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Abstract

In this paper, a novel image captioning approach
is proposed to describe the content of images. In-
spired by the visual processing of our cognitive sys-
tem, we propose a visual-semantic LSTM model to
locate the attention objects with their low-level fea-
tures in the visual cell, and then successively ex-
tract high-level semantic features in the semantic
cell. In addition, a state perturbation term is intro-
duced to the word sampling strategy in the REIN-
FORCE based method to explore proper vocabu-
laries in the training process. Experimental results
on MS COCO and Flickr30K validate the effective-
ness of our approach when compared to the state-
of-the-art methods.

1

Automatically generating descriptions of a given image is a
prominent research problem in computer vision [Xu er al.,
2015; Fang et al., 2015]. It aims to translate visual infor-
mation into semantic information based on scene understand-
ing and natural language processing. Recently, great progress
has been made in image captioning, especially by construct-
ing a CNN-LSTM framework [Mao et al., 2015]. In this
framework, the CNN outputs of visual features or semantic
attributes are first encoded using the LSTM cell, and then de-
coded into the corresponding word in the caption.

In image captioning methods based on visual features, typ-
ically, the low-level visual features are exploited to produce
an attention map that highlights different objects relavant to
each word in the caption [Chen er al., 2017; Lu et al., 2017;
Liu et al., 2017]. These approaches can find where the objects
are by predicting the attended objects at each time step, but
lack information of the objects’ current states such as hold-
ing and sitting. On the other hand, in image captioning ap-
proaches based on semantic features, the high-level attributes
are utilized to describe the objects and their states in the im-
age [Yao et al., 2017, Wu et al., 20161, such as group and
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Figure 1: An overview of the proposed VS-LSTM model. First the
low-level visual features (i.e., box proposals) and the high-level se-
mantic features (i.e., attributes) of the image are extracted by the Re-
gion Proposal Network (RPN) and CNN model, respectively. Then
in the LSTM model, the visual cell LSTM" utilizes the visual fea-
tures to localize the objects in the image, whilst the semantic cell
LSTM?® further integrates the localized objects with their attributes
to generate corresponding word.

stand. These methods can obtain what attributes are in the
image, but the objects described in the attributes cannot be
localized.

The above two kinds of approaches either use the low-
level visual features to localize objects [Xu et al., 2015;
Lu et al., 2017], or utilize the high-level semantic fea-
tures to describe objects’ attributes [Wang et al., 2017b;
Wu et al., 2016], whilst the inner connections of these two
types of features are not utilized. Inspired by the visual
processing of our cognitive system, we propose a visual-
semantic LSTM model that incorporates the low-level visual
information and the high-level semantic descriptions, consid-
ering both where the objects are on an object level and what
their attributes are on a semantic level simultaneously when
generating the corresponding word. The proposed model au-
tomatically localizes and describes objects with the visual-
semantic cells. Please refer to Figure 1 for an overview of our
algorithm. The contributions of our work are summarized as
follows:

e A novel visual-semantic LSTM based model named VS-
LSTM is proposed. The objects in the image are first
localized in the visual cell and then described in the
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semantic cell by successively processing the low-level
and high-level features in the caption generation process,
which enables VS-LSTM to automatically recognize the
objects with their corresponding states when generating
each word.

A sampling strategy with state perturbation term is in-
troduced to encourage exploration of proper vocabular-
ies in the reinforcement learning process, which can bal-
ance the training of the frequent words and less frequent
words.

2 Related Work and Discussions
2.1 Attention/Attribute Based Method

Recently, various attention mechanisms have been introduced
to the CNN-LSTM framework in image captioning. A soft
and hard attention mechanism is proposed by [Xu et al.,
2015] to change gaze on salient objects when generating each
word in the sentence. [Lu et al., 2017] considers that non-
visual words require less information from the image and
introduce an adaptive attention model. Instead of using the
uniformly-divided grids of the outputs of the CNN model as
the attention units, [Anderson et al., 2017] utilizes the ob-
ject proposals of object detection results as the basic attention
units and apply attention mechanism on these proposals.

Several methods have been proposed to utilize attributes
as the high-level concepts in the caption generation process.
[Wu et al., 2016] exploits the detected attributes as the high
level features and feed them into an LSTM model to generate
captions. [You er al., 2016] utilizes image attributes as an ex-
ternal guide to decide when the attention should be activated.
[Yao et al., 2017] explores different ways of feeding image
features and attributes into a RNN network. [Wang et al.,
2017b] exploits attributes to generate the skeleton sentence
and attribute phrases separately.

2.2 REINFORCE Based Method

Reinforcement learning has been exploited as a training
method to deal with the out-of-context problem [Choi et al.,
2008]. [Rennie et al., 2017] trains the model directly on
non-differentiable metrics by using test-time reward as the
baseline in the objective function. The implicit optimization
towards the target metric improves the results. [Ren et al.,
2017] presents a policy network and a value network using
an actor-critic reinforcement learning model.

REINFORCE based method faces the dilemma of ex-
ploration and exploitation [Sutton and Barto, 1998]. In
practice, the model generates the next word depending on
the probability of the vocabulary distribution predicted by
the model itself, thus the frequent words of the ground truth
captions are always preferred.

2.3 Discussions

Models based on attention can predict where to attend to with
low-level visual features, but lack high-level descriptions of
the attended areas. Methods based on high-level attributes
can only find what objects are in the image, without their spa-
tial relationships. Therefore, we propose to use the low-level
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visual features to locate the objects first, and then utilize the
high-level semantic features to describe the localized objects.
In this way, the objects can be recognized with corresponding
properties, and detailed captions can be generated. In addi-
tion, based on the REINFORCE method, to balance the ex-
plorations between the frequent words and the less frequent
words, we introduce a sampling strategy that utilizes both the
internal vocabulary distribution of the model and the external
reward to sample the next word..

The most similar work to ours are those who combine im-
age features with attributes [You e al., 2016; Yao et al., 2017,
Wang et al., 2017b]. In these approaches, image features and
attributes are viewed as two types of representations of the
image, either combined in one LSTM cell or separated in two
networks. Different from their methods, we propose that the
low-level image features and the high-level image attributes
should be processed successively to locate and recognize the
objects in the image in a unified network. In our framework,
the image features and image attributes are fed into two con-
nected LSTM cells successively, and then decoded into the
corresponding word.

3 Visual-Semantic Model

The overall architecture is shown in Figure 1. We first de-
scribe the low-level visual features and the high-level seman-
tic features in Section 3.1, and then introduce the proposed
LSTM in Section 3.2. The objective function will be ex-
plained in Section 3.3.

3.1 Visual and Semantic Features

In the general CNN-LSTM framework [Mao et al., 2015], the
outputs of the CNN model are taken as the visual features and
fed into the LSTM model. In the classical image classification
models [Simonyan and Zisserman, 2015], the output featrues
are divided by uniform grids. Each grid may contain informa-
tion of more than one object. Whereas in the object detection
networks [Ren et al., 2015], each output bounding box de-
fines the border of an instance. Considering that it is easier to
accurately localize the objects by taking objects as the basic
units in our model, we choose the output proposals of Faster
R-CNN [Ren et al., 2015] for the visual feature extraction.
We also conduct an ablation experiment (see Section 4.2) to
address the benefits of using proposals as the visual features
in our model.

Let R = (Ry, Ra, ..., Ry, be the top-k detected proposals,
ROI-pooling is applied to each proposal so that the output
feature vector has the same dimension D. We define the con-
catenated feature vectors v; as the low-level visual features
VY.

(1)

The visual features contain several object proposals of an
image, whereas the semantic features (i.e, image attributes)
can describe motions and properties, including nouns, verbs
and adjectives. Following [Fang er al., 2015], we use the
NOR model as the objective function to compute p;"*, which
is the probability that image 7 contains word (i.e, attribute)

VY= (’111,’1}27 ...7’l)k)
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Figure 2: Illustration of the proposed visual-semantic LSTM. The visual features and the semantic features are first extracted by the proposal
extractor and the attribute detector separately. The visual cell LSTM" encodes the overall visual features to a vector representation hj;, which

is combined with the previous generated information hj_

1 (upward blue arrow) to find relevant objects. Through an attention gate (®Q), the

objects are localized and then serve as the high-level visual features V" to be integrated with the high-level semantic features (i.e, attributes)
in the semantic cell LSTM®. Thus the next word is determined by both the localized objects and their descriptions.
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where p;?;-’“ is the probability that region j in image ¢ contains
word wy, and b(¢) denotes all regions of image 7. p;’* is 1
if word wy, appears in the ground truth captions of image ¢,
otherwise 0. Let m be the number of attributes, the prob-
ability distribution vector of the ith image is defined as the
representation of the semantic features A.

A=

(i, P opy ™) A3)

Visual features V'V and semantic features A are then fed
into the proposed LSTM to be integrated and decoded into
the caption.

3.2 Visual-Semantic LSTM

The design of our visual-semantic LSTM is shown in Figure
2. The visual cell LSTM" encodes the low-level visual fea-
tures V'V while the semantic cell proceeds with the high-level
semantic features A. The hidden states of the LSTM cells at
time —1 are initialized with the averaged visual features V'".

RYE = tanh(W*5VY) “)

where hY’S represents the initial hidden state of the visual cell
and the semantic cell, respectively, and W4 is the learned
weight.

_ Visual Cell. In the visual cell, the averaged visual features
V'V and the word embedding z; at time ¢ are fed at each time
step to inform the network of the visual content.

hy = LSTM" (WYz, + W3 VY) 6)

where hj is the hidden state of the visual cell at time .
LSTM is the the LSTM function to compute the hidden state
in the visual cell and W7, Wy are learned weights.

Object Localization. The encoded visual feature his uti-
lized to find the relevant object proposals of word z; using
a soft attention mechanism. The attention value of each pro-
posal at time ¢ is computed by the visual cell outputs h}, the
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semantic cell outputs h_;, and the visual features V.

a; ; = softmax; (W7 tanh (W3hy + Wihi_,) + WiVY)
(6)
= Z Vidg (7N

where a, ; is the attention value of the ith proposal at time ¢,
and W3, WQ, W3, W} are learned weights. The context vec-
tor ¢, of the given image is the weighted sum of visual feature
vector v; and its corresponding attention value ay ;.

To localize the attended object proposals in the image, an
attention gate [Wang et al., 2017a] is added based on the cur-
rent context vector ¢; and the encoded visual features h;.

g, = sigmoid([WEh), W5c,]) ®)

Vi =g, ®[hi,ci] ©)
where g, is the additional attention gate and ® is the element-
wise multiplication operation. W{ and W§ are learned
weights. V' is regarded as the high-level visual feature af-
ter object localization.

Semantic Cell. In the semantic cell, high-level informa-
tion including the localized visual features and the semantic
features are further processed and integrated to interpret the
image content.

h = LSTMS(WSVR 4 W3 A) (10)

where V! indicates the high-level visual feature and A is the
high-level semantic feature. LSTM® is the LSTM function to
compute the hidden state i} in the semantic cell with learned
weights W7 and W5. The output of the semantic cell h§ ob-
tains the object location from the visual cell, and the object
description from the detected attributes.

The output of the semantic cell is then decoded into the
next word z;. By integrating the low-level visual features V'V
and the high-level semantic features A in the visual-semantic
LSTM, the final features contain the full information of the
objects’ locations in the image and their corresponding prop-
erties. Thus, the next word z; is computed by a softmax clas-
sifier.

xy = softmax(W"hS) (11)
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where A is the output of the semantic cell and W" is the
weight to be learned.

3.3 Objective Function

The model parameters are learned by maximizing the prob-
ability of the generated caption given the query image. Let
wy denote each word in the caption .S, the loss function is
the sum of the negative log-likelihood of each word given the
visual features V' and semantic features A.

L ==Y logP(wwo. 1-1,(V", A))
t=1
where n is the length of the  sentence,
P(w¢|wg.. t—1,(VV, A)) is the probability of word wy
given previous words wy_ ;—1 and the visual features V¥ and
semantic features A .

Training the model depending on the ground truth captions
as in Equation (12) causes the out-of-context problem [Choi
et al., 2008]. This means that the given captions only cover
limited content of the image, so objects beyond the sentence
are not explored. To ease the problem, we use the evaluation
metric as the reward function to train the model as in [Rennie
etal., 2017]:

L, = —(r(wy) — b(wy)) log(P(w¢|wo. 1—1, (VY, A))) (13)

where r(w;) is the reward of the sampled word w,, and b(w;)
is its baseline. In practice, Monte Carlo return is used to com-
pute r(w;) and the model parameters are updated after gener-
ating a complete sentence. To encourage appropriate explo-
ration of the less frequent words in the ground truth captions,
we introduce a new sampling strategy [Aman e al., 2018] for
the reinforcement learning process.

12)

wy < argmin{r(w;) + v||hs — h}||2} (14)

we
where h; and h} are the hidden states of the true next word
w; and the candidate next word wy}, respectively. || - ||2 rep-
resents euclidean distance. < is a constant. In the sampling
strategy, the candidate next word wy is first sampled accord-
ing to the given distribution of the vocabulary produced by
the model, then the true next word wy is drawn according to
its reward r(w; ) and the distance of the hidden states between
wy and wj. With appropriate -, the sampled word has lower
reward but similar state with the candidate word. Thus proper
vocabularies can be explored.

4 [Experiments

To validate the effectiveness of our model, we conduct ex-
periments on Flickr30K [Young et al., 2014] and MS COCO
[Lin et al., 2014] datasets which have 31,783 and 123,287
annotated images, respectively. In both datasets, each image
has at least 5 human annotated captions as reference. We
use the public available splits [Karpathy and Fei-Fei, 2015]
which has 5000 randomly selected images for validation and
test. Our vocabulary size is fixed to 10,000 for both datasets
including special start sign <BOS> and end sign <EOS>.
We report our results with the widely used evaluation met-
rics: BLUE-1,2,3,4, METEOR and CIDEr, as provided by
MS COCO.
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Method B-1 B-2 B-3 B-4 METEOR CIDEr

VS-LSTM(w/o LSTM")
VS-LSTM(w/o LSTM®)
VS-LSTM(Box Proposals)
VS-LSTM(Uniform Grids)

743
75.1
76.3
74.5

574
582
594
58.0

432
439
44.8
43.8

333
335
343
33.1

26.5
26.5
26.9
26.2

105.1
105.8
110.2
105.5

VS-LSTM(RL)
VS-LSTM(RL,y = 0.1)

78.4
77.4
78.1
78.9
78.4
782

623
62.0
62.5
634
62.7
62.3

473
46.9
473
48.1
47.3
47.4

358
354
352
36.3
35.8
35.9

27.1
26.9
27.1
27.3
27.0
27.1

119.5
116.0
1182
120.8
119.4
119.8

VS-LSTM(RL.y = 0.5)
VS-LSTM(RL.y = 0.7)
VS-LSTM(RL,y = 0.9)

Table 1: Results of the ablation experiments on MS COCO test split.
B-n stands for BLEU-n metric. RL indicates reinforcement learning

4.1 Implementation Details

In the CNN mode, the attribute detector is finetuned from
VGG16 [Simonyan and Zisserman, 2015] pretrained on Ima-
geNet by changing the last fully-connected layer into a mul-
tiple instance loss layer, and trained on MS COCO with
the top-1000 frequent words as the attributes. Some com-
mon functional words such as is, to, a are excluded from
the attributes. The visual features are acquired by finetuning
ResNet-101 [He et al., 2016] on PASCAL VOC 2012 for the
Faster R-CNN model. k is 4, 364, 359/123, 287 = 35 for MS
COCO and 1,179,149/31,783 = 37 for Flickr 30K, which
is the average number of detected proposals of each image in
the corresponding dataset. We did not finetune the above fea-
tures in the training of the LSTM model.

In the LSTM model, the number of hidden nodes of the
LSTM is set to 512, with word embedding size of 512. The
reward function in reinforcement learning is set to be the
CIDEr score. The robust parameter -y of the REINFORCE
sampling strategy is set to 0.5 from experimental results. In
training, we use the Adam optimizer with learning rate decay
and set initial learning rate of 5 x 10~*. We use 0.5 dropouts
of the output and feed back 5% of sampled words every 4
epochs until reaching a 25% feeding back rate [Bengio et al.,
2015]. A batch normalization layer [loffe and Szegedy, 2015]
is added to the beginning of the image encoder to accelerate
training with mini-batch size of 50. Additionally, for faster
convergence from random initial state, we adopt the orthogo-
nal initializer instead of the random Gaussian initializer.

4.2 Results

In this subsection, we first analyze the impact of each part in
our model by conducting ablation experiments, then present
some visualized results. We also compare our approach with
the state-of-the-art methods to show its outperformance.

Ablation Experiments

We conduct several ablation experiments to see the impor-
tance of each part in our model in Table 1. To study how the
low-level visual features and the introduced sampling strategy
influence the results separately, we divide the experiments
into two parts: with reinforcement learning (RL) and with-
out RL.

Firstly, with box proposals as the visual features (VS-
LSTM(Box Proposals)), the visual cell (VS-LSTM(w/o
LSTM")) and the semantic cell (VS-LSTM(w/o LSTM®))
are removed, respectively, as the baseline models in Table
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Attributes:
boy(0.83),
sign(0.71)
standing(0.52)-

Attributes:
boy(0.83),
sign(0.71)
holding(0.52)---

Figure 3: A visualized example showing that the localized objects are consistent with the detected semantic features. The digit in the brackets
beside the attribute indicates its probability. After replacing the attribute standing in figure (a) with holding in figure (b) while keeping others
unchanged, the corresponding box proposal moves from the boy’s body to his hand.

VS(RL, ¥) : a red and white plane Vé(RL, ¥) - a man sitting in a
flying in the sky. chair with a woman tying a tie.
GT: a plane that is flying in the ~ GT: a woman putting a tie on a

air. man as he sit at a table.

VS(RL, ¥) : a man standing next
to a truck.

GT: a man is walking while
pulling a wagon.

| A
VS(RL, y) : a dog laying on the
back of a boat.
GT: a cat sitting on top of a
red boat next to a dog.

Figure 4: Generated examples of our model. VS-LSTM(RL,~ is the proposed model and GT represents the ground truth captions. Here -y is
set to 0.5. The first two pictures present successful examples and the last two pictures show the failed ones.

1.The results prove that VS-LSTM(Box Proposals) acquires
clear improvements by processing low-level features in the
visual cell and high-level features in the semantic cell suc-
cessively. Besides, since the output uniform grids of the
CNN model can also be regarded as the low-level visual
features, we conduct an ablation experiment with the out-
put uniform grids as the visual features on MS COCO. VS-
LSTM(Uniform Grids) is our model with the 14 x 14 output
feature map of ResNet-101 as the low-level visual features.
From the results in Table 1, VS-LSTM(Box Proposals) with
the object proposals as the visual features performs better
than VS-LSTM(Uniform Grids). This can be explained be-
cause the box proposals which segment objects from the im-
age make it easier to localize the corresponding objects in the
visual cell, whereas the output uniform grids blur the bound-
aries between objects and thus cause misrecognition of the
localized objects.

Sencondly, ablation experiments about how the introduced
sampling strategy of RL influences the results are shown in
Table 1. We use box proposals as the visual features in the
following experiments since they prove to have better per-
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formance in our model. VS-LSTM(RL) is our model with
the same sampling strategy in [Rennie et al., 2017] and VS-
LSTM(RL, ) is our model by importing the state perturba-
tion term into the sampling strategy with different ~ values.
We can tell that the perturbation term with v = 0.5 is optimal
to further improve the RL results. This is because small vy di-
verges from the optimal solution whereas large -y reduces ex-
ploration of the vocabularies. By sampling a word which has
lower reward but similar state with appropriate 7, the model
can expand the exploration of the whole vocabularies as well
as balance the training between the frequent words and the
less frequent words.

Visualized Results

To see which objects the model focuses on when generating
each word, we visualize the results in Figure 3. The bound-
ing box with the highest attention value is selected as the most
relevant proposal of the corresponding word. We can tell that
the selected proposals by the visual cell are quite consistent
with the detected attributes. For example, after we replace the
attribute standing in Figure 3(a) with holding in Figure 3(b),
the corresponding proposal moves its position from the boy’s



Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)

MS COCO Flickr30K
Method
B-1 B-2 B-3 B-4 METEOR CIDEr ‘ B-1 B-2 B-3 B-4 METEOR CIDEr
Hard-ATT[Xu et al., 2015] 71.8 50.4 35.7 25.0 23.0 - 66.9 439 24.0 15.7 153 -
Semantic-ATT? [You et al., 2016] 70.9 53.7 40.2 30.4 243 - 64.7 46.0 324 23.0 - -
CNN_L+RHN [Gu et al., 2016] 723 55.3 41.3 30.6 25.2 98.9 73.8 56.3 41.9 30.7 20.6 -
SCA-CNN [Chen et al., 2017] 71.9 54.8 41.1 31.1 25.0 95.2 66.2 46.8 32.5 223 19.5 447
Ada-ATT [Lu et al., 2017] 74.2 58.0 43.9 33.2 26.6 108.5 67.7 494 354 25.1 20.4 53.1
ATT-kCC [Mun et al., 2017] 74.9 58.1 43.7 32.6 25.7 102.4 - - - - - -
LSTM-A5 [Yao et al., 2017] 73.4 56.7 43.0 32.6 25.4 100.2 - - - - - -
Att-CNN+LSTM [Wu et al., 2016] 74 56 42 32 26 94 73.0 55.0 40.0 28.0 - -
SCN-LSTM [Gan et al., 2017] 74.1 57.8 44.4 34.1 26.1 104.1 74.7 55.2 40.3 28.8 223 -
MAT [Liu et al., 20171 73.1 56.7 429 323 25.8 105.8 - - - - - -
Skel-Attr-LSTM [Wang et al., 2017b] 742 57.7 44.0 33.6 26.8 107.3 - - - - - -
* 4 Att2in [Rennie et al., 2017] - - - 34.8 26.9 115.2 - - - - - -
Ours-VS-LSTM(Box Proposals) 76.3 59.4 44.8 343 26.9 110.2 ‘ 74.1 56.6 42.5 30.1 225 62.7
* Ours-VS-LSTM(RL,y = 0.5) 78.9 634 48.1 36.3 27.3 120.8 ‘ 75.5 571 429 31.7 22.9 71.5

Table 2: Results on MS COCO and Flickr30K test split in comparison with other methods. B-n stands for BLEU-n metric. - represents for
unknown result. Methods marked with * adopt reinforcement learning for CIDEr optimization.

Method ‘ s c40
‘ B-1 B-2 B-3 B-4 METEOR  ROUGE-L  CIDEr ‘ B-1 B-2 B-3 B-4 METEOR  ROUGE-L  CIDEr
Hard-ATT 705 528 383 277 24.1 51.6 86.5 88.1 779 658 537 322 65.4 89.3
Semantic-ATT? 73.1 565 424 316 25.0 53.5 94.3 92 81.5 709 599 335 68.2 95.8
SCA-CNN 712 542 404 302 244 524 91.2 89.4 802  69.1 57.9 33.1 67.4 92.1
Ada-ATT 748 584 444 336 26.4 55.0 104.2 920 845 744 637 359 70.5 105.9
ATT-kCC 743 575 431 32.1 25.5 53.9 98.7 915 832 722  60.7 34.1 68.6 100.1
LSTM-A3 787 627 476  35.6 27.0 56.4 116.0 937 867 765 652 35.4 70.5 118.0
Att-CNN+LSTM 73 56 41 31 25 53 92 89 80 69 58 33 67 93
SCN-LSTM 740 575 436 331 25.7 54.3 100.3 91.7 839 739 63.1 34.8 69.6 101.3
MAT 734 568 427 320 25.8 54.0 102.9 91.1 83.1 727 617 34.8 69.1 106.4
4 Att2in 78.1 619 47.0 352 27.0 56.3 114.7 93.1 86.0 759 645 355 70.7 116.7
Ours-VS-LSTM(RL,y = 0.5) ‘ 788 628 479 359 27.0 56.5 116.6 ‘ 946 875 773 663 353 70.3 119.5

Table 3: Results on the online MS COCO test server. All metrics are reported using ¢5 and c40 references.

body to his hand. This indicates that by localizing and de-
scribing objects successively in an unified network, the gen-
erated attention can be more specific as well as accurate.

Some examples of the generated captions are shown in Fig-
ure 4. The images are selected from the 5000 images in the
public available test split [Karpathy and Fei-Fei, 2015] on MS
COCO. The first two pictures present successful generated
captions while the last two pictures show the typical failed
examples. By localizing and describing objects successively
in the visual-semantic LSTM, our model can find primary ob-
jects in the image and describe them with detailed attributes,
such as red and white plane in the first picture. However,
since the detected proposals and attributes may not be accu-
rate, some objects are misrecognized and left out in the gen-
erated captions. For example, the model misrecognizes the
wagon as truck in the third picture, and misses the cat in the
fourth picture.

Comparison with Other Methods

In Table 2, we choose our model VS-LSTM(RL, v = 0.5))
that has the best performance in the ablation experiments to
compare with the recent state-of-the-art results. Since per-
forming RL for CIDEr optimization can bring a boost in
performance [Rennie er al., 2017], for fair comparison, we
present our results without RL (VS-LSTM(Box Proposals))
and with RL (VS-LSTM(RL, v = 0.5)). Methods marked
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with * adopt RL for CIDEr optimization. We can see that the
proposed model outperforms the other results on most met-
rics with and without RL.

In addition, we also report our results on the online
MS COCO test server in Table ??. Both our model VS-
LSTM(RL, v = 0.5) and the model 4Att2in adopt RL for
CIDEr optimization, but our gain drops to 116.9 CIDEr on the
test server. Our VS-LSTM(RL, v = 0.5) is a single model
whereas 4Att2in uses ensemble models. In addition, we set
~ value at an interval of 0.2, and thus v = 0.5 may not be
optimal. Still, the proposed VS-LSTM(RL, v = 0.5) outper-
forms the compared methods on most metrics.

5 Conclusion

In this paper, A novel visual-semantic LSTM based model
named VS-LSTM is proposed. By first localizing the objects
in the visual cell with low-level features, and then describing
them in the semantic cell with high-level features, VS-LSTM
automatically recognizes the objects with their correspond-
ing states when generating each word. In addition, in the re-
inforcement learning process, by importing a state perturba-
tion term, the proposed model can explore proper vocabular-
ies and balance the training between the frequent words and
the less frequent words. Experimental results on MS COCO
and Flickr30K prove the effectiveness of our model with re-
spect to existing methods.
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