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Abstract
The existing binary foreground map (FM) measures
address various types of errors in either pixel-wise
or structural ways. These measures consider pixel-
level match or image-level information indepen-
dently, while cognitive vision studies have shown
that human vision is highly sensitive to both global
information and local details in scenes. In this pa-
per, we take a detailed look at current binary FM
evaluation measures and propose a novel and ef-
fective E-measure (Enhanced-alignment measure).
Our measure combines local pixel values with the
image-level mean value in one term, jointly cap-
turing image-level statistics and local pixel match-
ing information. We demonstrate the superiority of
our measure over the available measures on 4 pop-
ular datasets via 5 meta-measures, including rank-
ing models for applications, demoting generic, ran-
dom Gaussian noise maps, ground-truth switch, as
well as human judgments. We find large improve-
ments in almost all the meta-measures. For in-
stance, in terms of application ranking, we observe
improvement ranging from 9.08% to 19.65% com-
pared with other popular measures.

1 Introduction
Please take a look at Fig. 1. You see the output of a bina-
ry foreground segmentation model and a random Gaussian
noise map. While it is clear that the foreground map (FM) is
much closer to the ground-truth (GT) map, to date the most
common measures (e.g. , IOU [Everingham et al., 2010], F1,
and JI [Jaccard, 1901]) as well as recently proposed ones in-
cluding Fbw [Margolin et al., 2014] and VQ [Shi et al., 2015]
favor the noise map over the estimated map. This is one of the
problems that we will address in this paper (see experiments
Sec. 4.3). In order to solve it, we propose a novel measure
that does much better than existing ones.

The comparison between a binary foreground estimated
map and a human labeled ground-truth binary map is com-
mon in various computer vision tasks, such as image re-
trieval [Liu and Fan, 2013], image segmentation [Qin et

∗Bo Ren is the corresponding author.

(a) Image (b) GT (c) FM (d) Noise
Figure 1: Inaccuracy of current evaluation measures. A measure
should score the FM (c) generated by a state-of-the-art algorithm a
higher value than the random Gaussian noise map (d). Current com-
mon measures including IOU [Everingham et al., 2010], F1/JI [Jac-
card, 1901] , Fbw [Margolin et al., 2014], CM [Movahedi and Elder,
2010], and VQ [Shi et al., 2015] prefer the noise map. Only our
measure correctly ranked (c) higher than (d).

al., 2014], object detection, recognition [Kanan and Cottrell,
2010; Rutishauser et al., 2004], foreground extraction [Blake
et al., 2004], and salient object detection [Hou et al., 2018;
Borji et al., 2015], and is crucial for making statements re-
garding which models perform better.

Three widely used measures for comparing the foreground
map (FM) and the GT include Fβ measure [Arbelaez et al.,
2011], Jaccard Index (JI) measure [Jaccard, 1901], and inter-
section over union (IOU) [Everingham et al., 2010]. Vari-
ous evaluations based on Fβ-measures [Csurka et al., 2013;
Margolin et al., 2014; Shi et al., 2015] and other measures
(e.g. [Movahedi and Elder, 2010; Villegas and Marichal,
2004; McGuinness and O’connor, 2010]) have been reported
in the past. All of these evaluations, however, have used mea-
sures that address pixel-wise similarities and often discard
structural similarities. Recently, Fan et al. [2017] proposed
the structure measure (S-measure), which achieves great per-
formance. However, this measure is designed for evaluating
non-binary maps and some components (e.g. uniform distri-
bution term) are not well defined for binary map case.

On the contrary, here, we propose a novel measure known
as E-measure (Enhanced-alignment measure) which consist-
s of a single term to account for both pixel and image level
properties. We show that such an approach leads to an effec-
tive and efficient way for evaluating binary foreground maps
as demonstrated in Fig. 2. Three foreground maps with col-
ored borders (blue, red, yellow) are evaluated compared to
the ground-truth map. Compared to 3 popular measures in-
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No. Measure Year Pub Pros Cons

1 IOU/F1/JI [Jaccard, 1901] 1901 BSVSN easy to calculate losing image level statistics
2 CM [Movahedi and Elder, 2010] 2010 CVPRW considering both region and contour noise sensitive
3 Fbw [Margolin et al., 2014] 2014 CVPR assigning different weights for errors error location sensitive, complicated
4 VQ [Shi et al., 2015] 2015 TIP weighting errors by psychological function subjective measure
5 S-measure [Fan et al., 2017] 2017 ICCV considering structure similarity focusing on non-binary map properties

Table 1: Current evaluation measures summary.
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Figure 2: Demonstration of effectiveness of our measure. The rank-
ing of binary foreground maps (after threshold) are generated by 3
state-of-the-art salient object detection models including DCL [Li
and Yu, 2016], RFCN [Wang et al., 2016] and DHS [Liu and Han,
2016]. All of the 3 different types of popular measures (CM, Fbw
and VQ) fail to rank the maps correctly. However, our measure gives
the right order.

cluding Fbw, VQ, and CM, only our measure correctly ranks
the three, considering both structural information and glob-
al shape coverage. We achieve this by taking into accoun-
t image-level statistics (mean value of FM) and pixel-level
matching jointly. Our measure (will be described in detail in
Sec. 3) can correctly rank the estimated segmentation maps.
Our main contributions are as follows:

• We propose a simple measure that consists of a compact
term that simultaneously captures image level statistics
and local pixel matching information. Using 5 meta-
measures on 4 public datasets, we experimentally show
that our measure is significantly better than tradition-
al IOU, F1/JI, CM measures and the recently proposed
ones including VQ, Fbw and S-measure.

• To assess the measures, we also propose a new meta-
measure (SOTA vs. Noise) and build a new dataset. Our
dataset contains 555 binary foreground maps which are
ranked by humans. We use this dataset to examine the
ranking consistency between current measures and hu-
man judgments.

2 Related Work
A summary of popular evaluation metrics for binary fore-
ground map evaluation can be found in Tab. 1. Here, we
explain these measures and discuss their pros and cons.

The Fβ measure [Arbelaez et al., 2011; Cheng et al., 2015;
Liu et al., 2011] is a common measure, which simultaneously

(a) (b)

TP

FP

Figure 3: Limitations of region-based measures. The blue circle
represents GT and red curve denotes FM. Based on IOU, F1/JI mea-
sures, the intersection in (b) is almost equal to the intersection in (a)
when compared with GT circle (blue circle curve), although it has
spikes, wiggles and shape differences [Movahedi and Elder, 2010].

considers recall = TP
TP+FN & precision = TP

TP+FP :

Fβ =
(1 + β2)precision · recall
β2 · precision+ recall

, (1)

where β is a parameter to trade-off recall and precision,
True Positives (TP), True Negatives (TN), False Positives (F-
P), and False Negatives (FN) are 4 basic quantities. Setting
β = 1 leads to the classic F1 measure. Another widely used
F1-based measure is the Jaccard Index (JI) [Jaccard, 1901],
also known as the IOU measure:

JI = IOU =
TP

TP + FN + FP
. (2)

The F1 and IOU measures are related as: JI = F1
2−F1 . Shi

et al. [Shi et al., 2015] proposed another measure for subjec-
tive object segmentation assessment. Essentially, their mea-
sure is also based on the F1 measure. Margolin et al. [2014]
proposed a complicated measure called weighted Fβ measure
(Fbw):

Fωβ =
(1 + β2)Precisionω ·Recallω

β2 · Precisionω +Recallω
. (3)

It assigns different weights to errors in different locations.
All the measures mentioned above are closely related with

Fβ . They can be estimated by considering each pixel position
independently, and ignore important image level information,
which leads to suboptimal performance in identifying noise
(Fig. 1), structure errors (Fig. 2), and different shapes (Fig.
3).

Movahedi et al. [2010] proposed the contour mapping
(CM) measure. This measure, however, is sensitive to noise
(see Fig. 1), which results in poor performance, especially
using meta-measure 3 as explained later (Sec. 4.3 & Tab.
2). A recently proposed measure known as S-measure [Fan
et al., 2017], focuses on non-binary foreground map (FM) e-
valuation. It considers the region-level structure similarity on
a 2×2 grid over the segmentation map and the object-level
properties (e.g. , uniform and contrast). However, these prop-
erties are not well defined for binary maps.
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Figure 4: Our E-measure framework. (a) ground-truth map. (b) the estimate foreground map. (c) & (d) are the mean values map of GT &
FM, respectively. (e) and (f) are the bias matrices calculated by (Eq. 4). (g) is the mapping function. (h) is the enhanced alignment matrix
computed by (Eq. 6). ‘aligned’ & ‘unaligned’ donate those points which GT (x, y) = FM(x, y) & GT (x, y) 6= FM(x, y), respectively.

3 The Proposed Measure
In this section, we explain details of our new measure to e-
valuate binary foreground maps. An important advantage of
our measure is its simplicity as it consists of a compact term
that simultaneously captures global statistics and local pix-
el matching information. As a result, our measure perform-
s better than the current popular measures. Our E-measure
framework is demonstrated in Fig. 4.

3.1 Motivation
Despite the previous success of binary map measures, recent
measures such as the S-measure are still not performing well
enough on binary maps. It is often the case that these mea-
sures assign a higher score to a binary generic map than a
state-of-the-art (SOTA) estimate segmentation map (see Sec.
4.2). The reason behind this is that in binary maps, S-measure
puts emphasis on the luminance comparison, contrast com-
parison and the dispersion probability. However, while it
makes sense to compute these terms for non-binary maps
whose values are real numbers ranged in [0, 1] and treat the
values as representing the probability that a pixel is owned by
the foreground, in binary maps such properties are not well
defined and less valid. As a result, using continuous assump-
tions can lead to erroneous evaluation on binary maps.

Cognitive vision studies have shown that human vision sys-
tem is highly sensitive to structures (e.g. global information,
local details) in scenes. Accordingly, it is important to con-
sider local information and global information simultaneous-
ly when evaluating the similarity between an FM and a GT.

Based on the above observation, we design a novel measure
that is tailored for binary map evaluation. Our measure work-
s on well-defined properties of binary maps, and combines
local pixel values and image-level mean value in one term,
which helps to capture image-level statistics and local pixel
matching information jointly. Experiments (Sec. 4) show that

our measure performs better than other previous measures on
binary maps.

3.2 Alignment Term
To design a compact term that simultaneously captures local
pixel matching information and global statistics, we define a
bias matrix ϕ as the distance between each pixel-wise value
of the input binary foreground map I and its global mean µI :

ϕI = I − µI · A, (4)

where, A is a matrix in which all the element values are 1 and
the size of A is identical to I . We compute two bias matrices
ϕGT and ϕFM for the binary ground-truth mapGT and bina-
ry foreground map FM , respectively. I ∈ {GT,FM}. The
bias matrix can be treated as the signal centering by removing
the mean intensity from the signal. It can eliminate errors due
to intrinsic variations, or large numerical differences.

Our bias matrix has strong relationship to the luminance
contrast [Wang et al., 2004]. Consequently, we consider the
correlation (Hadamard product) between ϕGT and ϕFM as
a simple and effective measure to quantify the bias matrix
similarity. Therefore, we define an alignment matrix ξ as
following:

ξFM =
2ϕGT ◦ ϕFM

ϕGT ◦ ϕGT + ϕFM ◦ ϕFM
, (5)

where, ◦ donates the Hadamard product. The alignment ma-
trix ξFM has the properties that ξFM (x, y) > 0 if and only
if ϕGT (x, y) and ϕFM (x, y) have the same sign, i.e. the two
inputs are aligned at this position (x, y). The value of the
alignment matrix element will depend on the global means,
taking global statistic into account. These properties make
Equ. (5) suitable for our purpose.
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3.3 Enhanced Alignment Term
The absolute value of ξFM (x, y) depends on the similarity
of µFM and µGT . When two maps are highly similar, fur-
ther similarity between µFM and µGT may increase positive
values at aligned positions and decrease negative values at
unaligned positions. When summed together the total val-
ue of ξFM (x, y) does not necessarily go up as we expected.
Therefore, we need a mapping function that suppresses de-
crease (which means having smaller derivative value) at neg-
ative value (ξFM (x, y) 6 0) regions and strengthens increase
at positive value (ξFM (x, y) > 0) regions.

To achieve this goal, a “convex function” is needed. We
have tested other forms of mapping functions such as higher-
order polynomials or trigonometric functions, but have found
the quadratic form (f(x) = 1

4 (1 + x)2 shown in Fig. 4 (g))
is a simple and effective function and works best in our ex-
periments. Here, we use it to define the enhanced alignment
matrix φ as:

φFM = f(ξFM ). (6)

3.4 Enhanced Alignment Measure
Using the enhanced alignment matrix φ to capture the two
properties (pixel-level matching and image-level statistics) of
a binary map, we define our final E-measure as:

QFM =
1

w × h

w∑
x=1

h∑
y=1

φFM (x, y), (7)

where h and w are the height and the width of the map, re-
spectively. Using this measure to evaluate the foreground
map (FM) and noise in Fig. 1, we can correctly rank the maps
consistent with the application rank (See below).

4 Experiments
In this section, we compare our E-measure with 5 popular
measures for binary foreground map evaluation on 4 public
salient object detection datasets, as in [Fan et al., 2017].

Meta-Measure. To test the quality of an evaluation mea-
sure, we use the meta-measure methodology. The basic idea
is defining some desired criteria about the quality of the re-
sults and assessing how well a measure satisfies those criteri-
a [Pont-Tuset and Marques, 2016]. We use 4 meta-measures
proposed in [Margolin et al., 2014; Pont-Tuset and Marques,
2016; Fan et al., 2017], as well as a new one (Sec. 4.3) intro-
duced here by us. Results are listed in Tab. 2.

Datasets & Models. The employed datasets include
PASCAL-S [Li et al., 2014], ECSSD [Xie et al., 2013], HKU-
IS [Li and Yu, 2015], and SOD [Martin et al., 2001]. We use
10 state-of-the-art (SOTA) salient object detection models in-
cluding 3 traditional ones (ST [Liu et al., 2014], DRFI [Wang
et al., 2017], and DSR [Li et al., 2013]) and 7 deep learn-
ing based ones (DCL [Li and Yu, 2016], RFCN [Wang et
al., 2016], MC [Zhao et al., 2015], MDF [Li and Yu, 2015],
DISC [Chen et al., 2016], DHS [Liu and Han, 2016], and
ELD [Lee et al., 2016]) to generate non-binary maps. In
order to further obtain foreground binary maps, we use the
image-dependent adaptive thresholding method [Achanta et
al., 2009] to threshold non-binary maps.

Application

Compare

Application Optimal
 output

Output

App ranking 

Figure 5: Application Ranking. To rank foreground maps according
to an application, we compare the output when using the GT, to the
output when using the FM foreground map. The more similar an FM
foreground map is to a GT map, the closer its application’s output
should be to GT output.

4.1 Meta-Measure 1: Application Ranking
The first meta-measure specifies that the results of an evalu-
ation measure to rank the foreground maps should be consis-
tent with the results of application ranking. Fig. 5 illustrates
the application ranking. Assume that the application’s output
when using GT maps is the optimal output. Then we feed a
series of estimated maps to the application and obtain a se-
quence of outputs which have been ordered from the most
similar to the most dissimilar. We compare the output se-
quence with the optimal output sequence. The more similar
a map is to the GT map, the closer its application’s output
sequence should be to the GT output sequence.

As Margolin et al. [Margolin et al., 2014] claimed, the
applications including image retrieval, object detection and
segmentation have similar results. For a fair comparison, we
use the context-based image retrieval application as Margolin
et al. to perform this meta-measure. Implementation of this
application is mentioned in the Sec. Application Realization
and other applications are implemented similarly.

Here, we use the θ = 1 − ρ [Best and Roberts, 1975]
measure to examine the ranking correlation between measure
ranking and application ranking. The value of θ falls in the
range [0, 2]. Value of 0 means that the orders of measure
ranking and application ranking are the same. Completely
reverse orders give a value of 2.

In Tab. 2 we observe a significant improvement over the
popular evaluation measures. Compared to the best prior
measure, our measure improves the performance by 19.65%,
9.08%, 18.42% and 9.64% over PASCAL, ECSSD, SOD and
HKU datasets, respectively. Fig. 2 illustrates an example of
how well our measure predicts the preference of these appli-
cations.

Application Realization. Context-based image retrieval
finds the most similar images to a query image in a
dataset [Lew et al., 2000]. The similarity is determined by
various features such as color-histograms, color and edge di-
rectivity descriptor (CEDD). We use LIRE [Lew et al., 2000]
with CEDD to weigh the binary foreground maps.

Firstly, in order to ignore the background and get the
foreground feature, we generate a combined GT image
or FM image by combining the image with its GT map
or FM map (see Fig. 6 (a)-(d)). The combined re-
sults are denoted by GTcombine = {G1, · · · , Gn} and
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(a) Images & GT (b) GTcombine

(c) Images & FM (d) FMcombine

Figure 6: Combining the image with its foreground map.

(a) Image (b) GT (c) FM (d) Generic
Figure 7: Meta-measure 2: SOTA vs. Generic. An evaluation mea-
sure should give FM (c) generated by SOTA method a higher score
than the generic map (d) that does not consider contents of the im-
age.

FMcombine = {F1, · · · , Fn}. Secondly, for each com-
bined image we use LIRE to retrieve a list of 100 most
similar combined images which are ordered from the most
similar to the most dissimilar. The GT output, GTouti =
{G1−i, · · · , G100−i}, is the ordered list returned when us-
ing the combined GT (e.g. Gi). The ordered score list
is GTscorei = {GTs1−i, · · · , GTs100−i}. The score
means the degree of similarity. Likewise, for the FM
we obtain Fouti = {F1−i, · · · , F100−i} and Fscorei =
{Fs1−i, · · · , Fs100−i}. Thirdly, let Ii = {GTouti∩Fouti}.
We find Fk which equals to Gi in the Fouti. If Fk exist-
s, indicating Gi ∈ Fouti, we get the index k as well as the
corresponding score Fsk−i. Each score Si of FM assigned:

Si =

{
Fsk−i +

1
k + ‖Ii‖100 , Gi ∈ Ii

‖Ii‖
100 , otherwise

(8)

4.2 Meta-Measure 2: SOTA vs. Generic Maps
The second meta-measure is that an evaluation measure
should assign higher scores to maps obtained by the SOTA
models than trivial maps without any meaningful contents.
Here, we use a centered circle as the generic map. One ex-
ample can be seen in Fig. 7. We expect that evaluating FM in
(c) would generate a higher score than (d).

We counted the number of times a generic map scored
higher than the mean score obtained by 10 SOTA model-
s mentioned in Sec. 4 as mis-ranking rate. As suggested
in [Margolin et al., 2014], the mean score is robust to situ-
ations in which a certain model generates a poor result. The
evaluation score of 10 maps should be higher than a threshold
to choose as the “good map”. Thus, about 80% good maps in
the dataset have been selected to examine this meta-measure.
The lower the mis-ranking rate is, the better the measure per-
forms. Our measure outperforms the current measures over
ECSSD, SOD and HKU-IS except on the PASCAL-S dataset.

(a) GT (b) Rank 1 (c) Rank 2 (d) Rank 3
Figure 8: Meta-measure 4: Human Ranking. Example images are
from FMDatabase newly created by us.

4.3 Meta-Measure 3: SOTA vs. Random Noise
The property on which we based our third meta-measure is
that an evaluation measure should prefer the map generated
by a SOTA model over the random noise map on average.

We perform this experiment similar to the meta-measure 2
but this time we use the Gaussian random noise map instead
of the generic map in Sec. 4.2. Our measure achieves the
best performance since it considers both local pixel-matching
and the global statistics jointly. It is to be noted that as stated
in Sec. 4.2, the mean score is robust to single failure case
of FM from a certain SOTA model. As a result the mean
score on foreground maps from the group of SOTA models
should always be higher than a score measured from noise
map, however, only our measure and the S-measure achieve
the lowest mis-ranking rate.

4.4 Meta-Measure 4: Human Ranking
The fourth meta-measure regards examining the ranking cor-
relation between an evaluation measure and the human rank-
ing. To the best of our knowledge, there is no such binary
foreground map dataset ranked by human beings before. To
create such a dataset, we randomly select the ranked maps by
an application in meta-measure 1, from four above mentioned
datasets including PASCAL, SOD, ECSSD and HKU. Then,
we asked 10 subjects to rank these maps. We keep the maps
for which all of the viewers agree in their rankings. We name
our dataset FMDatabase1 which contains 185 images. Each
of the images comes with 3 ranked estimated maps (555 maps
in total).

To give a quantitative assessment of the correlation be-
tween human ranking and measure ranking, we also use the
θ measure (mentioned in meta-measure 1) to examine this
meta-measure. The lower the score is, the more consistent an
evaluation measure is for human ranking. As it can be seen,
our measure outperforms other measures. Fig. 2 illustrates
an example of how well our measure predicts the preference
using human ranking.

4.5 Meta-Measure 5: Ground Truth Switch
The property on which we base the fifth meta-measure is that
the score of a “good map” should decrease when we use a
wrong GT map. We analyzed 4 popular datasets (PASCAL,
SOD, ECSSD, HKU) and found that a map is considered as
“good” when it scores (using F1 measure) at least 0.8 out of
1. We follow Margolin et al. [Margolin et al., 2014] to calcu-
late this meta-measure. We count the percentage of times that

1FMDatabase: http://dpfan.net/e-measure/
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PASCAL ECSSD SOD HKU

Measure MM1 MM2 MM3 MM1 MM2 MM3 MM1 MM2 MM3 MM1 MM2 MM3 MM4

CM 0.610 49.78% 100.0% 0.504 34.62% 100.0% 0.723 29.89% 56.22% 0.613 25.26% 100.0% 1.492
VQ 0.339 17.97% 15.32% 0.294 7.445% 6.162% 0.335 9.143% 14.05% 0.331 3.067% 1.800% 0.161

IOU/F1/JI 0.307 9.426% 5.597% 0.272 4.097% 1.921% 0.342 4.571% 6.857% 0.303 0.900% 0.197% 0.124
Fbw 0.308 5.147% 4.265% 0.280 2.945% 1.152% 0.361 6.286% 5.714% 0.312 0.535% 0.083% 0.149

S-measure 0.315 2.353% 0.000% 0.279 1.152% 0.000% 0.374 1.714% 0.000% 0.312 0.141% 0.000% 0.140
Ours 0.247 3.093% 0% 0.247 0.641% 0% 0.273 0.571% 0% 0.274 0.084% 0% 0.121

Table 2: Quantitative comparison between the E-measure and current measures on 4 meta-measures. The best result is highlighted in bold.
MM: Meta-Measure. These differences are all statistically significant at the α < 0.05 level.

(a) Image (b) FM (c) GT (d) Switched GT
Figure 9: Meta-measure 5: Ground-truth switch. An evaluation
measure should assign the “good” map (b) a higher score when using
the right ground-truth (c) as the reference than using the randomly
switched ground-truth (d).

an evaluation measure assigns a higher score when using the
wrong GT map. We found that all the evaluation measures
perform well (The average result on 4 datasets are: VQ with
0.000925%, CM with 0.001675%, IOU/JI/F1 with 0.00515%,
S-measure with 0.0014% and ours with 0.0523%). Our mea-
sure has a 0.05% gap relative to other measures.

5 Conclusion and Future Work
In this paper, we analyzed various binary foreground evalua-
tion measures that consider errors in different levels including
pixel, region, boundary and object level. They can be clas-
sified as considering either pixel-level errors or image-level
errors independently. To solve this shortcoming, here we pro-
posed the simple E-measure which simultaneously considers
both types of errors. Our measure is highly effective and effi-
cient. Extensive experiments using 5 meta-measures demon-
strate the effectiveness of our measure compared to existing
measures on 4 popular datasets. Finally, we created a new
dataset (740 maps) which consists of 185 ground-truth maps
and 555 human ranked maps to examine the correlation be-
tween evaluation measures and human judgments.

Limitation. Compared to our metric, S-measure is mainly
designed for tackling structural similarity. Images in PAS-
CAL dataset have more structural objects than the other 3
datasets (ECSSD, SOD, HKU-IS). Therefore, S-measure is
slightly better than our metric in PASCAL dataset. One fail-
ure case can be found in Fig. 10.

Future Work. We will investigate the potential to propose
a new segmentation model based on the E-measure in our
future work. Besides, our metric consists of simple derivable
functions, so a new loss function based on the E-measure can
be developed. To help future explorations in this area, our
code and dataset will be made publicly available on the web.
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and S. Süsstrunk. Frequency-tuned salient region detec-
tion. In CVPR. IEEE, 2009.

[Arbelaez et al., 2011] Pablo Arbelaez, Michael Maire,
Charless Fowlkes, and Jitendra Malik. Contour detec-
tion and hierarchical image segmentation. IEEE TPAMI,
33(5):898–916, 2011.

[Best and Roberts, 1975] DJ Best and DE Roberts. Algorith-
m as 89: the upper tail probabilities of spearman’s rho.
Journal of the Royal Statistical Society. Series C (Applied
Statistics), 24(3):377–379, 1975.

[Blake et al., 2004] Andrew Blake, Carsten Rother, Matthew
Brown, Patrick Perez, and Philip Torr. Interactive image
segmentation using an adaptive GMMRF model. In EC-
CV, pages 428–441. Springer, 2004.

[Borji et al., 2015] Ali Borji, Ming-Ming Cheng, Huaizu
Jiang, and Jia Li. Salient object detection: A benchmark.
IEEE TIP, 24(12):5706–5722, 2015.

[Chen et al., 2016] Tianshui Chen, Liang Lin, Lingbo Liu,
Xiaonan Luo, and Xuelong Li. Disc: Deep image saliency
computing via progressive representation learning. IEEE
T Neur. Net. Lear., 27(6):1135–1149, 2016.

[Cheng et al., 2015] Ming-Ming Cheng, Niloy J. Mitra, Xi-
aolei Huang, Philip H. S. Torr, and Shi-Min Hu. Glob-
al contrast based salient region detection. IEEE TPAMI,
37(3):569–582, 2015.

[Csurka et al., 2013] Gabriela Csurka, Diane Larlus, Florent
Perronnin, and France Meylan. What is a good evalua-
tion measure for semantic segmentation? In BMVC, vol-
ume 27, page 2013. Citeseer, 2013.

[Everingham et al., 2010] Mark Everingham, Luc Van Gool,
Christopher KI Williams, John Winn, and Andrew Zisser-
man. The pascal visual object classes (voc) challenge. I-
JCV, 88(2):303–338, 2010.

Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)

703



[Fan et al., 2017] Deng-Ping Fan, Ming-Ming Cheng, Yun
Liu, Tao Li, and Ali Borji. Structure-measure: A new way
to evaluate foreground maps. In ICCV, pages 4550–4557.
IEEE, 2017.

[Hou et al., 2018] Qibin Hou, Ming-Ming Cheng, Xiaowei
Hu, Ali Borji, Zhuowen Tu, and Philip Torr. Deeply su-
pervised salient object detection with short connections.
IEEE TPAMI, 2018.

[Jaccard, 1901] Paul Jaccard. Étude comparative de la distri-
bution florale dans une portion des alpes et des jura. Bull
Soc Vaudoise Sci Nat, 37:547–579, 1901.

[Kanan and Cottrell, 2010] Christopher Kanan and Garrison
Cottrell. Robust classification of objects, faces, and flow-
ers using natural image statistics. In CVPR, pages 2472–
2479. IEEE, 2010.

[Lee et al., 2016] Gayoung Lee, Yu-Wing Tai, and Junmo
Kim. Deep saliency with encoded low level distance map
and high level features. In CVPR, pages 660–668. IEEE,
2016.

[Lew et al., 2000] Michael S. Lew, Nicu Sebe, Chabane D-
jeraba, and Ramesh Jain. Content-based multimedia infor-
mation retrieval: State of the art and challenges. ACM T
Multim. Comput., 2(1):1–19, 2000.

[Li and Yu, 2015] Guanbin Li and Yizhou Yu. Visual salien-
cy based on multiscale deep features. In CVPR, pages
5455–5463. IEEE, 2015.

[Li and Yu, 2016] Guanbin Li and Yizhou Yu. Deep contrast
learning for salient object detection. In CVPR, pages 478–
487. IEEE, 2016.

[Li et al., 2013] Xiaohui Li, Huchuan Lu, Lihe Zhang, Xi-
ang Ruan, and Ming-Hsuan Yang. Saliency detection via
dense and sparse reconstruction. In ICCV, pages 2976–
2983. IEEE, 2013.

[Li et al., 2014] Yin Li, Xiaodi Hou, Christof Koch,
James M Rehg, and Alan L Yuille. The secrets of salien-
t object segmentation. In CVPR, pages 280–287. IEEE,
2014.

[Liu and Fan, 2013] Guanghai Liu and Dengping Fan. A
model of visual attention for natural image retrieval. In
Information Science and Cloud Computing Companion
(ISCC-C), pages 728–733. IEEE, 2013.

[Liu and Han, 2016] Nian Liu and Junwei Han. DHSNet:
Deep hierarchical saliency network for salient object de-
tection. In CVPR, pages 678–686. IEEE, 2016.

[Liu et al., 2011] Tie Liu, Zejian Yuan, Jian Sun, Jingdong
Wang, Nanning Zheng, Xiaoou Tang, and Heung-Yeung
Shum. Learning to detect a salient object. IEEE TPAMI,
33(2):353–367, 2011.

[Liu et al., 2014] Zhi Liu, Wenbin Zou, and Olivier Le Meur.
Saliency tree: A novel saliency detection framework.
IEEE TIP, 23(5):1937–1952, 2014.

[Margolin et al., 2014] Ran Margolin, Lihi Zelnik-Manor,
and Ayellet Tal. How to evaluate foreground maps? In
CVPR, pages 248–255. IEEE, 2014.

[Martin et al., 2001] David Martin, Charless Fowlkes,
Doron Tal, and Jitendra Malik. A database of human
segmented natural images and its application to evaluat-
ing segmentation algorithms and measuring ecological
statistics. In ICCV, pages 416–423. IEEE, 2001.

[McGuinness and O’connor, 2010] Kevin McGuinness and
Noel E O’connor. A comparative evaluation of interactive
segmentation algorithms. Pattern Recognition, 43(2):434–
444, 2010.

[Movahedi and Elder, 2010] Vida Movahedi and James H
Elder. Design and perceptual validation of performance
measures for salient object segmentation. In IEEE
CVPRW, pages 49–56, 2010.

[Pont-Tuset and Marques, 2016] Jordi Pont-Tuset and Fer-
ran Marques. Supervised evaluation of image segmen-
tation and object proposal techniques. IEEE TPAMI,
38(7):1465–1478, 2016.

[Qin et al., 2014] Chanchan Qin, Guoping Zhang, Yicong
Zhou, Wenbing Tao, and Zhiguo Cao. Integration of the
saliency-based seed extraction and random walks for im-
age segmentation. Neurocomputing, 129:378–391, 2014.

[Rutishauser et al., 2004] Ueli Rutishauser, Dirk Walther,
Christof Koch, and Pietro Perona. Is bottom-up attention
useful for object recognition? In CVPR 2004. Proceed-
ings of the 2004 IEEE Computer Society Conference on,
volume 2, pages II–37. IEEE, 2004.

[Shi et al., 2015] Ran Shi, King Ngi Ngan, Songnan Li,
Raveendran Paramesran, and Hongliang Li. Visual quality
evaluation of image object segmentation: Subjective as-
sessment and objective measure. IEEE TIP, 24(12):5033–
5045, 2015.

[Villegas and Marichal, 2004] Paulo Villegas and Xavier
Marichal. Perceptually-weighted evaluation criteria for
segmentation masks in video sequences. IEEE TIP,
13(8):1092–1103, 2004.

[Wang et al., 2004] Zhou Wang, Alan C Bovik, Hamid R
Sheikh, and Eero P Simoncelli. Image quality assessmen-
t: from error visibility to structural similarity. IEEE TIP,
13(4):600–612, 2004.

[Wang et al., 2016] Linzhao Wang, Lijun Wang, Huchuan
Lu, Pingping Zhang, and Xiang Ruan. Saliency detec-
tion with recurrent fully convolutional networks. In ECCV,
pages 825–841. Springer, 2016.

[Wang et al., 2017] Jingdong Wang, Huaizu Jiang, Zejian
Yuan, Ming-Ming Cheng, Xiaowei Hu, and Nanning
Zheng. Salient object detection: A discriminative region-
al feature integration approach. IJCV, 123(2):251–268,
2017.

[Xie et al., 2013] Yulin Xie, Huchuan Lu, and Ming-Hsuan
Yang. Bayesian saliency via low and mid level cues. IEEE
TIP, 22(5):1689–1698, 2013.

[Zhao et al., 2015] Rui Zhao, Wanli Ouyang, Hongsheng Li,
and Xiaogang Wang. Saliency detection by multi-context
deep learning. In CVPR, pages 1265–1274. IEEE, 2015.

Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)

704


