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Abstract
Partial Cooperation is a paradigm and a corre-
sponding model, proposed to represent multi-agent
systems in which agents are willing to cooperate
to achieve a global goal, as long as some minimal
threshold on their personal utility is satisfied. Dis-
tributed local search algorithms were proposed in
order to solve asymmetric distributed constraint op-
timization problems (ADCOPs) in which agents are
partially cooperative.
We contribute by: 1) extending the partial cooper-
ative model to allow it to represent dynamic coop-
eration intentions, affected by changes in agents’
wealth, in accordance with social studies litera-
ture. 2) proposing a novel local search algorithm
in which agents receive indications of others’ pref-
erences on their actions and thus, can perform ac-
tions that are socially beneficial. Our empirical
study reveals the advantage of the proposed algo-
rithm in multiple benchmarks. Specifically, on re-
alistic meeting scheduling problems it overcomes
limitations of standard local search algorithms.

1 Introduction
Multi-agent systems commonly seek to reach an optimal
state. One approach considers fully cooperative agents that
perform actions in order to achieve a common global goal
(cf. [Stranders et al., 2009; Modi et al., 2005; Gershman
et al., 2009]), while another explores agents that are self-
interested, which take rational actions that increase their per-
sonal gains (cf. [Grant et al., 2011]).

A partially cooperative model that handles scenarios,
which do not fall into these two extreme classes was pro-
posed in [Zivan et al., 2012; Grubshtein et al., 2012]. In
such settings, agents act cooperatively – motivated by a de-
sire to increase global (group) utility – as long as a minimum
condition on their personal utility is satisfied. Such scenarios
are common in many real-world settings, e.g., in a working
environment where workers are expected to hold meetings, a
worker may be willing to participate in a meeting at a time
that is inconvenient for her, as long as she is able to hold
meetings she considers urgent. A professor asked to teach an

additional course for the benefit of the department in which
she works may agree in one case, but if she is asked to teach
yet another course, she refuses as she would not have enough
time to conduct her own research. Car navigation applica-
tions are another relevant example, where in order to avoid
generating traffic jams, some vehicles would be directed to
slower routs. However, the driver would not follow the sys-
tem’s instructions if the delay is over some tolerance thresh-
old. The partial cooperation model represents the willingness
of agents to cooperate by defining thresholds of minimum re-
quirements for cooperation, i.e., agents are willing to perform
actions that may result in more utility for the group and less
utility for themselves, as long as some minimum on their per-
sonal utility is preserved. Such willingness has support in
social science theory [Wiepking and Breeze, 2012].

However, previous attempts to design partially cooperative
models assumed people have a fixed reference point accord-
ing to which they determine their cooperation intentions, and
they are so altruistic as to give away any profit they gain, even
if they themselves brought it about. In real life, people’s
intentions for cooperation are affected by changes in their
wealth and by who brought it about [Kahneman and Tversky,
1979; Wiepking and Breeze, 2012]. This dynamic nature of
intentions cannot be expressed by the existing partial cooper-
ation model. Instead, we introduce a model in which agents’
cooperation is based on the amount of utility they gain or lose.
For example, if the professor is allocated a personal assistant
that performs many of her everyday tasks, she might be will-
ing to contribute some additional free time by teaching addi-
tional hours. In the navigating system example, a removal of
a road block, which shortens the driving time may result in
the driver willingness to tolerate a detour.

The adjustment of the partial cooperative model to realis-
tic social behavior of humans allowed us to analyze the re-
sults produced by the two local search algorithms proposed
in [Grubshtein et al., 2012] when solving problems that in-
clude additional types of agents, i.e., agents whose coop-
eration willingness changes in different patterns following
changes in their personal utility. This investigation revealed
a weakness of these distributed local search algorithms: the
agents in these algorithms attempt to find feasible solutions
(solutions that satisfy the minimum personal utility require-
ments of all agents) that maximize their own gains according
to their own knowledge. Hence, the willingness of agents to
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cooperate under some conditions was used only to maintain
the validity of the solutions rather than reach the desired high
social welfare solution. The optimization process was iden-
tical to standard distributed local search algorithms as long
as the minimum requirements were satisfied. Thus, when
agents performed operations that decreased the utility of other
agents, they were oblivious to the damage they incurred as
long as the utility did not drop beneath the minimal threshold.
This limited the ability of agents to perform socially benefi-
cial actions.

Following these insights regarding the existing partial co-
operative distributed local search algorithms, we propose a
novel approach towards partial cooperative local search in
which agents indicate to their neighbors which value assign-
ments are preferred by them. These indications allow agents
to make socially beneficial selections of value assignments.

Our empirical results demonstrate the advantage of the pro-
posed algorithm over previously proposed partially cooper-
ative local search algorithms in solving structured, unstruc-
tured and realistic DCOPs (Distributed Constraint Optimiza-
tion Problem) including agents of novel partial cooperative
types. Specifically, for realistic meeting scheduling problems,
the proposed algorithm produces high quality results on sce-
narios where standard local search algorithms are known (and
empirically found) to be ineffective. Moreover, we show that
the proposed algorithm can be performed with privacy loss
not significantly different than the privacy loss of other (ex-
isting) algorithms.

2 Background
2.1 Distributed Constraint Optimization
Without loss of generality and unless stated otherwise, we
will assume that all problems are minimization problems.

A DCOP is a tuple 〈A,X ,D,R〉. A is a finite set
of agents {A1, A2, ..., An}. X is a finite set of variables
{x1,x2,...,xm}. Each variable is held by a single agent. D
is a set of domains {D1, D2,...,Dm}. Each domain Di con-
tains the finite set of values that can be assigned to variable
xi. An assignment of value d ∈ Di to xi is denoted by an or-
dered pair 〈xi, d〉. R is a set of relations (constraints). Each
constraint C ∈ R defines a non-negative cost for every pos-
sible value combination of a set of variables, and is of the
form C : Di1 × Di2 × . . . × Dik → R+ ∪ {0}. A bi-
nary constraint refers to exactly two variables and is of the
form Cij : Di × Dj → R+ ∪ {0}.1 A binary DCOP is a
DCOP in which all constraints are binary. A partial assign-
ment (PA) is a set of value assignments to variables, in which
each variable appears at most once. vars(PA) is the set of all
variables that appear in PA. A constraint C ∈ R of the form
C : Di1×Di2× . . .×Dik → R+∪{0} is applicable to PA if
xi1 , xi2 , . . . , xik ∈ vars(PA). The cost of a PA is the sum of
all applicable constraints to PA over the assignments in PA.
A complete assignment (or a solution) is a partial assignment
that includes all the DCOP’s variables (vars(PA) = X ). An
optimal solution is a complete assignment with minimal cost.

1We say that a variable is involved in a constraint if it is one of
the variables the constraint refers to.

For simplicity, we make standard assumptions that all
DCOPs are binary DCOPs in which each agent holds exactly
one variable (unless stated otherwise). These assumptions are
commonly made in DCOP studies, e.g., [Modi et al., 2005].

2.2 Asymmetric DCOP
ADCOPs generalize DCOPs by explicitly defining for each
combination of assignments of constrained agents, the cost
for each participant in the constraint [Grinshpoun et al.,
2013].

More formally, an ADCOP is defined by the following tu-
ple 〈A,X ,D,R〉, where A, X and D are defined the same as
in DCOP. Each constraint C ∈ R of an asymmetric DCOP
defines a set of non-negative costs for every possible value
combination of a set of variables, and takes the following
form: C : Di1 ×Di2 × · · ·Dik → Rk

+.
Notice that here Rk

+ is a vector that includes for each agent
Aj , 1 ≤ j ≤ k her cost for each combination of value assign-
ments, so in practice each agent 1 ≤ j ≤ k holds her part
of the constraint Cj , Cj : Di1 × Di2 × · · ·Dik → R+. As
before, an optimal solution is a complete assignment of all
variables with minimal cost.

2.3 Partial Cooperation
In contrast to early studies of ADCOPs, which assumed full
cooperation by the agents [Brito et al., 2009; Grubshtein et
al., 2010], partial cooperation models represent agents that
cooperate only under some conditions. The level of coop-
eration (which is represented by λ) determines the reference
point according to which agents intentions are modeled. In
order to allow the agents to consider solutions with high
global quality, which may reduce their personal utility, the pa-
rameter λ bounds the losses that an agent is willing to under-
take in order to contribute to the global objective, i.e., agents
perform actions only if they do not result in a cost that ex-
ceeds the maximum cost they are willing to endure. Formally,
the following parameters are used by the model:

Definition 1. We note by µi the base-line cost of agent i (i.e.,
the cost for agent i that she assumes she will pay if she acts
selfishly).

Definition 2. The cooperation intention parameter λi ≥ 0
defines the maximal increase in the value of µi that is accept-
able by agent i.

These cooperation bounds can significantly decrease the
number of feasible outcomes for a distributed incomplete al-
gorithm, as can be seen in the next definition.

Definition 3. A feasible outcome for a distributed algorithm
is defined to be any outcome (solution) o in the set of all pos-
sible outcomes O, that satisfies the following condition.

Ofeasible = {o ∈ O | ∀Ai ∈ A, ci(o) ≤ µi + λi}

where ci(o) is the cost for agent Ai in outcome o2.

2The rest of our definitions are multiplicative in λi, and this def-
inition can also be reformatted this way with a simple change, but
we chose to present this as defined by Grubshtein et al. [Grubshtein
et al., 2012].
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Two distributed local search algorithms, based on the Max
Gain Messages (MGM) algorithm [Maheswaran et al., 2004],
were proposed in [Grubshtein et al., 2012]. In the first, un-
satisfied agents (agents whose current costs exceed the limit)
send nogood messages to indicate to their neighbors that an
assignment replacement is required, and good messages that
remove a restriction imposed by a nogood when it does not
apply anymore. Thus, this algorithm is called Goods-MGM.

In the second algorithm, Asymmetric Gain Coordination
(AGC), agents exploit possible improvements until they con-
verge to some local optimum, which cannot be further im-
proved without breaching the cooperation bound of one of
the agents. Before replacing a value assignment, an agent
requests her neighbors’ approval, which is given only if this
value assignment replacement does not cause a breach of the
cooperative bound for the neighbor. Only if all neighbors ap-
prove, the agent replaces her value assignment.

2.4 Privacy Loss
When agents inform others of their preferences – directly or
implicitly (e.g., by changing an assignment) – they are reveal-
ing information that they may be reluctant to share. There-
fore, distributed algorithms are often evaluated not only by
the cost/utility of their solutions, their speed and use of the
communication network, but also by the amount of private in-
formation they make agents divulge. The common approach
towards evaluating privacy loss in algorithms solving dis-
tributed constraint problems is by measuring the entropy with
respect to the knowledge of agents regarding the preferences
of other agents [Greenstadt et al., 2006; Brito et al., 2009;
Grinshpoun et al., 2013]. Implementing this approach in the
scenarios we consider, would mean evaluating privacy loss
regarding preferences of an agent over the possible value as-
signment alternatives of her neighbors. This would be cal-
culated by dividing the number of possible ways to order the
alternatives given the revealed information, by all possible
ways to order these alternatives. Multiplying one minus the
result of this division by a hundred, will give the percentage
of privacy lost.

3 Reference Dependent Partial Cooperation
Economics literature indicates that peoples’ intentions
change with respect to changes in their wealth (i.e.,
“reference-dependence”). Reference-dependent theories in-
dicate that people are more sensitive to changes in wealth
rather than to absolute wealth level [Kahneman and Tversky,
1979; Wiepking and Breeze, 2012]..

In order to allow the partial cooperative model to represent
dynamic reference points, we redefine some parameters of the
model:

Definition 4. Let µi,t be the reference cost of agent Ai at
iteration t of the algorithm (where µi,0 is the baseline cost as
defined above).

Definition 5. Let λi,t be the cooperation intention parameter
for agent Ai at iteration t of the algorithm, which as before
defines the maximal increase in the cost acceptable by agent
Ai, only with respect to µi,t.

Definition 6. A complete assignment S is feasible in iteration
t if it satisfies the following condition:

∀i ∈ A, ci(S) ≤ µi,t · (1 + λi,t)

The outcome of a distributed algorithm that runs for m it-
erations is the complete assignment at the end of the m’th
iteration (Sm), and it is feasible if the definition above holds
for µi,m and λi,m.

Next, we present a number of examples of types of agents
that can be represented by the extended model:3

Type 1 Fixed reference and cooperation parameters, i.e., for
each agent Ai, for each iteration t, µi,t = µi,0 and
λi,t = λi,0. This type of agents is identical to the types
described in [Grubshtein et al., 2012].

Type 2 Fixed λ, i.e., λi,t = λi,0 and a calculation of µ in
each iteration as follows:

µi,t = µi,t−1 +Min{0, ci(St)− ci(St−1)

1 + λi,0
}

This type resembles people or organizations that allo-
cate specific budget for charity [Staples, 2004], or peo-
ple that maintain and manage ’mental budgets’ for phil-
anthropic giving (based on mental accounting mecha-
nisms cf. [LaBarge and Stinson, 2014]).

Type 3 This type is inspired by reciprocal altruism, in which
an individual is willing to cooperate and give up per-
sonal wealth for others, with the expectation that they
will act in a similar manner in the future [Trivers, 1971].
Formally this behavior is represented by a fixed λ, i.e.,
λi,t = λi,0 and a calculation of µ in each iteration as
follows:

µi,t = µi,t−1 +Min{0,Φi,t−1

(
ci(St)− ci(St−1)

1 + λi,0

)
}

where Φi,t = 0 if the change in agent Ai’s cost (i.e.,
c(St)− c(St−1)) was caused by an action performed by
their neighbor; and Φi,t = 1 if the change was brought
about only by agent Ai’s own actions. Thus, only a de-
crease in cost caused by actions of neighbor agents af-
fects the cooperation budget.4

Dominance
Next, we establish domination properties among the cooper-
ation intentions of the agent types listed above. We will show
that the type 1 agents are the most altruistic, type 2 agents the
most selfish, and type 3 agents between them.

Let Bi,t be the cost that agent Ai is willing to incur for the
benefit of other agents at iteration t.

3While both µi,t and λi,t are dynamic in the proposed extended
model, for the example types of agents we fixed λi,t and varied µi,t.
The representation of other types of agents may be more convenient
by varying both or just λi,t.

4Although in the algorithms addressed in this paper, concurrent
assignment replacements by neighboring agents are avoided, our
definition is general so the model can be applied to other algorithms,
which allow such actions.
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Proposition 1. If in some iteration t′, an agent Ai of type 1
and an agent Aj of type 2 or type 3 have similar cooperation
thresholds, i.e. λi,t′ = λj,t′ and µi,t′ = µj,t′ , then, for
any further iteration t′′ > t′, if c(Si,t′′) = c(Sj,t′′), then,
Bj,t′′ ≤ Bi,t′′ .

Proof. B`,t′′ = µ`,t′′(1 + λ`,t′′) − c`(St′′) (for ` ∈ {i, j})
and since c(Si,t′′) = c(Sj,t′′) and by definition λ`,0 = λ`,t
for any t, we only need to examine the change in µ`,t′′ . As
µi,t′ = µi,t′′ , we focus on agent Aj . For both type 2 and type
3 agents’ µj,t is monotonically decreasing in t (because of
min(0, . . .) component of the µj,t definition). Hence, µj,t′′ ≤
µj,t′ , and therefore, Bj,t′′ ≤ Bj,t′ = Bi,t′ = Bi,t′′ .

Proposition 2. Let agent Ai be of type 2 and agent Aj be
of type 3. If they have similar cooperation thresholds, i.e.
λi,t′ = λj,t′ and µi,t′ = µj,t′ and have a similar history –
ci(St) = cj(St) for t′ ≤ t – then, for any further iteration
t′′ > t′, Bi,t′′ ≤ Bj,t′′ .

Proof. As in the previous proof, B`,t′′ = µ`,t′′(1 + λ`,t′′) −
c`(St′′) (for ` ∈ {i, j}) and since c(Si,t′′) = c(Sj,t′′) and by
definition λ`,0 = λ`,t′′ for any t′′, we only need to examine
the change in µ`,t′′ . Agents of type 2 will decrease their µi,t′′

value when ci(St′′) − ci(St′′−1) < 0, while agents of type 3
will decrease their µj,t′′ values by the same amount, but only
in a subset of these cases. Hence, µi,t′′ ≤ µj,t′′ for t′ ≤ t′′,
and therefore, Bi,t′′ ≤ Bj,t′′ .

4 Socially-Motivated Local Search
In the partial cooperative local search algorithms described
above, agents, besides exploiting their local knowledge, co-
operate in order to preserve a level of personal utility that is
acceptable by all agents.

In order to allow agents to exploit the cooperative inten-
tions of their neighboring agents, and so to improve the solu-
tion’s quality (social welfare), we propose a novel approach
towards partial cooperative local search, in which agents take
an extra step in the interaction process before selecting an
assignment. In this new stage each agent shares with their
neighbors some information regarding their preferences over
their assignment selection After exchanging this information,
each agent attempts to find a variable assignment, taking into
consideration their own preferences as well as the indications
received from their neighbors. We combine this approach
with the AGC algorithm (cf. [Grubshtein et al., 2012]) and
propose Socially Motivated (SM) AGC.
Definition 7. Let ωi,j ∈ Ωi be the importance that agent Ai

ascribes to agent Aj’s preferences. s.t. :
0 ≤ ωi,j ≤ 1, and

∑
j∈N(i)∪{Ai} ωi,j = 1

where N(i) is the set of agent Ai’s neighbors.
When ωi,i = 0, agent Ai will be completely altruistic, select-
ing her value assignment in accordance with the preferences
of her neighbors and ignoring her personal interest. In con-
trary, when ωi,i = 1, Ai completely ignores the preferences
of her neighbors and chooses her value assignment taking into
consideration only her own interest.

Algorithm 1 includes the pseudo code of socially-
motivated AGC.

Algorithm 1 SM AGC
input: baseLineAssignmenti, baseLineCosti, λi and Ωi

value← baseLineAssignmenti;
µi,0 ← baseLineCosti;
localV iew ← null; // localV iew is St−1

send(value) to N(i);
while stop condition not met do

PHASE 1:
Collect all value messages and update localV iew
for each Aj ∈ N(i) do
πi,j ← preferences(Aj);
send(πi,j) to Aj ;

PHASE 2:
Collect all π messages;
Πi← πj∈N(i) ∪ preferences(Ai);
alterV ali ← socialImprovingAssignment(Πi,Ωi);
send(alterV ali, socialGaini) to N(i);

PHASE 3:
Collect all 〈alterV alj , socialGainj〉 messages;
aj ← agent in N(i) ∪Ai with maximal socialGain s.t.

ci(vj ← alterV alj |St) ≤ µi,t · (1 + λi,t);
can improve← socialGaini > 0 & aj = Ai

send(Neg!) to N(i) \ aj ;
PHASE 4:

Collect Neg! messages;
if did not receive Neg! & can improve then
value← alterV ali;
send(value) to N(i);

In each round of the algorithm, each agent can send/receive
a message for each of its constraints, and therefore, the overall
number of messages per round is 2|R|. Since every agent can
proceed concurrently with others, the running time of each
round is bound by the agent with the maximal number of con-
straints – maxi∈A |{Cij |j ∈ A;Cij ∈ C}|.

For the selection of the alternative value assignment
(alterV ali) in Phase 2 we propose (and use in our experi-
ments) the following heuristic for this selection: After col-
lecting the indications πj received from her neighbors, the
agent calculates a sampling probability for each value in her
domain, as follows:

pval =

{
0 , Γval < 0

Γval∑
val∈Domaini,Γval>0 Γval

, otherwise

where:
Γval =

∑
j∈N(i)∪{Ai} ωi,j · πj(val)

Afterwards, the agent randomly samples a value from
the underlying distribution.

The main novelty of the proposed algorithm is in the shar-
ing of indications regarding preferences on the selection as-
signment of neighboring agents. Thus, the information that
agents share in this stage of the algorithm (Phase 1) is ex-
pected to have a dramatic effect on the performance of the
algorithm. We propose five versions of the algorithm, which
we compare in our experimental study.

We make a distinction between two categories of indica-
tions that agents share with their neighbors. The first, we
call ’taboo’ assignments, i.e., an agent informs her neighbor
which of the neighbors’ value selections will cause a breach
of the current cooperation threshold. The second, which we
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Version Taboo Vote
SmAGC BI - Binary
SmAGC CI - Cost
SmAGC T + None
SmAGC T BI + Binary
SmAGC T CI + Cost

Table 1: Different Versions of the SmAGC algorithm

call a ’vote’ allows agents to direct their neighbors to a spe-
cific value that they wish the neighbor will select. Such a
vote can be binary or weighted. Table 1 summarizes the dif-
ferences between the various versions of the SM AGC algo-
rithm that will be further discussed.

5 Experimental Evaluation
In order to evaluate the performance of the different versions
of the socially motivated proposed local search algorithm, we
compared their performance on five DCOP benchmarks:
1. Random uniform DCOPs: unstructured binary mini-
mization DCOPs with density p1 = 0.1, 100 agents (n =
100), each holding a single variable with 10 values in its do-
main (d = 10) (for more details see [Grubshtein et al., 2012]).
2. K-regular graphs: similar problems with randomly gen-
erated graphs in which all agents had the same number of
neighbors (5).
3. Scale Free networks: constructed by using the Barabasi-
Albert model [Albert and Barabási, 2002], as used in [Zivan
et al., 2014].
4. Graph-Coloring problems: included 100 agents, each
with 3 colors in the domain and a density parameter p1 =
0.05 as used in [Zivan et al., 2014].
5. Meetings-Scheduling DCOPs: modeling n agents trying
to coordinate m meetings, where a particular agent Ai has
probability pi,k to be invited to meet k (1 ≤ k ≤ m). The
agents (unlike in the other benchmark setting) can hold more
than one variable, each representing a meeting they hope to
attend. The values in each domain represent the possible
time-slots for the meeting to be scheduled and a value repre-
senting the option that the agent does not attend the meeting.
Additional constraints express the unique time slot schedul-
ing requirement, while local constraints express the priorities
for an agent between her own meetings.

Following [Grubshtein et al., 2012], for the first four
benchmarks listed above, the baseline solutions were ob-
tained by running a greedy distributed local search algorithm.
For the meeting scheduling problems, such a procedure pro-
duces a very low quality solution, therefore, we produced the
baseline solutions by ordering all meetings according to the
number of participants from high to low, and assigning each
meeting to a free time-slot according to this order.

The development was performed in Java using the
‘AgentZero’ framework – a dedicated framework for simu-
lating and evaluating Multi-agent algorithms [Lutati et al.,
2014], with Eclipse Juno on a Windows operating sys-
tem. Simulations were run on a single PC with two 2.4
GHz Intel processors, each with 6 cores, and 20 GB of
RAM. The source code for both the various algorithms as

well as the different benchmarks we explored in this pa-
per can be found at: https://github.com/IEMAI/
SMPC/tree/master.

5.1 Results
For each benchmark we compared the algorithms in scenarios
with the three different types of agents presented in Section 3.
In all SM AGC versions agents ascribe equal importance to
their neighbors,5 and any taboo values have zero sampling
probability. Each algorithm ran for 1000 iterations on each
problem. Results were averaged over 50 random instances.
Random uniform DCOPs: Figures 1a and 1b present the ag-
gregated social cost in each iteration of the search, when the
initial cooperation parameter is set to λ = 0.1, and λ = 0.8
respectively. In both settings, for all types of agents, both
Goods-MGM and AGC yielded significantly inferior aggre-
gated (social) cost (p < 0.001) than the various versions
of SM AGC. Goods-MGM failed to find any feasible solu-
tions for smaller values of λ. Versions in which agents share
’taboo’ indications, found significantly better solutions for
λ = 0.1 (p < 0.001), however for λ = 0.8, the significant ad-
vantage of these versions was found mainly for agents of type
1, and type 2 who have shared their costs (p < 0.01). Under
both settings, agents of type 2 were first to converge to solu-
tions with low social cost across all algorithms. In contrary,
agents of type 1, continued to explore the solution space for
significantly better solutions (p < 0.05).6 Surprisingly, for
lower λ values and without the ’taboo’ indications, sharing
the precise costs performed worse than the binary option, i.e.,
the increased information hurt the search for social welfare.
Similar results were obtained for K-regular graphs and for
scale free nets, and are omitted for lack of space.
Graph-Coloring problems: Figure 2 presents the social cost
of solutions produced for the graph coloring problems, using
λ = 0.1. In contrast to the previous setups, Goods-MGM and
AGC achieved results which are competitive with some ver-
sions of SM AGC. While the version of SM AGC in which
agents share only ’taboo’, found solutions with lower costs
for problems with agents of type 2, and solutions of high costs
for problems with agents of type 1. Similar results when us-
ing λ = 0.8 were omitted.
Meetings-Scheduling problems: Both AGC and Goods-
MGM failed to exploit the willingness of agents to cooper-
ate and produced solutions with very low social welfare. On
the other hand, using the SM AGC algorithm agents were
able to improve their baseline attendance rate (∼75%) by ap-
proximately 4%-20%. Agents who shared binary votes were
able to achieve the highest social welfare and attendance rates
(p < 0.001), while sharing only ’taboos’ or both ’taboos’ and
’votes’ with exact costs achieved much lower social welfare
(p < 0.01). Agents of type 3 achieved better results than
agents of type 2 for all variants of SM AGC (p < 0.001), and
better than agents of type 1 when agents share only ’taboos’
or both ’taboos’ and ’votes’ with exact costs (p < 0.01).

5We left the investigation of the algorithm’s behavior in scenarios
with various importance levels for future work.

6Similar results were obtained for denser problems with p1 =
0.7 and were omitted for lack of space
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Figure 1: Social cost for uniform random problems.
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Figure 2: Social cost for Graph Coloring problems (λ = 0.1).

5.2 Analysis
Our results indicate in general, that the binary variants of the
algorithm perform worse than those that reveal costs, except
for meeting scheduling problems. This seems to be because,
the binary values create a more egalitarian outcome, since
each agent’s unsatisfied constraints are treated the same. For
the meeting scheduling problem, egalitarian solutions make
sense as agents’ loss from not attending meetings is the same.
Adding information here – as with weighted ’vote’ indication
– actually adds noise to the algorithm, making it more dif-
ficult to reach an optimal solution. A similar phenomenon –
more information leading to inferior end states – has been ob-
served in many domains (e.g., in decision making processes,
Meir et al. [Meir et al., 2014]).

Turning to the other variant we have – adding ’taboo’ to
the different algorithms – we can see that, generally, ’taboo’
variants perform better than the non-’taboo’ versions. How-
ever, this advantage is stronger for λ = 0.1 than for λ = 0.8.
We hypothesize that this is since the usage of ’taboo’ guaran-
tees a feasible assignment. Therefore, when the search space
of feasible solutions is small (that is, when λ is small), using
’taboo’ allows examining a much smaller space, and hence,
reaching a good result fast. However, when λ is larger and
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Figure 3: Social benefit and Attendance rate for meeting scheduling
problems (n=100, m=50, p=0.05, d=8, λ = 0.1).

the search space is much larger, the convergence speed ad-
vantage of ’taboo’ versions is less pronounced.

5.3 Privacy
For lack of space we omitted our privacy results and only
discuss the two main insights they bring about. First, the vote
sharing versions of SM AGC, share information that is not
shared by standard AGC, and therefore obviously they are
less private. However, the version that only shares ’taboo’
messages has similar privacy loss results to standard AGC.
Yet, the social welfare results of this version are significantly
better than standard AGC.

The second is that privacy loss for type 1 agents is far larger
than for other agent types. This probably has to do with type
1 agents being far more willing to cooperate (as their thresh-
old does not change as iterations progress), and therefore they
have more chances to pass on information to other agents. In
other words, there is a (natural) correlation between the coop-
eration intentions and the willingness to share private infor-
mation.

6 Conclusion
We proposed an extension of the partial cooperative
paradigm, which allows simulation of realistic scenarios, in
which agents intentions for cooperation can change with re-
spect to utility gains. Alongside it, we presented a local
search algorithm in which the cooperative intentions of agents
can be exploited, not only to ensure that the solution obtained
is acceptable by all agents , but also in order to select a high
quality solution. A significant advantage of the proposed al-
gorithm over the existing partial cooperative algorithms was
found even when only insatiability indications (’taboo’) were
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shared. The socially motivated local search algorithm pro-
duces high quality solutions on realistic problems with hard
equality constraints (meeting scheduling) where standard lo-
cal search fails.

This is a first step in a deeper exploration of agents’ be-
haviors – more types can be introduced in future work, and
interactions between different types of agents (i.e., a hetero-
geneous population of agents, instead of a single type) can be
investigated.
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