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Abstract
Image segmentation has been explored for many
years and still remains a crucial vision problem.
Some efficient or accurate segmentation algorithms
have been widely used in many vision applications.
However, it is difficult to design a both efficient
and accurate image segmenter. In this paper, we
propose a novel method called DEL (deep embed-
ding learning) which can efficiently transform su-
perpixels into image segmentation. Starting with
the SLIC superpixels, we train a fully convolutional
network to learn the feature embedding space for
each superpixel. The learned feature embedding
corresponds to a similarity measure that measures
the similarity between two adjacent superpixels.
With the deep similarities, we can directly merge
the superpixels into large segments. The evaluation
results on BSDS500 and PASCAL Context demon-
strate that our approach achieves a good trade-
off between efficiency and effectiveness. Specifi-
cally, our DEL algorithm can achieve comparable
segments when compared with MCG but is much
faster than it, i.e. 11.4fps vs. 0.07fps.

1 Introduction
Image segmentation aims to partition an image into large
perceptual regions, where pixels within each region usu-
ally belong to the same visual object, object part or large
background region with tiny feature difference, e.g. color,
gradient, texture, and intensity. Image segmentation has
been widely used in mid-level and high-level vision tasks,
such as object proposal generation [Pont-Tuset et al., 2017;
Zhang et al., 2017], tracking [Wang et al., 2011], object de-
tection/recognition [Juneja et al., 2013], semantic segmenta-
tion [Farabet et al., 2013], and so on. This technique has been
studied for many years, but still remains a main challenge in
computer vision.

In general, image segmentation addresses two aspects, the
reliability of segmentation results and efficiency for applica-
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tions. An appropriate segmented image can be used as in-
put to significantly improve the performance of many vision
tasks. Furthermore, the computational time and memory con-
sumption determine whether it is suitable for many practical
applications or not, because image segmentation is often used
as a preprocessing step in other vision applications. However,
it is difficult for existing methods to balance the segmenta-
tion accuracy and computational time. Although MCG [Pont-
Tuset et al., 2017] and gPb [Arbeláez et al., 2011] can gener-
ate high-quality segments, they are too slow to be applied in
time-sensitive tasks. The running time of EGB [Felzenszwalb
and Huttenlocher, 2004] is nearly proportional to the number
of image pixels, so it is very fast. But it suffers poor accu-
racy especially on the region evaluation metric and thus can
not satisfy today’s vision tasks. HFS [Cheng et al., 2016] can
perform real-time segmentation. However, the segmentation
results are not satisfactory, especially on the region evalua-
tion metric. It is difficult to design an ideal algorithm that can
simultaneously satisfy the requirements of effectiveness and
efficiency.

Similar but slightly different from image segmentation, su-
perpixel generation usually refers to an oversegmentation. It
segments an input image into small, regular and compact re-
gions, which is distinct from the large perceptual regions gen-
erated by image segmentation techniques. Oversegmentation
usually has strong boundary coherence, and the number of
produced superpixels can be easy to control. Since superpixel
methods are usually designed to generate small segments, it
is inappropriate to directly use them to generate large regions.
However, superpixel algorithms provide a good start for im-
age segmentation.

In this paper, we aim to design an image segmentation al-
gorithm that can make a good trade-off between efficiency
and effectiveness. Considering the efficiency, our effort starts
with a fast superpixel generation method, the GPU version of
SLIC [Achanta et al., 2012; Ren et al., 2015]. In the past few
years, convolutional neural networks have pushed the bound-
aries of many computer vision tasks. Since deep features can
represent much richer information than hand-crafted features,
we train a fully convolutional network to learn the deep fea-
ture embedding space that encodes the deep representation
of each superpixel. We introduce a deep embedding metric
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that converts the feature embedding vectors of adjacent su-
perpixels to a similarity value. Each similarity value repre-
sents the probability that two adjacent superpixels belong to
the same region. By this way, we can train the deep embed-
ding space end-to-end to learn the similarity between each
pair of superpixels. A novel network that combines the fea-
tures of fine details from bottom sides and high-level infor-
mation from top sides is proposed for the embedding learn-
ing. We merge the adjacent superpixels into large image seg-
ments if the learned similarities between them are larger than
a threshold. This simple merging operation can achieve bet-
ter performance than HFS’s hierarchical merging due to the
powerful representation of deep features.

We conduct extensive experiments on BSDS500 [Arbeláez
et al., 2011] and PASCAL Context [Mottaghi et al., 2014]
datasets to evaluate the proposed image segmentation algo-
rithm. To evaluate our algorithm in applications, we apply
our segmentation results to object proposal generation on the
PASCAL VOC2007 dataset [Everingham et al., 2007]. The
evaluation results demonstrate that our algorithm achieves a
good trade-off between efficiency and effectiveness. Specif-
ically, our proposed DEL can achieve comparable segmen-
tation results when compared with state-of-the-art methods,
while much faster than them, e.g. 11.4fps of DEL vs. 0.07fps
of MCG. This means DEL has the potential to be used in
many practical applications. The code of this paper is avail-
able at https://github.com/yun-liu/del.

1.1 Related Work
In the past several decades, researchers have contributed lots
of useful works to this field. Due to the limitation of space, we
only review some typical algorithms here. Shi et al. [2000]
viewed image segmentation as a graph partitioning prob-
lem. A novel Normalized Cut criterion was proposed to
measure both the total similarity within each segment and
the total dissimilarity between different segments. Comani-
ciu et al. [2002] proposed Mean Shift, based on the old pat-
tern recognition procedure of mean shift. Felzenszwalb et
al. [2004] proposed an efficient graph based algorithm, EGB.
The edge-based method, gPb [Arbeláez et al., 2011], com-
bines multiscale local features and spectral clustering to pre-
dict edges and then converts these edges to a segmentation
using an oriented watershed transform algorithm. Pont-Tuset
et al. [2017] combined multiscale hierarchical regions to ac-
quire accurate segmentation (MCG).

With the development of superpixel generation [Achanta et
al., 2012], some methods attempt to start with superpixels and
then merge these superpixels into perceptual regions. ISCRA
[Ren and Shakhnarovich, 2013] uses gPb to generate high-
quality superpixels. A dissimilarity score is learned for adja-
cent superpixels using various features, including color, tex-
ture, geometric context, SIFT, shape, and boundary. Cheng
et al. [2016] firstly built a real-time image segmentation sys-
tem by a hierarchical merging of superpixels using carefully
selected parallelizable features. The combination weights of
selected features are retrained at each merging stage. Our
proposed method falls into this category, too. But our method
uses a deep convolutional neural network to extract powerful
deep representation for this task, and thus can obtain better

perceptual regions. We will introduce our method in detail in
the next section.

2 Our Approach
Our approach starts with SLIC [Achanta et al., 2012] super-
pixels. We first train a deep network to learn similarities be-
tween neighboring superpixels, and then directly merge them
using the learned similarities. In this section, we will de-
scribe our algorithm’s five components in detail, which are
superpixel generation, feature embedding learning, network
architecture, superpixel merging, and implementation details
in order.

2.1 Superpixel Generation
Image segmentation algorithms group pixels into large per-
ceptual regions, where pixels in the same region have greater
similarities than pixels in different regions. However, when
grouping pixels using similarity distance metrics, the algo-
rithms usually consume too much time because the running
time of the algorithm is highly related to the number of pix-
els in an image. Furthermore, the algorithm lacks robustness
when directly merging pixels. Considering these two aspects,
our algorithm starts with a fast superpixel generation method,
SLIC [Achanta et al., 2012], which is based on the k-means
clustering algorithm. The number of superpixels is much less
than the original pixels, so this makes it possible to improve
efficiency. One superpixel is a small region, and thus more
robust than single pixels.

In general, superpixel algorithms cannot be directly ap-
plied to image segmentation because large perceptual regions
are usually not regular and related to the global information in
an image, unlike superpixels. Inspired by HFS that starts with
superpixels and uses carefully designed features to merge
them hierarchically, our algorithm learns a similarity metric
between adjacent superpixels. SLIC is one widely used super-
pixel algorithm among many state-of-the-art algorithms due
to its simplicity and efficiency. We choose the GPU version
of SLIC, gSLIC[Ren et al., 2015], as the start of our method.
In order to balance the running time and the boundary adher-
ence of the generated superpixels, we control each superpixel
to contain about 64 pixels. Suppose we have M superpix-
els for an image I now. The set of generated superpixels is
denoted as S = {S1, S2, · · · , SM}, Si = {1, 2, · · · , |I|}|Si|.

2.2 Feature Embedding Learning
After generating superpixels, we start to train a deep con-
volutional neural network to learn the feature embedding
space. As shown in Figure 1, we perform pooling opera-
tion on the feature embedding space to get feature vectors
~v = {~v1, ~v2, ~v3, · · · , ~vM} corresponding to the superpixels.
Each feature vector is the average of the learned deep feature
maps in the corresponding region of the superpixel. It can be
formulated as follows:

~vi =
1

|Si|
∑
k∈Si

~xk, (1)

where ~xk denotes the feature vector within the region of the i-
th superpixel. We call this pooling operation superpixel pool-
ing. Each feature embedding vector ~vi has 64 dimensions in
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Figure 1: The pipeline of our DEL image segmentation algorithm.

our design. The backwards function of the superpixel pooling
layer with respect to input ~xk can be written as

∂L

∂~xk
=

∑
Si∈S

1{k∈Si} ·
1

|Si|
· ∂L
∂~vi

, (2)

in which 1{k∈Si} is an indicator function.
We design a distance metric to measure the similarities be-

tween adjacent superpixels. The proposed distance metric can
be formulated as

dij =
2

1 + exp(‖~vi − ~vj‖1)
. (3)

The similarity di,j ranges in [0, 1]. It is close to 1 when vi
and vj are similar, and is close to 0 when vi and vj are ex-
tremely different. Since the distance metric is established, we
consider the similarity loss function as follows:

L = −
∑
Si∈S

∑
Sj∈R

[(1− α) · lij · log(dij)

+ α · (1− lij) · log(1− dij)],
(4)

where lij = 1 denotes vi and vj belongs to the same region,
and lij = 0 denotes vi and vj belongs to different regions. R
is the set of adjacent superpixels of the superpixel Si. α =
|Y+|/|Y |, denotes the proportion of the pairs of superpixels
belonging to the same regions in the ground truth. We use
this parameter to balance the positive samples and negative
samples.

Using this similarity loss, we can learn the feature embed-
ding space in an end-to-end manner. The similarities between
the pairs of superpixels in the same ground truth segments are
expected to be larger than the similarities of the pairs of su-
perpixels belonging to different segments. In the next step,
we will use the learned similarity distance metric to merge
these superpixels.

2.3 Network Architecture
In this section, we introduce our network architecture which
is used to learn the feature embedding space. Our network
is built based on the VGG16 net [Simonyan and Zisser-
man, 2014] and inspired by recent works [Liu et al., 2017;
2018]. The convolutional layers in VGG16 can be divided
into five convolution stages by the pooling layers. As shown
in Figure 2, we cut the pool5 layer and the fully connected
layers of the VGG16 Net. Because of the low resolution of

𝟑 × 𝟑 𝒄𝒐𝒏𝒗, 𝟏 × 𝟏 𝒄𝒐𝒏𝒗,
𝒏𝒐𝒓𝒎𝒂𝒍𝒊𝒛𝒆

𝟑 × 𝟑 𝒄𝒐𝒏𝒗

Image Superpixel

Superpixel Pooling

conv1

conv2

conv3

conv4

conv5

Similarity Loss

Feature Vectors

𝟏 × 𝟏 𝒄𝒐𝒏𝒗

Feature Embedding Space

Figure 2: The network architecture for feature embedding learning.

the side output from the conv5 stage, we modify the stride of
pool4 from 2 to 1. The hole algorithm [Chen et al., 2015a]
is used to keep receptive field sizes of convolutional layers in
the fifth stage the same as the original VGG16 network. We
consider that the learned features become coarser and coarser
when the network goes deep. The fine features contain more
detail information meanwhile the coarse features represent
global information. The features from five stages are con-
catenated to combine the coarse and global information with
the fine and local information.

Specifically, we connect a 3× 3 convolution layer on side-
1-5 with 32, 64, 128, 256, 256 output channels, respectively.
After the 3× 3 convolution layer, a 1× 1 convolution layer is
connected with 32, 64, 64, 128, 128 output channels for side-
1-5, respectively. Since the feature scales of different convo-
lution stages are different, direct concatenating features from
multiple stages will make features from some stages no sense.
Therefore, we normalize the responses of different stages us-
ing the L2 normalization technique introduced in [Liu et al.,
2016]. After the normalization, we concatenate the feature
maps from all sides and a 3 × 3 convolution layer with 256
output channels is followed. Finally, we get the 64-dimension
feature embedding space using a convolutional layer with ker-
nel size 1×1. As illustrated in section3.2, we pool the feature
embeddings to feature vectors corresponding to the superpix-
els, then use the proposed similarity loss to train the network.
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2.4 Superpixel Merging
The dissimilarities between adjacent superpixels learned by
the deep neural network are used to merge the superpix-
els into perceptual regions. A threshold is set to deter-
mine whether two adjacent superpixels should be merged or
not. The pseudo code of superpixel merging is displayed
in Algorithm 1. For the efficiency of merging, we use the
data structure of universe in EGB [Felzenszwalb and Hut-
tenlocher, 2004]. Unlike the hierarchical merging strategy in
HFS [Cheng et al., 2016], we perform merging operation only
once. HFS uses a linear combination of some low-level fea-
tures and retrains the combinatorial weights at each merging
stage. The single-stage merging of DEL can also outperform
HFS by a large margin. We will show the details in the exper-
iment part.

Algorithm 1 Superpixel merging algorithm of DEL

Input: Image I , dissimilarity f = (1 − d), threshold T ,
superpixels S = {S1, S2, · · · , SM}
Construct R = {R1, R2, · · · , RM}, in which Ri is the set
of adjacent superpixels of Si

for each Si ∈ S do
for each Sj ∈ Ri do

if fi,j < T : then
Si ← Si ∪ Sj ,S ← S\Sj

UpdateR
end if

end for
end for
Output: Segmentation S

2.5 Implementation Details
Our network is based on Caffe, which is a widely used deep
learning framework. Generally speaking, the segmented re-
gions usually refer to the visual objects, object parts or the
partial background. Therefore, we firstly pretrain our net-
work for the semantic segmentation task on the SBD [Har-
iharan et al., 2011] dataset to acquire semantic information
for the network. The network is tuned by replacing the fea-
ture embedding space with a classification layer for semantic
segmentation task.

We then fine-tune the pretrained model for the feature em-
bedding space. We use the stochastic gradient descent (SGD)
technique to optimize the neural network. The basic learning
rate is set to 1e-5. We use a weight decay of 0.0002 and batch
size of 5. The learning rate policy of step is used, and we
totally run SGD for 10000 iterations with step size of 8000.
The learning rate of the feature embedding layer is set larger
than the basic convolutional layers as suggested in deep met-
ric learning.

Data augmentation has been proven to be important for
deep learning. When training our feature embedding model
on the BSDS500 dataset [Arbeláez et al., 2011] that consists
of 300 trainval images and 200 test images, we augment the
trainval set. The images are rotated to 16 direction angles and
also flipped at each angle. We then crop the largest rectangle
from the transformed images, resulting in 9600 training im-
ages. When training on the PASCAL Context dataset that is

Methods Boundary Region Time (s)ODS OIS ODS OIS
DEL-Max 0.703 0.738 0.323 0.389 0.088

DEL-conv5 0.667 0.695 0.278 0.343 0.070
DEL-EGB 0.662 0.686 0.305 0.325 0.091

DEL 0.704 0.738 0.326 0.397 0.088
DEL-C 0.715 0.745 0.333 0.402 0.165

Table 1: The ablation study on BSDS500 dataset.

divided into 7605 trainval images and 2498 test images, we
only flip the trainval images for training because the number
of images in this set is adequate.

3 Experiments
In this section, we first evaluate our DEL method on the
BSDS500 dataset [Arbeláez et al., 2011] and the PASCAL
Context dataset [Mottaghi et al., 2014] for image segmenta-
tion. In order to evaluate the segmentation quality in appli-
cations, we use the segmented regions to generate object pro-
posals on the PASCAL VOC2007 dataset [Everingham et al.,
2007]. For the evaluation of image segmentation, we use the
publicly available benchmark SEISM [Pont-Tuset and Mar-
ques, 2016]. Optimal dataset scale (ODS) usually refers to
the best performance when selecting optimal parameters for
the whole dataset, while optimal image scale (OIS) refers to
the best performance when selecting special parameters for
each image. We report the boundary F-measure (Fb) and re-
gion F-measure (Fop) at ODS and OIS. For the evaluation of
object proposals, we report the detection recall (DR) when
varying the number of proposals. We compare our DEL
with some state-of-the-art segmentation algorithms, includ-
ing EGB [Felzenszwalb and Huttenlocher, 2004], Mean Shift
[Comaniciu and Meer, 2002], NCuts [Cour et al., 2005], gPb-
UCM [Arbeláez et al., 2011], MCG [Pont-Tuset et al., 2017],
SLIC [Achanta et al., 2012], GPU-SLIC [Ren et al., 2015],
and HFS [Cheng et al., 2016]. In addition to the GPU version
of SLIC, we also use the CPU version of SLIC to generate
superpixels for DEL, and we call this variant DEL-C.

3.1 Ablation Study
BSDS500 [Arbeláez et al., 2011] is the standard benchmark
for image segmentation, oversegmentation, and edge detec-
tion. We use this dataset to evaluate the different choices of
each DEL’s component. The first variant, which is denoted
as DEL-Max, replaces the average operation with maximum
operation in superpixel pooling while keeping other compo-
nents as the same with DEL. The second variant, DEL-conv5,
only uses the final convolutional layer (conv5) of VGG16 net.
The third variant, DEL-EGB, applies the merging strategy of
EGB by viewing each superpixel as a node in the graph par-
titioning problem.

The evaluation results are summarized in Table 1. Com-
pared with the original DEL, these variants achieve worse
performance. It demonstrates the initial choices of the DEL’s
components are reasonable. For example, our proposed net-
work architecture in DEL can capture both fine-level and
coarse-level information, while the naive design of DEL-
conv5 only uses coarse-level information. Thus DEL is much
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Figure 3: The evaluation results on BSDS500 dataset. Left: Boundary measure. Right: Region measure.
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Figure 4: The evaluation results on PASCAL Context dataset. Left: Boundary measure. Right: Region measure.

better than DEL-conv5. Moreover, EGB seems to be useless
for superpixel merging. Maximum pooling is slightly worse
than average pooling. It conforms to our intuition that maxi-
mum and average pooling usually have similar effects.

3.2 Evaluation on BSDS500 Dataset
Since ODS F-measure is the most important metric for seg-
mentation, we show the ODS F-measure vs. running time in
Figure 3. Although our proposed DEL does not achieve the
best performance, it achieves a good trade-off between effi-
ciency and effectiveness. Among these methods, the fastest
one is HFS [Cheng et al., 2016] which can run at real time.
However, it suffers poor performance, especially for the re-
gion evaluation metric. Thus it can not satisfy today’s vision
tasks despite its high speed. SLIC [Achanta et al., 2012] and
GPU-SLIC [Ren et al., 2015] seem to struggle on image seg-
mentation. It fits our intuition that oversegmentation methods
are not suitable for image segmentation. The improvement
from GPU-SLIC/SLIC to DEL/DEL-C demonstrates the ef-
fectiveness of our deep embedding feature learning paradigm.
It is interesting to find that GPU-SLIC performs slightly
worse than SLIC, and DEL also performs slightly worse than
DEL-C. But we choose DEL as the default setting because
of the efficiency of GPU-SLIC despite its poor performance.

Methods Boundary Region Time (s)ODS OIS ODS OIS
HFS 0.652 0.686 0.249 0.272 0.024
EGB 0.636 0.674 0.158 0.240 0.108
SLIC 0.529 0.565 0.146 0.182 0.085

GPU-SLIC 0.522 0.547 0.085 0.132 0.007
MShift 0.601 0.644 0.229 0.292 4.95
NCuts 0.641 0.674 0.213 0.270 23.2

gPb-UCM 0.726 0.760 0.348 0.385 86.4
MCG 0.747 0.779 0.380 0.433 14.5
DEL 0.704 0.738 0.326 0.397 0.088

DEL-C 0.715 0.745 0.333 0.402 0.165

Table 2: The evaluation results on BSDS500 dataset.

Replacing SLIC with more accurate superpixel generation
methods may lead to better performance. DEL provides a
converter from superpixels to segmentation. New superpixel
techniques will benefit image segmentation in this way. Al-
though MCG [Pont-Tuset et al., 2017] achieves accurate re-
sults, their low speeds limit their application in many vision
tasks. Note that there is no straightforward GPU implementa-
tion of MCG, because MCG is not a parallelizable algorithm.

The numeric comparison is summarized in Table 2. The
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Methods Boundary Region Time (s)ODS OIS ODS OIS
HFS 0.472 0.495 0.223 0.231 0.026
EGB 0.432 0.454 0.198 0.203 0.116
SLIC 0.359 0.409 0.149 0.160 0.099

GPU-SLIC 0.322 0.340 0.133 0.157 0.010
MShift 0.397 0.406 0.204 0.214 5.32
NCuts 0.380 0.429 0.219 0.285 33.4
MCG 0.554 0.609 0.356 0.419 17.05
DEL 0.563 0.623 0.349 0.420 0.108

DEL-C 0.570 0.631 0.359 0.429 0.193

Table 3: The evaluation results on PASCAL Context dataset.

ODS Fb and Fop of DEL is 5.2% and 7.7% higher than HFS,
respectively. For speed, HFS achieves 41.7fps compared with
the 11.4fps of DEL. The accuracy improvement from HFS
to DEL is important for many applications. Compared with
EGB, DEL achieves better performance both in accuracy and
speed. DEL can generate comparable results with state-of-
the-art performance, but is much faster. Thus DEL achieves
a good trade-off between effectiveness and efficiency. This
makes DEL suitable for many high-level vision tasks. We
display some qualitative comparisons in Figure 6. We can see
that DEL can adapt to complex scenarios and produce more
accurate and regular segmented regions.

3.3 Evaluation on PASCAL Context Dataset
PASCAL Context dataset [Mottaghi et al., 2014] contains 540
categories for semantic segmentation. Due to the pixel-wise
labeling of the whole image, it can be used to evaluate image
segmentation methods. The semantic labeling is converted to
ground truth segmentation regions by connectivity labeling.
We train our model on the trainval set and test on the test
set. Since there are more test images, this dataset is more
challenging than BSDS500.

We summarize the evaluation results in Figure 4. DEL
and DEL-C achieve better performance than MCG. More-
over, DEL is about 160 times faster than MCG. One can see
that DEL has a good trade-off between accuracy and run-
time. We list numeric results in Table 3. DEL is 9.1% and
12.6% higher than HFS on boundary metric and region met-
ric, respectively. This indicates that our learned deep fea-
tures are more effective than the hand-crafted features used
in HFS. Thus this work is a good start to adopt deep features
for generic image segmentation.

3.4 Object Proposal Generation
Object proposal generation is necessary for a series of mid-
level and high-level vision tasks such as object detection [Gir-
shick, 2015] and instance semantic segmentation [Arnab and
Torr, 2017]. Many proposal generation algorithms have been
presented, and a considerable portion of these methods are
based on image segmentation. To evaluate our proposed DEL
in practical applications, we apply it to object proposal gener-
ation. MTSE [Chen et al., 2015b] uses the segmented regions
of EGB to refine the locations of existing proposals generated
by other proposal generation methods. As shown in [Chen et
al., 2015b], the BING algorithm [Cheng et al., 2014] has the
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Figure 5: The evaluation of object proposals on PASCAL VOC2007
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Figure 6: Some qualitative comparisons. The first column displays
original images from BSDS500 dataset. The last four columns show
the results generated by EGB, HFS, MCG, and our DEL method,
respectively.

most significant improvement in performance when MTSE
is used as a post-processing step. Thus we replace EGB in
MTSE with our DEL to refine the bounding boxes produced
by BING. We show the detection recall with IoU overlap 0.7
versus the number of proposals in Figure 5. One can see that
MTSE has significant improvement with our DEL segmenta-
tion. More experiments of applications are out of scope of
this paper, but the proposal evaluation demonstrates the ef-
fectiveness of DEL in practical applications.

4 Conclusion
In this paper, we propose a deep learning based image seg-
mentation algorithm. Specifically, We first use the fast SLIC
algorithm to generate superpixels of an input image. Then,
the deep embedding feature space that encodes high-level
and low-level representation of each superpixel is learned.
We propose a similarity metric to convert the learned em-
bedding vector to a similarity value. A simple superpixel
merging is performed to obtain perceptual regions accord-
ing to the similarity values. Our proposed DEL method
achieves a good trade-off between efficiency and effective-
ness. It makes DEL have the potential to be applied to
many vision tasks. Applying DEL to object proposal gen-
eration, the quality of generated proposals is significantly im-
proved. In the future, we plan to explore DEL in other appli-
cations such as [Pont-Tuset et al., 2017; Wang et al., 2011;
Juneja et al., 2013].

Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)

869



Acknowledgments
This research was supported by NSFC (NO. 61620106008,
61572264), Huawei Innovation Research Program, and Fun-
damental Research Funds for the Central Universities.

References
[Achanta et al., 2012] Radhakrishna Achanta, Appu Shaji,

Kevin Smith, Aurelien Lucchi, Pascal Fua, and Sabine
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