
Abstract 

Convolutional neural networks (CNNs) have shown 
their promise for image classification task. However, 
global CNN features still lack geometric invariance 
for addressing the problem of intra-class variations 
and so are not optimal for multi-label image classi-
fication. This paper proposes a new and effective 
framework built upon CNNs to learn Multi-scale 
and Discriminative Part Detectors (MsDPD)-based 
feature representations for multi-label image clas-
sification. Specifically, at each scale level, we (i) 
first present an entropy-rank based scheme to gen-
erate and select a set of discriminative part detectors 
(DPD), and then (ii) obtain a number of DPD-based 
convolutional feature maps with each feature map 
representing the occurrence probability of a par-
ticular part detector and learn DPD-based features 
by using a task-driven pooling scheme. The two 
steps are formulated into a unified framework by 
developing a new objective function, which jointly 
trains part detectors incrementally and integrates the 
learning of feature representations into the classi-
fication task. Finally, the multi-scale features are 
fused to produce the predictions. Experimental re-
sults on PASCAL VOC 2007 and VOC 2012 data-
sets demonstrate that the proposed method achieves 
better accuracy when compared with the existing 
state-of-the-art multi-label classification methods.1 

1 Introduction 
Multi-label image classification has attracted particular atten-
tion recently driven by its broad applications [Geng and Luo, 
2014; George and Floerkemeier, 2014; Gong et al., 2013; 
Jing et al., 2015; Li et al., 2016a; Li et al., 2016b; Li et al., 
2017; Murthy et al., 2016; Tan et al., 2015; Wang et al., 2016; 
Wei et al., 2014; Wei et al., 2016; Xie et al., 2017b; Yeh et 
al., 2017; Zhu et al., 2017]. The task of multi-label image 
classification is to predict the presence or absence of multiple 
specific object categories in an image. Compared with sin-
gle-label image classification which has been actively stud-  
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Figure 1: Multi-label images from the PASCAL VOC 2007 dataset. 
The intra-class variations and the composition and interaction be-
tween different object categories make the task of multi-label image 
classification more challenging. 
 
 
ied in recent years [Herranz et al., 2016; Krizhevsky et al., 
2012; Simon et al., 2014; Simonyan and Zisserman, 2015; 
Szegedy et al., 2015], multi-label image classification is a 
more practical problem because most of the real-world images 
usually contain multiple objects from different categories. 
Besides, as shown in Figure 1, each object class in real-world 
multi-label images often has large intra-class variations 
caused by occlusion, scale, viewpoint, illumination, etc., and 
the composition and interaction between object categories also 
increase the complexity of the problem, which make the task 
of multi-label image classification more challenging.  
 During the past few years, various deep learning methods 
especially convolutional neural networks (CNNs) have 
shown their promise as a universal representation and have 
dominated most of the recent works on image classification 
task. However, most research efforts made on image classi-
fication mainly focus on addressing the task of single-label 
image classification. Although several recent works [Oquab 
et al., 2014; Sharif Razavian et al., 2014; Simonyan and 
Zisserman, 2015] have demonstrated that a pre-trained CNN 
model can also be straightforwardly transferred to multi-label 
image classification, they do not perform well for recognizing 
complex object layouts and scenes in multi-label images. This 
mainly because global CNN features still lack geometric in-
variance for addressing the problem of intra-class variations 
and so are not optimal for multi-label image classification. 
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Figure 2: The architecture of the proposed MsDPD-based multi-label image classification framework. At each scale level (denoted by gray 
blocks), the DPD-based feature representations are learned from the CNN convolutional features by using our proposed optimization method, 
as shown in Figure 3. The ultimate multi-label predictions are obtained by aggregating the features from different scale levels.  
 
 
 

 

Figure 3: The proposed unified optimization framework for the joint training of discriminative part detectors (DPD) and DPD-based feature 
representations. Specifically, for a convolutional layer of size m×m with n channels, we convolve it with K 1×1×n part detectors to produce a 
number of part detectors-based feature maps of size m×m with K channels, followed by a task-driven pooling step to produce the final 
K-dimensional DPD-based feature representation.  
 
 
 In this paper, we propose a novel and effective framework 
built upon CNNs to learn multi-scale and discriminative part 
detectors (MsDPD)-based feature representations for the task 
of multi-label image classification, as shown in Figure 2. Spe-
cifically, at each scale, we first present an object-proposal-free 
and entropy-rank based scheme to generate and select a 
number of discriminative part detectors (DPD). Then, we 
obtain a set of DPD-based feature maps with each feature map 
representing the occurrence probability of a particular part 
detector, and learn the pooled DPD-based features by using a 
task-driven pooling scheme. We formulate the two steps into a 
unified optimization framework, which trains part detectors 
incrementally and integrates the learning of feature represen-
tations into the classification task, as shown in Figure 3. Fi-
nally, the features from different scale levels are aggregated to 
produce the ultimate multi-label predictions. In the experi-
ments, we evaluate the proposed framework on the PASCAL 

VOC 2007 and VOC 2012 datasets [Everingham et al., 2015] 
and achieve state-of-the-art results when compared with the 
existing multi-label image classification methods. 
 To sum up, our main contributions are as follows. First, we 
propose a unified framework by leveraging the highly ex-
pressive CNNs to learn a kind of discriminative part detec-
tors-based feature representation, termed MsDPD, to address 
the problems of intra-class variations faced for multi-label 
image classification. The proposed approach formulates the 
training of part detectors and the learning of feature repre-
sentations into a unified optimization framework by devel-
oping a new objective function. Second, we present an en-
tropy-rank based scheme to evaluate the distinctiveness of part 
detectors and then train part detectors incrementally by mining 
reliable instances iteratively. Third, we propose a task-driven 
pooling technique to integrate the learning of feature repre-
sentation into classification task to improve its generality. 
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Fourth, different from previous region proposal-based image 
classification methods [Wei et al., 2016; Wu et al., 2015; Yang 
et al., 2016], our method does not need ground-truth bounding 
boxes or object proposals, making the proposed method more 
efficient and practical. We have confirmed through experi-
ments that the feature representation obtained by using the 
proposed method is capable of delivering state-of-the-art re-
sults on two popular multi-label classification benchmarks 
including PASCAL VOC 2007 and VOC 2012 datasets. 

2 Methodology 
While many CNN-based methods have achieved successful 
results on image classification, most of them are developed 
for single-label image classification by extracting global 
CNN features. Inspired by the fact that each object class in 
multi-label images generally exhibits dramatically different 
appearances, shapes, occlusions and interactions, we propose 
to extract discriminative part detectors-based features, a kind 
of local CNN-based features, to handle the problem of in-
tra-class variations. Here, part detectors are used to capture 
generalized objects and their parts that are discriminative 
(being different enough from each other) and representative 
(occuring frequently enough). As shown in Figure 2, the core 
task of this proposed method is to learn Multi-scale and Dis-
criminative Part Detectors (MsDPD)-based features for 
multi-label image classification. Figure 3 illustrates how to 
learn DPD-based features from each scale of convolutional 
features denoted by gray blocks. Specifically, we first present 
an entropy-rank based scheme to generate a number of dis-
criminative part detectors. Then, we obtain part detec-
tors-based convolutional feature maps and generate the pooled 
feature representations by using a task-driven feature pooling 
scheme. For ease of optimization we integrate the two steps 
into a unified framework by developing a new objective func-
tion to jointly train part detectors and learn the feature repre-
sentations. The final multi-label prediction results are ob-
tained by fusing the features from different scale levels. 

2.1 Model Architecture 
Figure 2 illustrates the overall architecture of our MsDPD 
framework. The basic configuration of our model is similar 
to that of Single Shot MultiBox Detector (SSD) [Liu et al., 
2016]. The early layers (Conv1 to Conv7) are transferred 
from the pre-trained VGGNet-16 [Simonyan and Zisserman, 
2015], where the convolutional layers Conv6 and Conv7 are 
converted from the fully-connected layers FC6 and FC7 by 
using a scheme that is similar to SSD as follows: subsample 
parameters from FC6 and FC7, change pool5 from 2×2 - s2 to 
3×3 - s1, and use the ̀ a trous algorithm to fill the "holes". The 
fully-connected layers are converted to convolutional ones to 
cope with the uncertainty for the localization of object parts. 
These layers are followed by some extra convolutional layers 
(Conv8 to Conv12) to extract much deeper features and even 
bigger object parts. The last convolutional layer (Conv12_2) 
is used to fine-tune the network by using multi-label images. 
The detailed model parameters can be found in Figure 2. 
 In this work, DPD-based feature representations are ex-
tracted based on four scales of convolutional layers including 

Conv7, Conv8_2, Conv9_2, and Conv10_2 (denoted by gray 
blocks in Figure 2), which decrease in size progressively to 
allow the detections of object parts at multiple scales. Spe-
cifically, for a convolutional layer of size m×m with n 
channels, we convolve it with K 1×1×n part detectors to 
produce a number of part detectors-based convolutional 
feature maps of size m×m with K channels, where each fea-
ture map represents the occurrence probability of a particular 
part detector, followed by a task-driven pooling step to pro-
duce the final K-dimensional DPD-based feature representa-
tion. For ease of reference, we index the four DPD-based 
feature layers and the last convolutional layer by using scale 
1 through scale 5. Next we describe how to train part detec-
tors and learn part detectors-based feature representations. 

2.2 Initializing Discriminative Part Detectors (DPD) 
To initialize the candidate part detectors that are shared 
across all image categories, we randomly sample a large 
number of (about one hundred thousands) pixels from each 
scale of the convolutional feature maps of all training images. 
Each pixel from the feature maps can be considered as a 
“local” CNN feature which has a very large receptive field in 
the original image, and the length of the pixel equals the 
channel number of the convolutional features. Then we per-
form k-means clustering over these sampled pixels and only 
retain sufficiently large clusters to ensure the representa-
tiveness, where each cluster corresponds to a to-be-learned 
candidate part detector. 
 We consider an object part is discriminative if it only 
appears frequently in some specific image categories rather 
than almost all classes. For example, "wheel" will occur in 
the object classes of "bus" and "car", so the entropy would be 
low. In contrast, a non-discriminative "sky" could occur uni-
formly in almost any of the classes with higher entropy. To 
select discriminative part detectors, we introduce an en-
tropy-rank based scheme to measure the discrimination of 
each part detector by computing their entropies across all 
image categories. Specifically, the entropy  E D  for a part 
detector D  is computed by 

      
1

log
C

c c
c

E D p D p D


   (1) 

where C  is the number of image classes and  cp D  is the 
fraction of the members of part detector D  that are from the 
images of the c-th class. Then, we take the entropy as a 
measure of discrimination of a part detector to select K de-
tectors with low entropy values. 

2.3 Training DPD and Learning DPD-based Feature 
Let { | 1, 2, , }i i N X   be the set of training images and 

{ | 1, 2, , }i i N Y   be the set of image labels of  , 
where { | 1, 2, , }n

i ij j M  X x    is represented by the 
entries from its CNN convolutional layer of size m×m with n 
channels and 2M m , N  is the total number of training 
images, C

i Y   denotes the ground truth label vector of 
sample iX  with at least one element being 1, and C  is the 
number of image classes. For a given training image iX , let 
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   { | 1,2, , }K
i ij j M  O X O x    be its DPD-based 

feature maps,   K
i X   be its pooled DPD-based feature, 

 iXP  be its multi-label prediction result,  1 1,W b  be the 
parameters of the to-be-learned DPD, and  2 2,W b  be the 
parameters of C multi-label classifiers, where 1

n KW  , 
1

Kb  , 2
K CW  , and 2

Cb  . Thus,  ijO x  and 
 iXP  can be computed by 

    1 1
T

ij ijS WO x x b  (2) 

    2 2
T

i i X WP b  (3) 

where 1( ) exp( )/ || exp( ) ||S x x x  and   1
( ) 1 exp( )   x x  

are the softmax and sigmoid non-linear activation functions, 
which are used for predicting the occurrence probabilities of 
DPD and the multi-label classification results, respectively. 
 As shown in Figure 3, to leverage CNNs to learn effective 
feature representation, we formulate the training of DPD and 
the learning of DPD-based feature representation into a uni-
fied framework, which jointly trains part detectors incremen-
tally and integrates DPD-based feature learning into classifi-
cation. To this end, we develop a new objective function as 
follows, which contains three terms including an image-level 
classification loss term, a generalized max pooling regulari-
zation term, and an object part-level classification loss term: 

 
   

 

1
1 2 2 2 1 1

2 3 1 1

, , , ,
min 2

J J
J

J





      

W W

W

b b

b

, ,

,

   
 (4) 

where 1  and 2  are two trade-off parameters that control 
the relative importance of these three terms. 
 1) Image-level classification loss term. This term is de-
fined as sigmoid cross-entropy loss function for multi-label 
image classification. It aims to minimize the classification 
error for the given training images and is computed by 

 
   

     1
1 1

log1

1 log 1

N C i ic c

i c i ic c

J
N  

     
      


X

X

Y P

Y P
 (5) 

where  i c
Y  and  i c

  XP  denote the c-th entries of iY  and 
 iXP , respectively. 

 2) Generalized max pooling regularization term. This 
term is used to learn the pooled DPD-based feature  iX  
from the input  iO X  by enforcing the pooled representation 
to be close to each column of the input  iO X , which is 
computed by using the following formula 

       
2

2

2 2
1 1

1
1

N M T

ij i i
i j

J
MN  

 
    

 
  X XO x    (6) 

Similar to [Murray and Perronnin, 2014; Xie et al., 2015], by 
using this pooling regularization term, the learned DPD-based 
feature could enforce the dot product similarity between 
 ijO x  and the pooled feature  iX  to be a constant one. 

By integrating feature learning into classification, we can use 
more information from  iO X  to get a task-driven feature 

representation which is more suitable for classification than 
traditional pooling strategies such as max/average-pooling. 
 3) Object part-level classification loss term. This term is 
defined as softmax cross-entropy loss function for object part 
classification. It aims to minimize the classification error for 
the mined object part instances and is computed by 

     3
1 1

1
log

Kt K

l lk k
l k

J
Kt  

     y O x  (7) 

where K
l y   stands for object part label vector of object 

part instance lx  with only one element being 1, K  is the 
number of DPD selected in subsection 2.2, and t  is the num-
ber of high-confident object parts we select in each iteration 
used for updating each part detector. In such way, we can mine 
reliable instances iteratively and train the DPD incrementally. 

2.4 Optimization 
To solve the optimization problem of Eq. (4), we present a 
simple EM-like iterative minimization method to update 
 1 1,W b ,  2 2,W b  and   alternatively via stochastic gra-
dient descent method (SGD) [Williams and Hinton, 1986]. 
 1) Initialization. Given K  selected part detectors, we 
initialize the parameters  1 1,W b  by using Eq. (7). The 
DPD-based feature representation   for all images are ini-
tialized by using (6) and generalized max pooling method 
[Murray and Perronnin, 2014]. The parameters  2 2,W b  are 
initialized by using Eq. (5). 
 2) Updating  1 1,W b  and  2 2,W b  by fixing  . The 
gradients of the objective function J  with respect to the 
parameters  1 1,W b  and  2 2,W b  can be computed by 

 

    1 2
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1
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J
g
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 
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
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 
  


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where ijg  and ijz  are defined as follows 

    T

ij ij ig XO x   (12) 

      ij ij i ij ijgXz O x O x   (13) 

with the operation   denoting element-wise multiplication. 
 Thus, the parameters  1 1,W b  and  2 2,W b  can be up-
dated by using gradient descent method as follows  

 1 1
1

J 
 


W W

W
, 1 1

1

J 
 


b b

b
 (14) 
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 2 2
2

J 
 


W W

W
, 2 2

2

J 
 


b b

b
 (15) 

where   is the learning rate. 
 3) Updating   by fixing  1 1,W b  and  2 2,W b . The 
gradients of the objective function J  with respect to   can 
be computed by  

     

       

2

1
1

1

1
X

1

i i
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ij i ij i
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M







  



    

W
X

X X

P Y

O x O x



 

 (16) 

 Thus, the parameter   can be updated as follows 

      i i
i

J 
 


X X

X
 


 (17) 

2.5 Multi-label Image Classification 
After optimizing Eq. (4), the pooled DPD-based features for 
all training samples are learned at the same time. However, the 
feature representations of the test images still need to be 
learned. Since the part detectors make the distributions of 
training and test data consistent, we can obtain DPD-based 
features of test images by optimizing Eq. (6). For the ultimate 
predictions, we concatenate the features from different scale 
levels to train a set of sigmoid classifiers for prediction.  

3 Experiments 
In the experiments, we evaluate our method on PASCAL 
VOC 2007 and VOC 2012 datasets [Everingham et al., 2015], 
which have been widely used for multi-label image classifi-
cation by predicting whether the object is present/absent in 
the image. The performance is measured by using the aver-
age precision (AP) and the mean AP over all object classes. 

3.1 Parameter Settings 
We train the proposed model as shown in Figure 2 by using 
SGD with initial learning rate of 10-4 for the early layers 
(Conv1 to Conv7), initial learning rate of 10-3 for the latter 
layers (Conv8 to Conv12), momentum of 0.9, weight decay of 

0.0005, and batch size of 32. The learning rate decays by 0.1 
after 60k iterations and is fixed for the rest 20k iterations. For 
the training of DPD and DPD-based features, the parameters 
in Eq. (4) are set to 1 =1  and 2 =0.01 , and the learning rate 
  in Eqs. (14), (15), (17) is set to 0.01.  
 For the initialization of DPD, we run k-means clustering 
on the convolutional feature maps of scales 1 to 4 with the 
cluster numbers being set to 2000, 1000, 400, and 200, and 
then take the entropy-rank based scheme as a measure to 
select 700, 400, 300, and 200 detectors, respectively.  

3.2 Experimental Results 
Comparison of features from different scales. We first 
give the results obtained by using different scales on PAS-
CAL VOC 2007 dataset. Table 1 reports the detailed results. 

As shown in Table 1, some object classes, such as "bird" and 
"bottle", fire on small scales and some object categories, such 
as "person" and "train" fire on big scales. This is because that 
our MsDPD feature layers are decreased in size progressively 
to allow the predictions of objects and their parts at multiple 
scales, thereby for better capture of object variations caused 
by viewpoint, scale, occlusion, etc. The best results are ob-
tained by fusing the features of different scales.  
 State-of-the-art CNN-based methods. The following 
CNN-based methods are used for comparison: VGG-16-SVM 
and VGG-19-SVM [Simonyan and Zisserman, 2015], Res-
Net-101-Sigmoid [He et al., 2016], SDE [Xie et al., 2017a], 
HCP [Wei et al., 2016], CNN-RNN [Wang et al., 2016], and 
FeV+LV-20-VD [Yang et al., 2016]. The work of [Simonyan 
and Zisserman, 2015] densely extracts 4096-D CNN features 
across five image scales {256,384,512,640,748} of the given 
image with VGG-16 and VGG-19, performs global average 
pooling on the resulting CNN features, and finally classifies 
the image with linear SVM classifiers. ResNet-101-Sigmoid 
trains a multi-label classification system using a pre-trained 
ResNet-101 model [He et al., 2016] with a sigmoid cross 
entropy loss function, densely computes sigmoid outputs 
across five image scales {256,384,512,640,748} of the given 
image, and finally performs classification by max-pooling 
the resulting sigmoid outputs as HCP [Wei et al., 2016]. SDE 
[Xie et al., 2017a] presented a feature learning framework by 
optimizing the features with the aim of learning selective, 
discriminative and equalizing representations. HCP [Wei et 
al., 2016] proposed to address the multi-label classification 
by extracting object proposals from the given images and the 
final image-level scores are obtained by max-pooling the 
scores of the proposals. CNN-RNN [Wang et al., 2016] 
combined RNNs with CNNs in a unified framework to learn 
a joint image-label embedding. FeV+LV-20-VD [Yang et al., 
2016] proposed a multi-view multi-instance framework to 
utilize both weak and strong labels (bounding box).  
 Comparison with state-of-the-art methods on PASCAL 
VOC 2007 dataset. Table 2 summarizes the results of our 
MsDPD method and the aforementioned seven state-of-the-art 
methods on PASCAL VOC 2007 dataset. As shown in Table 
2: (i) Compared with global CNN-based approaches such as 
VGG-16-SVM and VGG-19-SVM [Simonyan and Zisserman, 
2015], ResNet-101-Sigmoid [He et al., 2016], and CNN-RNN 
[Wang et al., 2016], our proposed method obtains significant 
performance gains of 4.2%, 3.3% and 9.5% in terms of mAP. 
This shows the superiority of our local CNN-based method. 
(ii) Compared with other methods, such as HCP [Wei et al., 
2016], SDE [Xie et al., 2017a], and FeV+LV-20-VD [Yang 
et al., 2016], which can be regarded as a kind of local feature 
based methods, our method still outperforms them with a big 
margin measured in terms of mAP (at least 2.3%). 
 Comparison with state-of-the-art methods on PASCAL 
VOC 2012 dataset. We report our experimental results in 
Table 3 and compare it with six state-of-the-art CNN-based 
methods on VOC 2012 dataset. The results are consistent with 
those on the VOC 2007 dataset. To be specific, we achieve 
state-of-the-art results for 16 out of 20 object categories. 
Especially for the difficult categories such as "chair", "cow",
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Method aero bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv mAP

Scale 1 98.4 96.7 96.3 96.5 75.7 97.5 93.7 95.5 77.9 95.5 90.9 95.0 97.5 93.8 90.9 77.9 96.3 84.3 99.1 91.8 92.1
Scale 2 98.1 97.2 96.3 96.3 64.6 97.8 94.5 96.5 79.2 94.3 89.6 95.2 97.3 96.8 90.1 79.7 96.0 87.6 99.2 90.9 91.9

Scale 3 97.3 97.7 94.9 95.6 57.8 95.9 92.2 95.0 74.2 92.2 82.9 94.2 97.0 96.3 91.7 76.0 93.6 82.1 98.7 86.2 89.6

Scale 4 97.1 95.5 93.4 93.0 50.5 90.9 92.6 93.9 72.3 93.0 85.5 93.1 97.0 95.0 93.6 65.3 92.5 84.7 98.8 76.9 87.7

Scale 5 96.4 92.4 92.9 93.4 49.6 89.8 90.2 92.0 69.1 80.4 85.5 89.5 96.6 90.0 91.8 59.6 78.9 85.6 98.7 70.5 84.6

MsDPD 98.7 97.9 96.2 96.9 76.0 97.9 95.7 96.5 81.9 95.3 91.5 96.3 97.6 96.9 95.6 81.6 96.7 88.4 99.3 92.4 93.5

Table 1: Classification results (%) on the PASCAL VOC 2007 test set obtained by using different scales of MsDPD and their fusion (scales 1 
to 5). The entries with the best APs for each object category are bold-faced. 
 
 
Method aero bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv mAP

VGG-16-SVM MS† - - - - - - - - - - - - - - - - - - - - 89.3
VGG-19-SVM MS† - - - - - - - - - - - - - - - - - - - - 89.3

ResNet-101-Sigmoid MS† 97.6 95.4 94.7 94.5 74.9 91.4 93.9 96.3 77.5 90.0 84.8 94.4 95.2 93.9 98.1 70.4 92.4 82.3 98.3 88.7 90.2

HCP  98.6 97.1 98.0 95.6 75.3 94.7 95.8 97.3 73.1 90.2 80.0 97.3 96.1 94.9 96.3 78.3 94.7 76.2 97.9 91.5 90.9

CNN-RNN  96.7 83.1 94.2 92.8 61.2 82.1 89.1 94.2 64.2 83.6 70.0 92.4 91.7 84.2 93.7 59.8 93.2 75.3 99.7 78.6 84.0

FeV+LV-20-VD  97.9 97.0 96.6 94.6 73.6 93.9 96.5 95.5 73.7 90.3 82.8 95.4 97.7 95.9 98.6 77.6 88.7 78.0 98.3 89.0 90.6

SDE  - - - - - - - - - - - - - - - - - - - - 91.2

Our MsDPD method 98.7 97.9 96.2 96.9 76.0 97.9 95.7 96.5 81.9 95.3 91.5 96.3 97.6 96.9 95.6 81.6 96.7 88.4 99.3 92.4 93.5

Table 2: Classification results (%) on the PASCAL VOC 2007 test set obtained by using state-of-the-art CNN-based methods and our pro-
posed MsDPD method. †: MS denotes the results obtained by using a multi-scale scheme with five image scales {256,384,512,640,748}. 
 
 
Method aero bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv mAP

VGG-16-SVM MS† 99.0 88.8 95.9 93.8 73.1 92.1 85.1 97.8 79.5 91.1 83.3 97.2 96.3 94.5 96.9 63.1 93.4 75.0 97.1 87.1 89.0
VGG-19-SVM MS† 99.1 88.7 95.7 93.9 73.1 92.1 84.8 97.7 79.1 90.7 83.2 97.3 96.2 94.3 96.9 63.4 93.2 74.6 97.3 87.9 89.0

ResNet-101-Sigmoid MS† 98.7 88.9 93.1 92.9 76.3 92.3 85.6 96.6 80.5 85.3 81.9 93.2 94.0 93.2 97.6 64.0 88.1 76.5 97.1 90.3 88.3

HCP 99.1 92.8 97.4 94.4 79.9 93.6 89.8 98.2 78.2 94.9 79.8 97.8 97.0 93.8 96.4 74.3 94.7 71.9 96.7 88.6 90.5

FeV+LV-20-VD 98.4 92.8 93.4 90.7 74.9 93.2 90.2 96.1 78.2 89.8 80.6 95.7 96.1 95.3 97.5 73.1 91.2 75.4 97.0 88.2 89.4

SDE - - - - - - - - - - - - - - - - - - - - 91.1

Our MsDPD method 99.5 94.0 94.7 95.3 82.8 95.3 96.9 96.5 85.1 95.1 86.1 94.7 98.0 95.5 95.0 78.8 94.8 86.5 98.8 93.1 92.8

Table 3: Classification results (%) on the PASCAL VOC 2012 test set obtained by using state-of-the-art CNN-based methods and our pro-
posed MsDPD method. †: MS denotes the results obtained by using a multi-scale scheme with five image scales {256,384,512,640,748}. 
 
 
"table", "plant", and "sofa", our method shows good per-
formance. This significant performance gain shows the ef-
fectiveness of our DPD-based feature representation. 
 Ablation experiments. To analyze the importance of each 
component of our method (part detectors and task-driven 
pooling), we conducted ablation experiments on the PAS-
CAL VOC 2007 dataset. Table 4 shows the results obtained 
with part detectors and without part detectors (pool features 
from Conv7/Conv8_2/Conv9_2/Conv10_2 layers) by using 
different pooling strategies measured in terms of mAP. As 
shown in Table 4, task-driven pooling obtains the highest 
mAP than max-pooling and average-pooling. More impor-
tantly, by using our proposed part detectors could obtain big 
accuracy gains compared with that obtained by directly 
pooling features from the original convolutional layers.  

4 Conclusion 
In this paper, we proposed to build upon CNNs to learn part 
detectors-based features for multi-label image classification. 
To this end, we first present an entropy-rank based scheme to 

Max-pooling 89.2 

Average-pooling 88.2 Without part detectors 

Task-driven pooling 90.7 

Max-pooling 93.2 

Average-pooling 87.9 With part detectors 

Task-driven pooling 93.5 

Table 4: Ablation experimental results (mAP, %) on the PASCAL 
VOC 2007 test set obtained with part detectors and without part 
detectors by using different pooling strategies. 
  
obtain a set of discriminative part detectors. Then, we gen-
erate part detectors-based convolutional feature maps and 
learn part detectors-based features with a task-driven pooling 
scheme. For optimization, the aforementioned two steps are 
formulated into a unified framework by developing a new 
objective function, which incrementally trains part detectors 
and integrates the learning of feature representations into the 
classification task. However, by using the proposed objective 
function it is difficult to train the whole network end-to-end. 
Our future work will address this issue. 
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