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Abstract
We aim to significantly reduce the computational
cost for classification of temporally untrimmed
videos while retaining similar accuracy. Existing
video classification methods sample frames with a
predefined frequency over entire video. Differently,
we propose an end-to-end deep reinforcement ap-
proach which enables an agent to classify videos by
watching a very small portion of frames like what
we do. We make two main contributions. First, in-
formation is not equally distributed in video frames
along time. An agent needs to watch more care-
fully when a clip is informative and skip the frames
if they are redundant or irrelevant. The proposed
approach enables the agent to adapt sampling rate
to video content and skip most of the frames with-
out the loss of information. Second, in order to
have a confident decision, the number of frames
that should be watched by an agent varies greatly
from one video to another. We incorporate an adap-
tive stop network to measure confidence score and
generate timely trigger to stop the agent watching
videos, which improves efficiency without loss of
accuracy. Our approach reduces the computational
cost significantly for the large-scale YouTube-8M
dataset, while the accuracy remains the same.

1 Introduction
The accuracy of video classification task has been signifi-
cantly improved, building upon the recent advances of Con-
volutional Neural Networks (ConvNets) [Krizhevsky et al.,
2012; He et al., 2016] and Recurrent Neural Networks
(RNNs) [Hochreiter and Schmidhuber, 1997]. The stan-
dard procedure for video classification is first extracting
frame features by ConvNets and then aggregating the fea-
tures into a single representation by pooling methods or
RNNs. While pooling methods ignore the order of frames
and temporal information in videos, RNNs such as Long
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Short-Term Memory (LSTM) [Hochreiter and Schmidhuber,
1997] model video temporal structure by encoding the frame
features sequentially. Both approaches have shown promis-
ing results on video classification [Yue-Hei Ng et al., 2015;
Simonyan and Zisserman, 2014] and video captioning [Venu-
gopalan et al., 2015].

While a lot of attention has been paid to the accuracy aspect
of video classification, very few existing works have tried to
enhance another crucial aspect: efficiency. Extracting frame
features by ConvNets for large-scale video classification is
computationally expensive because the amount of computa-
tion scales linearly with the video length, which makes it dif-
ficult to deploy current video classification algorithms into
web-scale applications.

The solutions of dealing with the efficiency of video pro-
cessing can form two different axises which are orthogonal to
each other, i.e., the time to process one frame and the number
of processed frames. For the first axis, there has been a vivid
community to lower the computation of ConvNets [Howard
et al., 2017] or to build specific hardwares to accelerate the
ConvNet computation time [Jouppi et al., 2017]. The effi-
ciency of feature extraction can directly benefit from this line
of research. For the second axis, the solution is to lower the
number of frames the algorithm needs to process, which is
more inherent to the video classification task. In this paper,
we will show that it has a great potential to improve video
classification efficiency.

The current pipeline of video processing usually uniformly
samples frames with a predefined frequency over the entire
video. However, information is not equally distributed in
video frames along time. Temporally neighbored frames usu-
ally contain much redundant information. The frames should
be skipped if they are redundant or irrelevant to the task. On
the other hand, after collecting enough video information to
make classification decision, there is no need to watch any
more. For example, we do not need to watch the whole video
to say “yes, this video is about basketball game”, instead, see-
ing three frames of playing basketball would be sufficient to
classify the video as “basketball game”.

In this paper, we attempt to train an agent to classify videos
by watching a very small portion of frames like what a hu-
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Stop! I’m sure this video is related to dancing.

16s 8s 1s 1s 

Figure 1: A demonstration for the “fast forward” and “adaptive stop”
mechanisms. At each time step, the agent chooses a skip interval
from seven “fast forward” actions. After collecting enough informa-
tion to make decision, the agent stops watching the video and emits
the classification decision.

man does. First, whenever the agent finds the current frame
does not add any helpful information to classify the video,
it can play the video in a faster speed. When finding some
informative frames, the agent can slow down the watching
speed and look into details. We refer this mechanism as
‘fast forward’. Specifically, we predefine a series of dis-
crete time intervals. The agent decides where to watch at
the next time step by selecting a time interval to skip for-
ward. As shown in Figure 1, when classifying category like
‘dancing’, the agent would prefer to select a longer time inter-
val, e.g., 16s, to skip after watching some video introduction
frames. When the agent catch a potential dancing frame, it
would slow down and select a shorter forward time, e.g., 1s,
to get more details. Second, the agent is capable of measuring
confidence score to make decision. When confident enough,
the agent can stop watching the video. We name this function
as ‘adaptive stop’ mechanism. The ‘fast forward’ and ‘adap-
tive stop’ mechanisms lead to a Partially observable Markov
decision process (POMDP) problem in Reinforcement Learn-
ing literature, which can be trained with REINFORCE algo-
rithms [Williams, 1992] though the decision processes are not
differentiable.

We evaluate our proposed efficient video classification
model on the YouTube-8M [Abu-El-Haija et al., 2016]

dataset, which is currently the largest video classification
dataset. Compared to the models using all the video frames,
our method effectively reduces the computation cost while
maintaining the classification accuracy.

2 Related Works
Video analysis: Many efforts have been made to improve
video classification performance in recent years [Wang et al.,
2011; Simonyan and Zisserman, 2014; Karpathy et al., 2014;
Wang et al., 2016; Tran et al., 2015; Ng et al., 2015;
Chang et al., 2016; Fan et al., 2017; Xu et al., 2015; Bhat-
nagar et al., 2017]. Video classification model generates rep-
resentations which are usually beneficial to other video anal-
ysis tasks, i.e., video captioning [Pan et al., 2016] and video
question answering [Zhu et al., 2017]. Hand-crafted features,
especially Dense Trajectories [Wang et al., 2011; Wang and

Schmid, 2013], can effectively represent short video clips but
it is computational expensive. With the improvement of Con-
vNets models in image classification [Krizhevsky et al., 2012;
Simonyan and Zisserman, 2015; Szegedy et al., 2016; He et
al., 2016], deep models have also been proposed for video
classification. Simonyan and Zisserman [Simonyan and Zis-
serman, 2014] first proposed to take stack optical flow images
as inputs to a ConvNet. This two-stream ConvNet, combining
a rgb-net and a flow-net, outperforms improved Dense Trajec-
tories [Wang and Schmid, 2013] on several action recogni-
tion datasets. Wang et al. [Wang et al., 2016] extended two-
stream ConvNet with a temporal segment network. Tran et
al. [Tran et al., 2015; 2017] utilized 3D-ConvNets to model
video spatio-temporal structures. Ng et al. [Ng et al., 2015]

used an LSTM to aggregate frame-level ConvNet features for
modeling video temporal sequences. Yeung et al. [Yeung et
al., 2016] proposed a recurrent neural network-based agent
for action detection. The agent interacts with the video glob-
ally, and there is no constraint on the action. We focus on
video classification and limit our actions to a local range with
a maximum step of 16s. The local pattern is then leveraged
to predict what will happen in a short time. In this paper, we
aim to improve video classification efficiency while retaining
accuracy.
Reinforcement learning: Recently, deep reinforcement
learning has made many breakthroughs in the field of arti-
ficial intelligence. On the aspect of computer vision applicat-
ifons, Mnih et al.[Mnih et al., 2014] developed the recurrent
visual attention model (RAM) which learns the spatial atten-
tion policies for image classification. Yeung et al.[Yeung et
al., 2016] applied reinforcement learning to action detection.

3 Model
In this paper, we formulate our model into the reinforcement
learning paradigm, which is about an agent interacting with
an environment, and learning an optimal policy, by trial and
error, for sequence decision making. We consider the ‘fast
forward’ and ‘adaptive stop’ mechanisms as two sequential
decision processes of a goal-driven agent interacting with a
video player. At each time step, the agent is limited to ob-
serve only one frame from a video by a pre-trained ConvNet.
However, the agent is capable of controlling which frame to
be watched at the next time step or stop watching the video to
emit classification decision at the current time step. The agent
acts based on the current frame and history to watch the video
efficiently. At the final step, the agent receives a scalar reward
which depends on whether the classification decision is cor-
rect and the number of watched frames. The goal of the agent
is to maximize such rewards.

3.1 Architecture
The agent is built around a core network as shown in Fig-
ure 2. At each time step t, the agent takes a frame feature
it as input, integrates history information ht−1, and deter-
mines where to watch at at the next time step (fast forward
network) or whether to stop watching ct (adaptive stop net-
work) to make classification at the current step. When the
agent decides to stop, a classification network is applied on
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the agent’s internal state ht and emits the prediction p. We
also add a baseline network to predict the expected return bt
according to the current internal state, which is used to reduce
variance during training [Williams, 1992].
Core network: The core network maintains an internal state
which summarizes watching history information about the
past frames; it encodes the agent’s knowledge of the video
and provides the information to guide the agent how to act at
the next time step. The internal state ht at time t is formed by
a recurrent neural network fh, which is parameterized by θh
and updated over time with taking the external frame feature
vector it as input ht = fh(ht−1, it; θh). The internal state
ht plays a core role in the proposed approach. The fast for-
ward action, adaptive stop action, baseline and classification
decision are all based on this internal state.
Fast forward network: After observing a frame, the agent
determine where to watch at the next time step by choosing an
action at from a fast forward action space A. In this paper, the
fast forward action space consists of seven discrete actions:

A = {−2s,−1s,+1s,+2s,+4s,+8s,+16s} (1)

where ‘+’ means forward and ‘−’ means rewind. The mo-
tivation of this definition is that videos have local patterns,
which can be learned and used to predict what will happen
or appear within a few seconds. We premise that, exceeding
16 seconds, the pattern is too weak to be exploited. There-
fore, we limit the agent to forward 16s at most at each time
step. Sometimes, the agent may forward too much and miss
information. To rescue this case, we add two rewind actions.
However, we do not allow the agent to rewind too much be-
cause this would damage the efficiency. The agent should
learn how to avoid over forward.

The fast forward network is implemented by a fully con-
nected layer which is applied on ht, parameterized by θa,
and followed by a softmax. This network outputs a multi-
nomial probability distribution, i.e., the policy πa(·|ht; θa),
which represents the probability of each action in A should
be adopted. As shown in Figure 2(B), at is sampled from πa

during training at ∼ πa(·|ht; θa). During evaluation, we use
maximum a posteriori estimation to choose forward action,
i.e., at = argmaxa πa(·|ht; θa).
Adaptive stop network: Adaptive stop is the other action
which can be controlled by the agent. This action decides
when to stop watching videos to begin classification. Unlike
at, the adaptive stop action ct is a binary variable whose range
is defined as:

C = {continue, stop} (2)

In this paper, we use 0 to represent ‘continue’ and 1 to rep-
resent ‘stop’. The adaptive stop network is a fully connected
layer parameterized by θc and followed by a sigmoid, which
takes ht as input and outputs a Bernoulli probability distribu-
tion, i.e., the policy πc(·|ht; θc), representing the probability
of stop. As shown in Figure 2(B), ct is sampled from the πc

during training ct ∼ πc(·|ht; θc)
Baseline network: To reduce variance during training, we
use a baseline network to establish a baseline bt to encourage
(if Rt > bt) or discourage (if Rt < bt) both the fast forward
action at and adaptive stop action ct, where Rt is the return

(cumulative discounted reward) at the time step t with a dis-

count factor γ ∈ (0, 1]: Rt =
∑T−t

k=0 γ
krk+t. The baseline

network is a linear regressor parameterized by θb and takes
the core network’s state ht as input bt = fb(ht; θb). The
quantity Rt − bt, which is also called advantage, will be used
to scale the policy gradients.
Classification network: When the adaptive stop is triggered,
the classification network fp is applied on the final internal
state hT . We consider a binary classification setting and train
the agent for every class. Suppose the positive video is la-
beled as 1 and the negative video is labeled as 0, then fp out-
puts the likelihood p of the video to be positive. We use a
fully connected layer parameterized by θp and followed by a
sigmoid to predict the video label p = fp(hT ; θp), where T
is the final time step which satisfies cT = 1.
Reward function: After classification, the agent receives a
reward signal based on whether the prediction is correct and
the number of watched frames. The goal of the agent is to
maximize this reward. We denote the ground truth of the
video label as g, the reward function is defined as follows:

rt =

{
1− 2|p− g| − μT, for t = T ;

0, for t < T.
(3)

When t = T , the reward function consists of two parts.
The first one 1 − 2|p − g| is called accuracy reward, which
depends on the correctness of prediction. Since p ∈ [0, 1] and
g ∈ {0, 1}, this part maps the accuracy reward to [−1,+1].
The second part −μT is called frame penalty which is used
to encourage the agent to watch less frames.

3.2 Training
The parameters of the agent consists of the parameters from
the core network, fast forward network, adaptive stop net-
work, baseline network and classification network, i.e., θ =
{θh, θa, θc, θb, θp}. We use standard backpropagation to train
fv, fp and REINFORCE to train πa, πc. The parameter of the
core network θh is not directly optimized but can be updated
by the gradients from the other four networks.
Classification loss: In this work, every agent focuses only
on one specific video class. The output of the agent is a
scalar variable with range [0, 1], which indicates the confi-
dence score of a video example being positive. Therefore, we
optimize the classification network parameter θp by minimiz-
ing the binary cross entropy loss:

B(θp, θh) = log p+ (1− g)log(1− p) (4)

Baseline loss: The baseline network fb is trained by mini-
mizing the mean squared error loss:

M(θb, θh) = 1/T
∑T

t=1
||Rt − bt||2 (5)

At each training iteration, the fast forward network and
adaptive stop network are first updated by the reward and the
baseline. The baseline network is then optimized by Eq. (5).
Note that this loss does not backpropagate to the fast forward
network or the adaptive stop network.
Policy gradients: In this section, we derive the expressions
for the parameter gradients for our setup. Recall that our
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Figure 2: (A) Architecture: The agent is built around a recurrent neural network. At each time step, it takes the frame feature as input,
integrates history information (internal state), and determine how to act (forward or stop) at the next time step. The classification network
generates the prediction based on the internal state. We also add a baseline network to reduce variance during training. (B) Fast forward
network: Provide the policy πa that maps the internal state to the fast forward action space A, e.g., {−2s,−1s,+1s,+2s,+4s,+8s,+16s}.
(C) Adaptive stop network: Provide the policy πc that maps the internal state to the adaptive stop action space C, i.e., {0, 1}, where 0 represents
‘continue’ and 1 represents ‘stop’.

agent takes two actions, i.e., fast forward action at and adap-
tive stop action ct at each time step. The objective of the agent
is to maximize the reward rT achieved at the final step T :

J(θa, θc, θh) = E
πa,πc

rT (6)

Note that rt = 0 for t < T according to the reward function
Eq. (3). The gradient of θa can be derived as follows:

�θaJ = E
πa,πc

�θa log πa(at|ht)Rt (7)

As we can see from Eq. (7), the gradient �θaJ is directly
proportional to Rt. Updating the parameter directly accord-
ing to Rt will make training very unstable. To reduce the
variance of the gradient estimate, we subtract the baseline bt
from Rt:

�θaJ = E
πa,πc

�θa log πa(at|ht)(Rt − bt) (8)

This is an unbiased estimation to the gradient because
E

πa,πc

�θa log πa(at|ht)bt = bt�θa1 = 0. Similarly, gradient

w.r.t. θc, i.e., �θcJ can be derived as follows:

�θcJ = E
πa,πc

�θc log πc(ct|ht)(Rt − bt) (9)

Since the dimension of the possible action sequence can be
very high, it is impossible to optimize Eq. (8) and Eq. (9)
directly. Following REINFORCE [Williams, 1992], we use
Monte Carlo sampling to approximate the policy gradients.
Encourage exploration: To avoid highly-peaked πa towards
a few fast forward actions or a few fixed action sequences,
which over-optimizes on a small portion of the environment,
i.e., video in this work, we use an entropy term to encourage
diversity [Mnih et al., 2016]:

H(θa, θh) = − 1

T

T∑
t=1

E
a∼A

πa(a|ht)logπa(a|ht) (10)

When all actions almost have the same probability, the en-
tropy will be high. Conversely, when one action has near
1 probability, the entropy will be low. Therefore, adding a
negative entropy term to the loss function will penalize the
actions that dominate the policy too quickly and encourage
exploration.

Finally, our objective is to minimize the following hybrid
loss function:

L(θ) = αB + βM − λJ − ρH (11)

where α, β, λ and ρ are positive factors to control the weights
of different sub-losses.

4 Experiments
4.1 Datasets and Settings
Since reinforcement learning usually needs large-scale
datasets, we evaluate our method on the YouTube-8M [Abu-
El-Haija et al., 2016] dataset, which is a large-scale video
classification benchmark. YouTube-8M consists of ∼8 mil-
lion videos - 500K hours of video, annotated with 4800
classes. The average length of the videos in the dataset is
230 seconds. In this paper, we select 20 classes from the
4800 visual entities to evaluate the proposed model. To col-
lect videos, we first remove the the videos whose lengths are
less than 16 seconds. For every class, we then randomly col-
lect 10,000 positive videos and 40,000 negative videos for
training, and 1,000 positive videos and 4,000 negative videos
for evaluation. If the class contains less than 10,000 posi-
tive videos, we use all positive videos and still collect 40,000
negative videos. The videos in YouTube-8M are usually with
multiple labels. When selecting negative videos, we simply
guarantee the target class does not appear in them, meaning
that the positive videos and negative videos may have some
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(a) μ = 10−1 (b) μ = 10−2 (c) μ = 10−3 (d) μ = 10−3, no baseline

Figure 3: Change of watched frames (top row) and accuracy reward (bottom row) during training agent to recognize vehicle with different
frame penalty μ. The video class we use in this experiment is vehicle and the RNN is GRU.

class 5 10 15 30
vehicle 92.6 95.0 95.2 95.4
video game 88.6 90.0 90.2 90.4
concert 95.3 96.3 96.9 96.9
car 94.9 96.3 96.5 96.6
dance 89.2 90.1 90.2 90.3

Table 1: Evaluation of the fast forward network with different num-
bers of frames allowed to be watched.

intersection labels. We report mean average precision (mAP)
for all experiments.

4.2 Implementation Details
We decode videos at one frame per-second and extract fea-
tures from the last hidden representation of Inception-v3 net-
work [Szegedy et al., 2016] before the classification layer.
The features are then normalized by 	2 normalization. The
hidden state size of RNN is set to 128. Each agent is trained
for 50 epochs. We set batch size to 32, dropout rate to 0.5
and gradient clipping to 5.0. We optimize our model with the
Adam optimizer with a fixed the learning rate of 1×10−3. We
search for the reasonable values of α, β, λ and ρ in Eq. (11)
on the vehicle class. We then fix α = 1.0, β = 0.5, λ = 1.0
and ρ = 0.01 in all experiments. The discount factor γ is 0.9.

4.3 Ablation Study
Fast forward network. To explore what policy the fast for-
ward network learns, we set the frame penalty μ to 0 but force
the agent to watch 5, 10, 15, and 30 frames in this experiment.

class
μ = 10−1 μ = 10−2 μ = 10−3 μ = 10−4

mAP# framesmAP# framesmAP# framesmAP# frames
vehicle 68.4 2.12 95.1 7.58 95.2 10.24 95.1 10.64
video game 62.0 1.91 90.2 7.84 90.4 9.04 90.4 9.25
concert 71.0 2.42 96.5 6.73 96.8 7.82 96.9 8.46
car 67.1 2.33 96.3 7.46 96.5 9.30 96.7 10.66
dance 60.7 1.88 90.1 6.69 90.5 7.99 90.6 9.01

Table 2: Evaluation of the adaptive stop network with different
frame penalty μ.

We evaluate the fast forward mechanism on the vehicle,
video game, concert, car and dance classes. The experiment
results are listed in Table 1. Basically, when the number of
frames allowed to be watched increases, the mAP improves.
However, when the number of frames allowed to be watched
exceeds 10, the mAP does not improve much.

Adaptive stop network. The step penalty factor μ con-
trols the number of frames the agent will see. Generally,
a large μ can improve the efficiency for video classifica-
tion but may damage the accuracy. In this section, we ex-
plore how the step penalty factor influences the behavior of
the adaptive stop network. To this end, we select μ from
{10−1, 10−2, 10−3, 10−4}. We record the average of used
frames and the accuracy reward during training. We show the
results of first 2,500 training batches in Figure 3.

When μ changes from 10−1 to 10−3, the agent uses more
and more video frames for classification. However, the accu-
racy reward do not increase when μ ≤ 10−2, which indicates
that increasing the number of watched frames may not always

Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)

709



class
Pooling Method Recurrent Neural Network Our Method

Max Pooling Average Pooling LSTM GRU RL-LSTM RL-GRU
R10 U10 All R10 U10 All R10 U10 All R10 U10 All mAP # frames mAP # frames

vehicle 88.3 86.3 83.1 93.4 93.2 94.7 93.7 93.7 94.8 94.1 93.9 95.5 94.2 5.68 95.1 7.58
video game 77.6 75.9 65.7 81.7 81.6 83.0 88.9 90.6 88.5 88.9 88.6 90.6 88.8 5.57 90.2 7.85
concert 93.3 91.1 88.3 94.8 94.6 95.1 96.0 97.0 96.6 96.2 96.0 97.0 96.3 5.17 96.5 6.73
car 92.4 90.5 87.6 94.8 94.7 95.3 95.8 95.5 96.4 95.6 95.1 96.6 95.7 7.57 96.3 7.45
dance 85.7 84.0 79.3 88.4 88.4 89.3 89.3 89.2 89.6 89.6 89.7 90.4 89.9 7.48 90.1 6.69
animation 82.9 80.2 76.1 86.8 86.9 87.8 88.6 88.3 88.9 89.1 88.8 90.1 88.5 5.54 90.2 8.33
musician 88.6 87.7 84.3 92.0 92.1 92.6 92.5 92.6 93.1 92.8 92.7 94.2 92.4 5.56 93.9 7.77
music video 73.0 71.5 64.6 78.0 77.7 80.5 82.2 82.5 84.9 83.5 83.1 87.7 83.1 5.83 87.3 7.08
animal 82.0 80.1 63.1 88.1 87.9 89.8 89.7 89.5 90.6 89.0 89.2 91.4 89.3 6.18 90.5 8.02
album 73.0 70.4 67.1 76.2 76.2 77.3 76.8 76.7 77.9 79.0 78.7 79.3 78.7 5.27 79.5 9.36
medicine 74.1 71.9 62.8 79.7 79.8 81.0 83.0 83.2 84.3 84.8 84.6 85.5 84.0 7.15 85.0 8.69
kitchen 94.1 93.0 88.3 95.4 95.2 95.3 95.2 95.0 96.1 95.5 95.2 96.6 94.8 5.38 95.9 9.01
computer 90.4 87.9 84.7 93.2 93.0 93.9 94.1 94.0 95.2 94.3 93.9 95.4 94.1 6.51 94.7 6.51
Christmas 65.6 64.3 49.3 71.7 71.8 73.2 74.0 74.3 76.2 76.1 76.5 78.4 74.9 5.85 77.2 7.71
eating 84.2 83.9 67.9 88.7 88.6 89.3 89.5 89.2 90.1 89.7 89.6 90.8 90.2 7.45 89.9 7.64
first-person shooter 87.6 85.9 79.3 89.8 89.5 90.8 91.1 90.3 92.2 91.3 91.1 92.8 91.9 5.47 92.5 8.75
rain 71.1 70.3 62.4 77.1 77.2 78.7 78.2 78.3 79.7 78.4 78.6 80.5 78.3 5.81 79.8 8.06
champion 63.7 62.9 58.1 68.9 69.0 70.2 72.4 72.4 73.1 73.0 73.1 75.6 72.6 7.02 74.1 7.84
egg 65.6 63.8 51.3 74.4 74.8 76.3 77.0 76.7 78.3 77.5 77.3 78.7 77.6 6.76 77.9 6.57
village 71.2 70.0 60.6 76.0 75.7 77.9 80.8 80.7 81.5 81.1 80.9 82.3 80.8 5.79 82.4 7.24

mean 80.2 78.6 71.2 84.5 84.4 85.6 86.4 86.5 87.9 87.0 86.8 88.5 86.8 6.15 88.0 7.74

Table 3: Experiment results (mAP%) of max pooling, average pooling, LSTM, GRU and our methods (RL-LSTM, RL-GRU). For the first
four methods, randomly sampling 10 frames (R10), uniformly sampling 10 frames (U10) and using all frames (All) are evaluated. For our
methods, we set the frame penalty μ to 10−2. All the 20 video classes are used in this experiment.

significantly improve the performance.
We evaluate the influence of different μ on the classes vehi-

cle, video game, concert, car and dance. The experiment re-
sults are shown in Table 2. Basically, when μ decreases, the
number of frames to be watched increases. However, when
μ ≤ 10−2, the mAP is not significantly improved.
Dose the baseline network reduce variance? In this sec-
tion, we explore whether the baseline network helps reduce
variance during training. To remove the influence of base-
line network, we set β in Eq. (10) to 0. The frame penalty
μ is set to 10−3. The video class we used is vehicle and the
RNN is GRU. We show the average of frames to be used and
the accuracy reward during the first 2,500 training batches
in Figure 3(d). Compared with Figure 3(c), the training pro-
cess without baseline network is considerably unstable, es-
pecially for the change of the amount of watched frames as
shown in Figure 3(d). Therefore, replacing the return Rt by
the advantage Rt−bt can significantly reduce variance during
training.

4.4 Comparison with Other Methods
In this section, we compare our approach with other four
methods, i.e., max pooling, average pooling, LSTM and
GRU. For each method, we evaluate three cases: randomly
sampling 10 frames (R10), uniformly sampling 10 frames
(U10) and using all frames (All). For each model using ran-
dom sampling, we evaluate three times and report the average
results. For our approach, we set μ to 10−2 and both LSTM
and GRU are evaluated. All 20 classes are used in this exper-
iment. The results are listed in Table 3.

Compared with max pooling, average pooling, LSTM and

GRU using 10 frames, Our method achieves the best perfor-
mance. Especially for RL-GRU, it only uses 7.74 frames on
average but acquire 88.0% mAP, which outperforms R10-
GRU by 1.0% and U10-GRU by 1.2%. RL-GRU also
achieves very similar mAP to the All-GRU (88.5%). What
is more, for some classes, RL-GRU even achieves better per-
formance the All-GRU. Take the class album as an example,
All-GRU achieves 79.3% while RL-GRU achieves 79.5% but
only uses 9.36 frames on average. For the class village, All-
GRU achieves 82.3% while RL-GRU achieves 82.4% using
only 7.24 frames on average. This proves that our method is
capable of achieving comparable and even better performance
than using all frames.

Recall that the average length of videos in YouTube-8M is
230s and we decode videos at one frame per-second, which
indicates that using all frames means using 230 frames on av-
erage. Our RL-GRU model achieves similar mAP to the All-
GRU using only 7.74 frames on average, which significantly
improves the classification efficiency.

5 Conclusion

We have proposed an agent that can make classification de-
cision by watching temporally untrimmed videos efficiently.
The agent has two mechanisms, i.e., “fast forward” and
“adaptive stop” mechanism. We use REINFORCE to train
the two mechanisms. By the “fast forward” and “adaptive
stop” mechanisms, our agent significantly reduces the com-
putational cost for video classification while maintaining the
accuracy.
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