from
actions, Conditions are also possible. They can only return
success or failure (not running). In our context, action nodes
are formed by skills. An example for a pick-and-place behav-
ior formed by skills and corresponding switching conditions
is shown in Fig. 3.

2.2 Reactive Motion Generation Architecture

As shown in Fig. 4, the overall architecture rests on three legs:
perception, skills and behaviors.
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2.3 Behaviors
We provide a pre-defined library of skills among which the
user has free choice to accomplish the task at hand. The
controllers forming these skills are optimized/learned be-
forehand. One benefit is that existing controllers (e. g.,
for avoidance) can be leveraged also for learning new ones
and that controllers can be implemented in arbitrary opera-
tional spaces as the inversion of the corresponding kinemat-
ics/dynamics is centralized.

The idea is to use Human-Robot-Interaction (HRI) inputs
in all three legs to guide the resulting behavior of the robot.
To this end speech, gaze and gestures need to be mapped to
numeric quantities suitable to i) parametrize the controllers
underlying each skill and ii) to assemble a sequence of skills
into a behavior tree. A detailed discussion on HRI in the con-
text of collaborative robotics is given in Section 4.

3 Perception for Grasping and in-hand
Manipulation

Replicating the effectiveness and flexibility of human hands
in object manipulation tasks is an important open challenge.
This requires a fundamental rethinking of how to exploit the
multi-sensory data and the available mechanical dexterity of
robot systems. In comparison to humans or primates, the dex-
terity of today’s robotic grippers and hands is extremely lim-
ited [Feix et al., 2013]. In [Bohg et al., 2017], perception
for manipulation approaches are divided into four categories.
These are sensorless manipulation, image perception, active
perception and interactive perception. Erdmann et. al. [Erd-
mann and Mason, 1988] investigated sensorless manipulation
by means of generating motion strategies without any sensory
feedback for simple manipulation tasks such as tray-tilting.
Although, sensorless manipulation can work in simple sce-
narios, it is often insufficient for achieving complex tasks.

In visual perception approaches, static images are used to
create sensory feedback for manipulation tasks. Cai et al.
[Cai et al., 2016] use images to understand the relation be-
tween the grasp types and object types. They analyze scenes
in which a human performs grasps and a visual hand-tracking
system detects and tracks the human hand. The grasped ob-
ject and the attributes are inferred from the relative hand posi-
tion and scale. The limitation of these approaches is that the
actual object properties cannot be explicitly estimated since
there is no direct interaction during perception.

In active perception approaches, the sensory feedback sys-
tem is manipulated to mimic human attention and gaze. The
common modality in this setting is an RGB camera. As an
example, Nalpantidis et al. [Nalpantidis et al., 2012] use
robot motion to move the camera around the scene and seg-
ment objects reliably in cluttered environments. Compared
to static camera settings, active perception approaches allow
better modeling of an object with data from multiple views.
However, the object properties cannot be inferred due to lack
of physical interaction.

Interactive perception approaches are developed to com-
bine physical interaction and traditional perception methods.
The combination of these two allows a wider range of appli-
cations such as learning to manipulate unknown objects or

object property learning. The main perception modality in
these work is vision. For example, the authors in [Van Hoof et
al., 2014] use physical interaction and image features to seg-
ment objects in cluttered scenes. However, there are problems
with these approaches. First, the outcome of the physical in-
teraction adds more uncertainty to the task since it cannot be
fully estimated. Second, the arm motion can obscure the view
of the other sensors which can complicate sensor placement.

Our work has focused on the use of visual and haptic feed-
back for better understanding of object shapes, scene prop-
erties and in-hand manipulation. For example, object shape
information is an important parameter when it comes to phys-
ical interaction with an object such as grasping and in-hand
manipulation. Available object models may be erroneous es-
pecially when it comes to non-rigid objects where an object’s
shape may change due to frequent interaction with the ob-
ject. In [Björkman et al., 2013], we presented a probabilistic
approach for learning object models based on visual and tac-
tile perception through physical interaction with an object.
The robot was enabled to touch objects incrementally by fo-
cusing on parts that were uncertain in terms of shape. The
robot started by using only visual features to form an initial
hypothesis about the object shape and then gradually added
tactile measurements to refine the object model. This work
was then continued in [Li et al., 2014] where we focused on
learning of grasp adaptation through experience and tactile
sensing. We developed a grasp adaptation strategy to deal
with uncertainties originating from physical properties of ob-
jects, such as the object weight and the friction at the con-
tact points. Based on an object-level impedance controller, a
grasp stability estimator was first learned in the object frame.
Once a grasp was s predicted to be unstable, a grasp adap-
tation strategy was triggered according to the similarity be-
tween the new grasp and the training examples. Our recent
work in [Li et al., 2016] continued in a similar direction and
addressed dexterous grasping under shape uncertainty. The
uncertainty in object shape was parametrized and incorpo-
rated as a constraint into grasp planning. The proposed ap-
proach was used to plan feasible hand configurations for real-
izing planned contacts using different robotic hands. A com-
pliant finger closing scheme was devised by exploiting both
the object shape uncertainty and tactile sensing at fingertips.

In summary, effective and fully autonomous robot systems
need the ability to interact with the physical world. Neces-
sary behaviours range from scene understanding to in-hand
object manipulation. Most of these have so far been studied
in isolation and there is still a rather long way before robots
can adapt their performance flexibly to dynamically changed
scene, taking also into account the limitations of their own
embodiment.

4 Human-Robot Interaction and
Collaboration

There is an increasing interest in the area of collaborative
robotics to make it possible for humans to teach robots dif-
ferent types of skills [Vollmer and Schillingmann, 2017]. In
order for robots to learn from human demonstration, they first
need to be able to learn to recognize meaningful goal-directed
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Figure 3: Behavior example: A pick-and-place behavior is accomplished by a reactive sequence of corresponding skills considering their
respective success/failure conditions. The children of the corresponding Behavior Tree’s leaves are tested from left to right.
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Figure 4: Architecture layout: The role of perception is to provide set points (e. g., target alignment directions, or target points to reach) for
the controllers composing the individual skills. The parametrized skills can then be composed to form complex motion plans.

Figure 5: Perception pipeline: The overall perception system used in the interactive pick & place use-case.
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(a) Monitor (b) Projector (c) Mixed Reality

Figure 6: Human-Robot Interaction modalities: (a) In Monitor mode, labels for identified objects are shown on a computer screen in front of
the operator. (b) A projector is used to project labels onto the tabletop surface. (c) A Microsoft Hololens is utilized to directly visualize labels
in the operators’ field of view.

actions. The most efficient way to do this is to equip the robot
with the ability to understand human’s physical actions and
their verbal and non-verbal communication [Liu and Zhang,
2017]. It then needs to learn task-driven changes of objects
that the recognized human actions lead to. This will help
to build a task plan that it can use to understand how dif-
ferent actions can be used to achieve the same goal [Pandey
and Alami, 2014]. Finally, it has to be able to learn how to
map the human actions onto its own body topology to achieve
the same goal-directed actions. There are examples of sys-
tems that simultaneously learn both task-level goals and mo-
tor level actions from human teachers [Akgun and Thomaz,
2016]. In a dynamic environment imitation is not enough,
but the robot needs to emulate what is observed to understand
how to modify its actions in future slightly different situations
[Vollmer et al., 2014]. However, it will always be infeasible
to learn just from a couple of sparse human demonstrations
and it will require models of the dynamics provided by a com-
bination of a-priori knowledge, exploration learning of the
robot and large amounts of pre-collected data. This means
that it is currently not realistic to build a fully autonomous
robot that learns from human examples.

Nevertheless, by providing robots with the capability to
understand human actions and communicative skills, we can
already today build robots that collaborate with humans in
assembly tasks. These collaborative robots could either as-
sist humans that assemble, or make it possible for assembly
robots to ask humans for assistance. In a scenario where
the robot assists a human in assembly, it needs to know
when to provide assistance. Either it simply responds to
user requests for help or it automatically detects when it
should assist [Baraglia et al., 2016]. Humans can assist semi-
autonomous assembly robots with low-level tasks such as ob-
ject detection and situation-dependent adaptation of the ex-
ecution of actions, or high-level tasks such as action accep-
tance and change of task sequence [Kyrarini et al., 2018].

Our recent work has focused on studying how deep rep-
resentation learning should be used for human motion pre-
diction and classification [Bütepage et al., 2017]. Generative
models of 3D human motion are often restricted to a small
number of activities and can therefore not generalize well to
novel movements. We developed a deep learning framework
for human motion capture data that learns a generic represen-

tation from a large corpus of motion capture data and gen-
eralizes well to new, unseen, motions. Using an encoding-
decoding network that learns to predict future 3D poses from
the most recent past, we extracted a feature representation of
human motion. Most work on deep learning for sequence
prediction focuses on video and speech. Since skeletal data
has a different structure, we presented and evaluated different
network architectures that made different assumptions about
time dependencies and limb correlations. To quantify the
learned features, we used the output of different layers for
action classification and visualize the receptive fields of the
network units. Our method outperformed the recent state of
the art in skeletal motion prediction even though these use
action specific training data.

Human-robot collaboration in assembly tasks requires that
both parties can refer to objects in the shared space. Humans
can use a combination of verbal descriptions, pointing ges-
tures and gaze to single out one of many objects [Kennington
and Schlangen, 2017]. A human that is assembling might not
be able to use pointing gestures to request the next part from a
third-hand helping robot. However, since verbal descriptions
can be hard to disambiguate, the robot needs ways to achieve
common ground of which object the user intended [Paul et al.,
2017]. Ambiguous referring expressions can be resolved by
verbal grounding [Chai et al., 2014], with pointing [Admoni
et al., 2016] or using gaze [Mehlmann et al., 2014]. Robots
can of course also use non-human ways to indicate their fo-
cus of attention, such as projecting their intentions into the
shared environment [Chadalavada et al., 2015] or by using
augmented or mixed reality [Pereira et al., 2017]. In the in-
teractive pick & place scenario described in the next section
we compare the effect of using different visualisation strate-
gies to ground verbal descriptions of LEGO pieces.

5 Interactive Pick & Place: a Use-Case
We illustrate our approach to interactive and collaborative
robotics by means of a pick & place scenario where a human
operator and a robot interact with each other in a joint LEGO
picking task (see Fig. 1). Here, the aim is to collect LEGO
pieces from the table. The task starts with the human describ-
ing the required LEGO piece verbally. As the verbal descrip-
tions are parsed, the robot queries the perceived LEGO pieces
and labels the ones that match with the descriptions stored
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in an available database. Once the required LEGO piece is
identified by the robot, a pick & place behavior is executed.
In order for the robot to take part in this scenario, multiple
modules have to work in an integrated fashion.

The perception pipeline used in the presented use-case is
illustrated in Fig. 5. The module uses the Kinect RGB-D sen-
sor data to both segment the workspace (i. e., the table top)
and the objects in the workspace. The robot’s workspace is
segmented using depth information while the objects in the
workspace are segmented using color segmentation. Sub-
sequently, the perception manager receives the segmented
workspace and segmented color blobs to filter out noisy seg-
ments and to compute 2D metric poses of the perceived ob-
jects with respect to the robots’ frame of reference.

The human-robot grounding is achieved through differ-
ent ways of visualizing the robot’s understanding of the hu-
man’s verbal descriptions of LEGO pieces, see Fig. 6. In the
monitor modality, the robot provides feedback to the human
through a monitor display. As the verbal requests of the hu-
man are parsed, the queried objects are labeled on the monitor
display so that the person can continue the interaction by ex-
amining the monitor output. In the projector modality the
queried objects are directly labeled on the workspace itself.
Thus, the person can continue its interaction with the robot
without changing his/her gaze and attention. In the mixed
reality modality, the human interacts with the robot through
a head-mounted display in which different layers of virtual
feedback can be embedded in the person’s view. Thus, as the
verbal requests of the person are parsed, the interaction be-
tween robot and human is carried out by embedding virtual
labels in the headset view.

In a user study, 29 subjects performed a task where a hu-
man operator and a robot took turns in asking the other to
pick up one of the LEGO pieces on the table. They did three
trials where they pick and placed 15 objects with the different
grounding modalities. After each trial, they answered subjec-
tive questions from The Presence Inventory [Lombard et al.,
2009] and the Presence Questionnaire [Witmer and Singer,
1998]. In the subjective measures we found that the Mixed
Reality system was most engaging, but least observable (due
to the limited screen size in the head-mounted display used).
Using projection onto the table was considered best overall,
providing the observability with the least display interference
with the task. We did not find any significant differences in
completion times in the different modalities, and they led to
very similar error rates. The conclusion is that all three could
be used, and that the choice depends on the users, the task
and the physical environment. In future studies we will in-
vestigate the benefits of indicating a robot’s visual attention
using pointing gestures or gaze generated by a back-project
robotic head [Al Moubayed et al., 2012]. When user requests
are parsed and the particular object that will be grasped is
identified, a pick & place behavior is triggered as described
in Section 2.3. Note that, in our current implementation, we
use a common state machine in place of a reactive behavior
tree to transition between the individual skills forming the be-
havior. Skills are built from concurrently running controllers
utilizing simple predefined PD-control laws. It is assumed
that the workspace does not change during the robot’s motion

execution. Therefore, while the robot is executing the action,
no feedback from the perception system is received due to
Kinect’s occluded field of view.

In the future, we envision to extend the HRI interaction
modalities to enable verbal parametrization of movement
controller setpoints such as “move here” or “a little more”.
These commands need to be mapped to numeric quantities
suitable to be fed to the corresponding controllers. Similarly,
commands such as “take the red part from here and put it
over there” need to be parsed and associated with the individ-
ual skills necessary to accomplish the task. Also, recent work
on reinforcement learning of manipulation policies [Levine
et al., 2016] has shown promise to acquire rich manipulation
skills which will augment and/or replace our simple prede-
fined control laws.

6 Discussion
Collaborative robotics has shown great promise to bring po-
tentially complex tasks in frequently changing settings closer
to automation. In that respect, especially tasks involving con-
tact between the robot and the environment such as assem-
bly have remained challenging. This is due to the fact that
contact states are hard to detect and due to the difficulty in
modeling the effects of the robots’ actions. Reinforcement
learning of local control policies has proven to be a promis-
ing method to obtain control policies for interaction tasks.
Of particular importance here is the sample efficiency as ex-
plorative actions are costly and potentially hazardous. An
open issue remains the generalization of learned policies to
novel settings. We see the potential of addressing this us-
ing a-priori (partial) knowledge of the robots’ model perform
learning in task-invariant operational spaces. Recent policy
learning approaches also achieved a tight coupling with per-
ception [Levine et al., 2016].

From the perception point of view, effective and flexible
use of multisensory data in real-time will be necessary. Al-
though sensor fusion has been demonstrated in other areas
(mapping and localization), physical interaction suffers from
the challenges outlined in the previous paragraph and many
of the existing methodologies for sensor fusion do not meet
all the challenges that physical contact, including both rigid
and deformable objects, brings.

Learning and collaboration are tasks that come natural to
us humans. Since the second half of the 1980’s, the concept
of embodied intelligence has revolutionized artificial intelli-
gence. Instead of logical architectures and knowledge rep-
resentation, the embodied view argues that intelligent behav-
ior emerges naturally from the interplay between motor and
sensory channels. Mirror neurons and social engagement to-
gether with physical constraints imposed by the environment
enable and challenge the human way of learning and interact-
ing with the environment and collaborating with each other.
Although there are difficulties in conveying and generating
new knowledge, the process is simplified given that we share
quite similar body shape and that imitation can be used to
achieve a goal. The policy or the way of achieving the goal
can then be refined through training and experimentation. So,
how can we achieve the same way of interaction between a
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human and a machine when the differences in perception and
acting are, and probably will, remain different? Maybe, in
the future, we will be able to build mechanical structures that
are superior to humans in perception and action, and devel-
oping collaborative setups will bring a completely new set of
challenges to resolve.
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