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Abstract
Brand advertising is a type of advertising that aims
at increasing the awareness of companies or prod-
ucts. This type of advertising is well studied in
economic, marketing, and psychological literature;
however, there are no studies in the area of com-
putational advertising because the effect of such
advertising is difficult to observe.
In this study, we consider a real-time biding strat-
egy for brand advertising. Here, our objective to
maximizes the total number of users who remem-
ber the advertisement, averaged over the time. For
this objective, we first introduce a new objective
function that captures the cognitive psychological
properties of memory retention, and can be opti-
mized efficiently in the online setting (i.e., it is a
monotone submodular function). Then, we propose
an algorithm for the bid optimization problem with
the proposed objective function under the second
price mechanism by reducing the problem to the
online knapsack constrained monotone submodular
maximization problem. We evaluated the proposed
objective function and the algorithm in a real-world
data collected from our system and a questionnaire
survey.
We observed that our objective function is reason-
able in real-world setting, and the proposed algo-
rithm outperformed the baseline online algorithms.

1 Introduction
Background and Motivation Real-time bidding is the most
successful framework for online advertising [Zeff and Aron-
son, 1999]. In this framework, each impression (a user’s view
of a website) is instantly sold in an auction, and each advertiser
bids for the impression to display his advertisement to the user.
An important advantage of this framework is the personaliza-
tion: it can optimize advertisements for each user by selecting
impressions. This reduces ineffective advertisements with
their wasteful cost, and increases the effect of advertisements;
thereby it increases the advertising revenue.

The fundamental optimization problem in real-time bidding
is the bid optimization problem. The task of the bid optimiza-

tion problem is to find the optimal bid price for each impres-
sion to maximize the advertising effect under limited budget.
Since we do not know the winnable price and the advertising
effect in advance to the bidding, the problem is an optimiza-
tion problem with uncertainty. This problem has been studied
in various setting, e.g., [Zhou et al., 2008; Mehta et al., 2007;
Chakrabarti and Kale, 2015; Buchbinder and Naor, 2009].

In this study, we consider a bid optimization problem for
brand advertising [Hansen and Christensen, 2003]. Brand ad-
vertising aims at increasing the awareness of the companies or
products, as opposed to the direct response advertising, which
aims at selling specific products. As indicated by marketing
studies, consumers’ purchasing behaviors are influenced by
their brand knowledge and familiarity [Chen and He, 2003;
Park and Stoel, 2005]. Therefore, brand advertising is consid-
ered a useful tool to increase future revenues.

Brand advertising is studied in the area of economics
[De Mooij and Hofstede, 2010], marketing [Randall, 2000;
Zielske, 1959], and psychology [Aaker and Biel, 2013]. How-
ever, to the best of our knowledge, there are no existing studies
in the area of online (computational) advertising. This may be
because evaluating the effect of brand advertising is difficult
since it requires conducting questionnaire surveys, or analyz-
ing search engine queries and access logs; however, these
cannot be obtained immediately and are difficult to quantify;
therefore, they cannot be used in real-time bidding systems.
On the other hand, brand advertising appears highly compat-
ible with online advertising because it can be personalized
for each user. For example, if a user is already exposed to
an advertisement with a high frequency, it may be better to
limit the user’s level of exposure since the user may already
recall the advertisement, and to show the advertisement to
other users. Also, if a user is exposed to an advertisement with
a low frequency, it may be good to show more advertisement
to the user to make a strong retention about the advertisement.

To achieve large advertising effects, we have to balance the
above two factors (i.e., broad users vs strong retentions). How-
ever, it is very difficult to find the optimal balance by hand.
Therefore, we have to formulate user’s memory retention by
a mathematical model, and propose an online algorithm al-
gorithm for brand advertising that automatically balance the
factors.
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Contributions In this study, we make the following theoret-
ical contributions:

• We propose a new objective function to represent the
brand advertising effect. This function represents the
users’ forgetting curve (memory retention over time),
which is consistent with the existing studies in psychol-
ogy [Ebbinghaus, 1913]. Moreover, our function is a
monotone submodular function1, which admits efficient
optimization algorithms in various situations (Section 2).

• We propose an algorithm for the bid optimization prob-
lem under the second price mechanism2,which is com-
monly used in real-world systems. We first suppose that
the winnable price of each impression is known. In this
case, the problem is formulated as an online knapsack
constrained submodular maximization problem, and we
derive an algorithm for this case with a competitive ratio3

of (2− L/U +O(ε)) log(Ue/L), where e is the base of
the natural logarithm, ε is the capacity ratio, and U and
L are the lower and upper bounds of marginal efficiency,
respectively. Then, we convert the algorithm for the case
that the winnable price of each impression is unknown
by using the technique introduced in [Zhou et al., 2008]
(Section 3).

We also made the following experimental contributions:

• We conducted a questionnaire survey for the awareness
of an advertisement. The result shows the submodularity
of the forgetting curve in a real-world dataset; hence it
supports the validity of the proposed objective function.

• We conducted a numerical experiment to evaluate the
proposed algorithm on a real-world dataset collected
from our real-time bidding system. We observed that
the proposed algorithm has an issue in practical use that
it exhausted the budget too early (Section 4).

2 Problem Formulation
2.1 General Framework
We consider an advertiser’s optimization problem. Let V =
{1, . . . , n} be a sequence of impressions that arrives in a one-
by-one manner in an online context. Each impression j ∈ V
has arriving time tj , target user uj , and some features, e.g., ip
address, browser, webpage, etc. When impression j arrives,
the advertiser must determine the bid price c̃j ∈ R for this
impression in real-time under the condition that the total spent
budget is at most his budget B ∈ R. We assume the second
price mechanism. Then, an advertiser wins the auction if his

1A set function f : 2V → R is said to be monotone if for
any X ⊆ Y , f(X) ≤ f(Y ). f is said to be submodular if for
any j ∈ V and X ⊆ Y ⊆ V \ {j}, f(j|X) ≥ f(j|Y ) where
f(j|X) = f(X∪{j})−f(X) is termed as the marginal contribution
of j at X .

2The second price mechanism is an auction mechanism such that
the highest bidder wins the auction and pays the second-highest bid
price.

3Algorithm ALG has competitive ratio of α if for any input
sequence σ, OPT(σ) ≤ αALG(σ) where OPT is an optimal offline
algorithm.

bid price is greater than the highest bid cj ∈ R made by the
other advertisers, and his payment is cj . If he loses the auction,
he does not spend any money.

Let f : 2V → R be a function such that f(X) represents
the advertising effect when the advertiser presents the ad-
vertisements for impressions X ⊆ V . We only consider a
non-stochastic advertising effect, e.g., an expected value of
something. Then, the problem is mathematically formulated
as follows:

maximize f(X)
subject to c(X) ≤ B,

X = {j ∈ V : c̃j ≥ cj}, c̃j ∈ R+

(2.1)

where c(X) =
∑
j∈X cj .

2.2 Objective Function
The primary consideration in the problem (2.1) is what ob-
jective function f should be used. For brand advertising, f
should correspond to the expected number of individuals who
recall the advertisement, integrated over time. By ignoring the
interaction between users, we obtain the following formula:

f(X) =

∫ ∞
−∞

g(X; t)dt =

∫ ∞
−∞

∑
u:users

gu(Xu; t)dt (2.2)

where Xu denotes the subset of X associated with user u,
and gu(Xu; t) denotes the probability that user u recalls the
advertisement at time t when the advertisements are displayed
for impressions j ∈ Xu.4

In cognitive psychology, the function of memory retention
is referred to as the forgetting curve. [Ebbinghaus, 1913]
observed in his seminal work that a forgetting curve has the
following properties:

1. A forgetting curve decreases rapidly (rapid decreasing
property).

2. The decline of a forgetting curve slows down due to
repetition (repetition effect).

Now these are well-established facts in cognitive psychol-
ogy [Baddeley, 1999]. However, a theoretical model that is
unanimously agreed upon by several researchers does not ex-
ist [Averell and Heathcote, 2011]. Moreover, existing models
in cognitive psychology [Greene, 1989; Rawson and Dunlosky,
2013] are not suited for use in mathematical and algorithmic
analysis. Therefore, we introduce a new mathematical model
of the forgetting curve, which captures the above two proper-
ties and admits an efficient algorithm.

Let pj : R→ [0, 1] be an arbitrary rapidly decreasing func-
tion5, which denotes the forgetting curve of a user when he is
exposed to just one advertisement by impression j. Typically,
the following Wickelgren’s power law [Wickelgren, 1974;
Wixted and Carpenter, 2007] can be employed:

pj(t) =

{
0 t < tj ,

λj(1 + βj(t− tj))−γj , t ≥ tj ,
(2.3)

4We can add any kernel function k(t) to the integral as f(X) =∫∞
−∞ g(X; t)k(t)dt to give a weighting to the time.

5We say that a function p : R → [0, 1] is rapidly decreasing if∫∞
−∞ p(t)dt <∞

Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)

425



0 0.5 1 1.5
0.4

0.6

0.8

1

t

g
(X

;t
)

Figure 1: Forgetting curve of our model. It captures the repetition
effect.

where tj is the arrival time of impression j and λj , βj , and γj
are the parameters. The parameters would be determined by
the features of the impression j. Then, the forgetting curve
for user u when he is exposed to multiple advertisements for
impressions Xu is defined as follows:

gu(Xu; t) = 1−
∏
j∈Xu

(1− pj(t)). (2.4)

As shown below, this function captures the repetition effect of
the forgetting curve.

The definition of function (2.4) is motivated by study-phase
retrieval theory [Greene, 1989]. This assumes that the pre-
vious presentations (study-phase) are retrieved later, and this
causes the repetition effect of the forgetting curve. Here, (2.4)
shows that the probability of recalling the advertisement at
time t is the probability of recalling at least one presentation
that is shown for impression j ∈ X , which constitutes the
same idea as the study-phase retrieval theory.

2.3 Properties of the Objective Function
Psychological Justification First, a simple numerical exper-
iment is performed to see that the function is consistent with
the standard findings in cognitive psychology.

Suppose that a user u is exposed to three impressions
Xu = {1, 2, 3} at time t1 = 0, t2 = 1/2, and t3 = 1. We
set the parameters of power law (2.3) as λj = 1, βj = 1,
and γj = 2 for all impressions. Then the corresponding for-
getting curve gu(Xu; t) is obtained as Figure 1, which looks
similar to the forgetting curve that we can see in psycho-
logical literatures [Ebbinghaus, 1913]. This shows that the
proposed function captures the two properties of forgetting
curves. Specifically, the function successfully captures the
repetition effect, i.e., the decline on the second learning is
slower than that on the first learning, and consequently decline
on the third learning is slower than that on the second learning.

Algorithmic Property From an algorithmic viewpoint, the
most important property of our objective function f is mono-
tone and submodular. Therefore, the problem expressed in
(2.1) is a kind of online knapsack constrained monotone sub-
modular maximization problem. This allows the construction

of an efficient approximation algorithm, which will be pre-
sented in Section 3.

Proposition 1. The objective function f : 2V → R that is
defined by (2.2) and (2.4) with any integrable functions pj is
monotone submodular.

Proof. We use the fact that the sum of monotone submodular
functions is also monotone submodular.

First, we fix time t. Then, gu(X; t) = E[min{|X ∩R|, 1}]
whereR ⊆ V is a random set in which each element j appears
with probability pj(t) and the expectation is with respect to
R. Since min{|X ∩R|, 1} is monotone submodular in X for
any R, its expectation, gu, is also monotone submodular in
X6. Since f is obtained by taking the integral of gu over t, it
is also monotone submodular.

Function Evaluation Evaluating the marginal contribution
of f is often required to implement an algorithm for the sub-
modular maximization problem. For the proposed objective
function (2.2), we have

f(j|X) =

∫ ∞
−∞

gu(j|Xu; t)dt

=

∫ ∞
−∞

pj(t)
∏
i∈Xu

(1− pi(t))dt (2.5)

where u is the user for impression j.
Even for Wickelgren’s power law (2.3), the above inte-

gral (2.5) cannot be evaluated analytically because it involves
the hypergeometric function 2F1. Therefore, numerical inte-
gration [Davis and Rabinowitz, 2007] must be employed. If
pj(t) is smooth except t = tj , the function f(j|X) has finitely
many discontinuities at t = ti for i ∈ Xu and is smooth and
rapidly decreasing in each interval. Thus, a standard numeri-
cal integrator (e.g., Gauss–Lobatto integrator) works well by
splitting the integral into the intervals.

The complexity for evaluating the marginal contribution
is O(|Xu|). In a real-world problem, this is not very large
because it is inefficient to display the advertisement to the
same person very often.

3 Algorithm
In this section, we propose an algorithm for the bid optimiza-
tion problem. We derive our algorithm in the following two
steps. First, we suppose that the winnable price cj is known
before making the bid, and derive an algorithm for this case
(Section 3.1). Then, we convert the algorithm to the case that
the winnable price cj is unknown (Section 3.2).

3.1 Online Knapsack Constrained Monotone
Submodular Maximization Problem

Suppose that the winnable price cj (the highest bid made by
the other advertisers) is known before making a bid. Then,

6In fact, the submodularity of gu(X; t) is immediately obtained
from the observation that it has the same form of the function used in
the budget allocation problem [Alon et al., 2012], which is known to
be submodular.
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Algorithm 1 Algorithm for online knapsack constrained
monotone submodular maximization problem.

1: X = ∅
2: for j = 1, 2, . . . do
3: if f(j|X) ≥ cjΨ(c(X)/B) then
4: Take j-th impression by paying cj , i.e., X ←
X ∪ {j}

5: end if
6: end for
7: return X

since we can win the auction by bidding marginally greater
than cj , we can fix our bidding price to 0 (ignore the impres-
sion) or cj (take the impression), and hence the problem is
reduced to an online knapsack constrained monotone submod-
ular maximization problem:

maximize f(X)
subject to c(X) ≤ B,

X ⊆ V.
(3.1)

where the impressions j ∈ V arrive in a one-by-one manner.
Because the problem involves the standard online knapsack
problem, some assumptions are necessary to arrive at a prov-
able competitive ratio [Marchetti-Spaccamela and Vercellis,
1995]. Here, we assume the following conditions:

1. The price of each impression is very small compared
to the knapsack capacity, i.e., cj/B ≤ ε for all j ∈ V .

2. The lower and upper bounds of marginal efficiency
are known, i.e., U and L such that for any j ∈ V and
X ⊆ V \ {j}, L ≤ (f(j|X))/cj ≤ U .

(3.2)

The first condition is usually satisfied in real-time bidding
setting. The second condition is “approximately” satisfied by
learning the bounds from a training set in practice, but it may
cause some difficulty in theory.

The proposed algorithm is shown as Algorithm 1. This is a
“submodular version” of the algorithm for the online knapsack
problem proposed by Zhou et al. [Zhou et al., 2008]. Let

Ψ(z) = (Ue/L)
z/(1−ε)

(L/e) (3.3)

be a threshold function where z denotes the fraction of the
current budget, and e is the base of the natural logarithm.
The algorithm bids impression j if its marginal efficiency
f(j|X)/cj exceeds the current threshold Ψ(z). This algorithm
has the following theoretical guarantee.
Theorem 2. Given assumptions (3.2), Algorithm 1 has a com-
petitive ratio of (1 + κ+O(ε)) log(Ue/L), where κ ∈ [0, 1]
is the curvature of f 7.

Proof. This is obtained by carefully combining submodularity
and curvature into the proof of the linear case [Zhou et al.,
2008]. For self-completeness, we give a full proof. First, we
modify the threshold function by

Ψ(z) = max{L, (L/e)(Ue/L)z−ε}. (3.4)

7A submodular function f : 2V → R has curvature κ ∈ [0, 1] if
for any j ∈ V and X ∈ V \ {j}, f(j|X) ≥ (1− κ)f(j).

This does not affect anything to the algorithm. Let zL be such
that Ψ(zL) = L. This is given by

zL =
1

log(Ue/L)
+ ε. (3.5)

The algorithm bids all the impression when z < zL.
Fix an input sequence V . Let X and X∗ be the obtained

solution and the optimal solution, respectively. Note that
all the impressions in X and X∗ are winnable. Let Xj and
(X∗ ∪ X)j denote the subset of X and X∗ ∪ X that arrive
before j-th iteration, respectively. Let zj ∈ [0, 1] and Z ∈
[0, 1] be the fraction of the budget filled by the algorithm at
j-th iteration and the end of the algorithm.

In general,

f(X∗) = f(X∗ ∪X)− (f(X∗ ∪X)− f(X∗)). (3.6)

Here, each term in the right-hand side is evaluated as follows.
For the first term, by telescoping and submodularity,

f(X∗ ∪X) =
∑

j∈X∗∪X
f(j|(X∗ ∪X)j) ≤

∑
j∈X∗∪X

f(j|Xj)

=
∑
j∈X

f(j|Xj) +
∑

j∈X∗∪X
f(j|Xj) (3.7)

For the second term, by telescoping, curvature, and submodu-
larity,

f(X∗ ∪X)− f(X∗) ≥ (1− κ)
∑

j∈X\X∗

f(j)

≥ (1− κ)
∑

j∈X\X∗

f(j|Xj). (3.8)

Therefore

f(X∗) ≤
∑
j∈X

f(j|Xj) +
∑

j∈X∗\X

f(j|Xj)

− (1− κ)
∑

j∈X\X∗

f(j|Xj). (3.9)

Also, by telescoping,

f(X) =
∑
j∈X

f(j|Xj). (3.10)

Therefore
f(X∗)

f(X)
≤ RHS of (3.9)

RHS of (3.10)
. (3.11)

Since the algorithm bid j ∈ X , the first term in the numerator
(and the denominator) is evaluated as∑

j∈X
f(j|Xj) ≥

∑
j∈X

cjΨ(zj). (3.12)

Also, the third term in the denominator is evaluated as∑
j∈X\X∗

f(j|Xj) ≥
∑

j∈X\X∗

cjΨ(zj). (3.13)

Similarly, since the algorithm did not bid j ∈ X∗ \ X , and
the algorithm never rejects impressions due to the shortage of
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Algorithm 2 Algorithm for bid optimization problem.

1: X = ∅
2: for j = 1, 2, . . . do
3: Bid c̃j = f(j|X)/Ψ(c(X)/B) for j-th impression
4: if we won the auction then
5: X ← X ∪ {j}
6: end if
7: end for
8: return X

the budget since Ψ(z) > U if z > 1 − ε, the second term is
evaluated as∑

j∈X∗\X

f(j|Xj) ≤
∑

j∈X∗\X

cjΨ(zj). (3.14)

Therefore, by monotonicity of fraction, monotonicity of Ψ,
and feasibility of X and X∗,

f(X∗)

f(X)
≤
∑
j∈X∗ cjΨ(zj) + κ

∑
j∈X\X∗ cjΨ(zj)∑

j∈X cjΨ(zj)

≤ (1 + κ)BΨ(Z)∑
j∈X Ψ(zj)cj

=
(1 + κ)Ψ(Z)∑
j∈X Ψ(zj)∆zj

(3.15)

where ∆zj denotes the difference between the consecutive
zj for j ∈ X , i.e., ∆zj = cj/B. The summation in the
denominator is approximated by the integral, and is evaluated
as follows:∑
j∈X

Ψ(zj)∆zj ≥
∫ Z−ε

0

Ψ(z)dz

=

∫ zL

0

Ldz +

∫ Z−ε

zL

(L/e)(Ue/L)z−εdz

= zLL+
Ψ(Z − 2ε)−Ψ(zL)

log(Ue/L)

=
(1−O(ε))Ψ(Z)

log(Ue/L)
. (3.16)

The theorem is obtained from (3.15) and (3.16).

Under assumptions (3.2) the curvature of f satisfies κ ≤
1 − L/U . Therefore, the following corollary is obtained by
removing κ from Theorem 2.
Corollary 3. Given assumptions (3.2), Algorithm 1 has a
competitive ratio of (2− L/U +O(ε)) log(Ue/L).

The competitive ratio in Theorem 2 is optimal if κ =
0 [Zhou et al., 2008]. Note that when κ → 1, we have
L/U → 0; therefore the approximation ratio becomes un-
bounded. The tightness of the competitive ratio for κ ∈ (0, 1)
is open.

3.2 Bid Optimization Problem
Under the second price mechanism, the algorithm proposed
in the previous section can be converted to the algorithm for
the bid optimization problem, i.e., it can be executed with-
out knowing winnable prices. This technique is originally
introduced in [Zhou et al., 2008].

Our bid optimization algorithm (Algorithm 2) maintains
the impressions X that we made successful bids, and for
each arriving impression j, it determines the bid price by
f(j|X)/Ψ(c(X)/B). This value can be computed in real-
time bidding setting since we know the winnable prices ci for
i ∈ X . We prove the following.

Theorem 4. Under the second price mechanism, Algorithm 1
and Algorithm 2 produce the same solution with the same
payment.

Proof. Due to the second price mechanism, the payment for
impressions does not depend on the bid prices. Thus we only
have to show that the impressions obtained by Algorithm 1
and Algorithm 2 are the same.

We prove this by the induction. Consider the step that im-
pression j is arrived. By the induction, so far, Algorithm 1
and Algorithm 2 obtained the same set of impression X . If j
satisfy f(j|X) ≥ cjΨ(c(X)/B), Algorithm 1 takes this im-
pression. Also, Algorithm 2 bids c̃j = f(j|X)/Ψ(c(X)/B),
which is greater than or equal to cj ; thus it wins the auction
and gets this impression. The same is true for the converse
case (f(j|X) < cjΨ(c(X)/B)).

This means that Algorithm 2 perfectly emulates Algorithm 1
without knowing cj ; hence, it has the same theoretical guaran-
tees given in Theorem 2 and Corollary 3.

4 Experiments
Numerical experiments were conducted to evaluate the pro-
posed model and algorithm.

All codes were implemented in Python 3.5. For the numeri-
cal integration, we use the adaptive Gauss–Lobatto integrator,
implemented in scipy.integrate. The program was executed in
a standard laptop computer (2.3GHz CPU, 8.0GB Memory).

The datasets used in the experiments are collected by our
real-time bidding system. We selected a campaign of brand
advertising that has sufficiently many impressions and unique
users. Then, we collected bid log data, which is used to evalu-
ate the performance of the algorithm by a numerical simulation.
We also conducted a questionnaire survey to justify the our
proposed psychological model.

4.1 Model Justification by Questionnaire Survey
A few days after the end of the campaign, a questionnaire
survey was conducted electronically through a web survey
company.8 The survey included questions such as “Do you
remember this advertisement?.” The surveys were returned by
10,000 users, 2,000 of them had watched the advertisement,
and 426 of them remembered the advertisement. The fraction
of the returned survey by the latter users with the answer “YES”
was considered to denote awareness.

Points in Figure 2 shows the relationship between awareness
and the time elapsed since the last time when the users watch

8Each respondent is a member of the web survey company. By
using the cookies, the company can identify the number of times each
respondent was exposed to the advertisement. Note that the members
agree to fill in the questionnaire for the purpose of research; thus
there are no ethical issue.
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the advertisement. This can be interpreted as a forgetting curve
for brand advertising. By manually fitting (2.3) to the points
in Figure 2, we obtain the following formula:

p0(t) = 0.13 + (1 + t)−1.3, (4.1)

which is presented as the curve in Figure 2.
Figure 3 shows the relationship between the number of

times the users see the advertisements and their awareness.
A three-point moving average was performed for smoothing.
This indicates the diminishing return property; therefore mod-
eling by a submodular function would be reasonable.

4.2 Evaluation of Bidding Algorithm
Dataset Description To evaluate the performance of the al-
gorithm in a real-world setting, the bidding log data on two
days (November 12 and 13, 2016) of the campaign are col-
lected from our system. The first day’s data, which comprises
of 1,440,641 impressions with 731,029 unique users, is used
for a training set and the second day’s data, which comprises
of 1,455,002 impressions with 735,560 unique users (includ-
ing the users who appeared in the first day’s data) is used for
an evaluation set. Each impression is marked with its arrival
time, user id, and winnable price.9

The distribution of the number of presented advertisements
related to the users, which follows a power-law distribution
(Figure 4). Specifically, there is a user who had too many
presentations. Therefore the bid optimization is promising for
this data.

Experimental Setting For the purpose of the experiments,
we determined the shape of the forgetting curve. We used the
same forgetting curve function for all users as

pj(t) = p′0(t− tj), (4.2)

where p′0 is a function estimated in (4.1) where the constant
term is ignored since the constant term can be understood as
the fraction of people who already know the advertisement.

This setting means that we ignored the difference of users,
which is reasonable because we do not have sufficiently many
dataset to learn the difference of the users. In addition, it
is also reasonable in psychological viewpoint because there
are no significant difference in the memory retention ability
among the individuals [Ebbinghaus, 1913].

Algorithms We implemented three online algorithms
(Proposed, FixedBid, and Random) and one offline al-
gorithm (Offline).

• Proposed is the proposed algorithm with the parame-
ters estimated in Section 4.1. The lower and upper bounds
L and U were optimized by the training set.

9Since we need the winnable prices of all impressions to evaluate
the performance of the algorithms, we only use the impressions that
are obtained by the successful bids. Our system used the fixed price
bidding strategy; therefore the all winnable prices are at most the
fixed price. This makes dataset biased.

Algorithm Objective Value
Proposed 52188 (45%)
FixedBid 38577 (33%)
Random 40233 (34%)
Offline 116129 (100%)

Table 1: Performance of algorithms.

• FixedBid is the algorithm that always bids a fixed price.
The fixed price is optimized by the training set. Note that
this is a baseline method, which is implemented in our
current system.

• Random is the algorithm that bids randomly for each
impression. Again, the probability is determined for
spending the budget. Note that this is also implemented
in our current system.

• Offline is the offline greedy algorithm for the knap-
sack constrained monotone submodular maximization
problem [Khuller et al., 1999], which has an approxi-
mation ratio of 1− 1/e−O(ε). Because this algorithm
determines the bidding strategy by taking future impres-
sions into account, this will give an upper-bound of the
performance.

Result The performance (obtained advertising effect) of
these algorithms are summarized in Table 1. The proposed
algorithm has 1.4 times larger advertising effect (i.e., f(X))
than the two baseline online algorithms. This is not very large,
but a solid improvement from the baseline algorithms. On
the other hand, the proposed algorithm has a room to improve
the practical performance since the offline greedy algorithm
attains 2 times larger advertising effect.

Figure 5 shows the total amount of memory retentions,
g(X; t), in each time, obtained by the algorithms. Here, the
area under the curve is the objective value. From this figure, we
can point out that the proposed algorithm exhausted the budget
in early stage, compared with other strategies. Therefore, it
overlooked the efficient impression in later stage. The reason
of this phenomena is that the algorithm is designed to have
a guaranteed competitive ratio, i.e., it must have a provable
objective value even if the input is immediately terminated
in early stage. To overcome this issue, we may need some
(possibly stochastic) information about future impressions.

5 Related Work
Bid Optimization Problem The bid optimization problem
is a very actively studied problem in real-time bidding, and
several formulations and algorithms have been proposed [Zhou
et al., 2008; Mehta et al., 2007; Chakrabarti and Kale, 2015;
Buchbinder and Naor, 2009; Cai et al., 2017; Zhang et al.,
2016; 2014]. However, as mentioned in Section 1, there is a
paucity of studies that focus on brand advertising. Mathemati-
cally, the existing studies formulated the advertising effect as
a sum of effects of the impressions; thus they ignored the cor-
relation effect between the impressions. In brand advertising,
this correlation is important due to the repetition effect of the
forgetting curve; thus we need a new formulation.
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Online Knapsack Constrained Monotone Submodular
Maximization We formulated the bid optimization problem
as an online knapsack constrained monotone submodular max-
imization problem and proposed the algorithm. Our algorithm
is based on the algorithm for the online knapsack problem pro-
posed by [Zhou et al., 2008] since it does not assume anything
about the arrival order of items. This is an important property
for us since the impressions have natural ordering according
to the arrival time; hence, we cannot use the algorithms that
have better approximation guarantee under the random arrival
assumption (e.g., [Lueker, 1998] and [Babaioff et al., 2007]).

To best of our knowledge, there is no algorithm that can be
applied to the present formulation of bid optimization problem.
Specifically, it is not possible to apply the algorithms for the
knapsack constraint submodular secretary problem [Bateni et
al., 2010; Kesselheim and Tönnis, 2016] because they assume
the arrival order of items is random. Also, it is not possible
to apply the algorithm for streaming knapsack constrained
submodular maximization problem [Kumar et al., 2015] be-
cause the algorithm keeps more than one solutions, which is
impossible to use in real-time bidding systems.

Forgetting Curves For the function modeling, in cogni-
tive psychology, following the seminal study by Ebbing-
haus [Ebbinghaus, 1913], several models for the forgetting
curve were proposed [Greene, 1989; McClelland et al., 1995;
Murre et al., 2013]. However, most of the models focused
on understanding the “actual mechanism” of human memory.
The present study is the first study that formulates memory
retention as a computationally tractable model.

6 Conclusion

In this study, we proposed a new formulation of the bid op-
timization problem for brand advertising. We introduced a
psychologically reasonable and computationally tractable ob-
jective function. Then we derive a bid optimization algorithm
with a provable competitive ratio. The validity of our objec-
tive function is justified by the questionnaire survey, and the
performance of the algorithm is evaluated by the bid log data
collected from a real time bidding system.

There are several directions for future research. First, from
a psychological viewpoint, it is important to propose a more re-
alistic (and computationally tractable) model for the forgetting
curve. Second, from a theoretical viewpoint, future studies
could develop an algorithm that achieves better competitive
ratio or prove a matching lower bound. Third, from a practical
viewpoint, as shown in Section 4, the proposed algorithm has
the potential to improve performance by using the information
of remaining time. This may require another formulation of the
problem, because the competitive ratio guarantees the worst
case input, which can terminate immediately. Finally, apart
from computational advertising, it is interesting to develop
applications of the proposed objective function and algorithm
in other areas such as a learning system for education.
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