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Abstract

Weakly supervised object detection has recently re-
ceived much attention, since it only requires image-
level labels instead of the bounding-box labels con-
sumed in strongly supervised learning. Neverthe-
less, the save in labeling expense is usually at the
cost of model accuracy. In this paper, we pro-
pose a simple but effective weakly supervised col-
laborative learning framework to resolve this prob-
lem, which trains a weakly supervised learner and
a strongly supervised learner jointly by enforcing
partial feature sharing and prediction consistency.
For object detection, taking WSDDN-like archi-
tecture as weakly supervised detector sub-network
and Faster-RCNN-like architecture as strongly su-
pervised detector sub-network, we propose an end-
to-end Weakly Supervised Collaborative Detection
Network. As there is no strong supervision avail-
able to train the Faster-RCNN-like sub-network, a
new prediction consistency loss is defined to en-
force consistency of predictions between the two
sub-networks as well as within the Faster-RCNN-
like sub-networks. At the same time, the two detec-
tors are designed to partially share features to fur-
ther guarantee the model consistency at perceptual
level. Extensive experiments on PASCAL VOC
2007 and 2012 data sets have demonstrated the ef-
fectiveness of the proposed framework.

1

Learning frameworks with Convolutional Neural Network
(CNN) [Girshick, 2015; Ren et al., 2015; Redmon and
Farhadi, 2016] have persistently improved the accuracy and
efficiency of object detection over the recent years. How-
ever, most existing learning-based object detection methods
require strong supervisions in the form of instance-level an-
notations (e.g. object bounding boxes) which are labor ex-
tensive to obtain. As an alternative, weakly supervised object
detection explores image-level annotations that are more ac-
cessible from rich media data [Thomee ef al., 2015].
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A common practice for weakly supervised object detec-
tion is to model it as a multiple instance learning (MIL) prob-
lem, treating each image as a bag and the target proposals
as instances. Therefore, the learning procedure is alternating
between training an object classifier and selecting most confi-
dent positive instances [Bilen et al., 2015; Cinbis et al., 2017,
Zhang et al., 2006]. Recently, CNNs are leveraged for
the feature extraction and classification [Wang er al., 2014].
Some methods further integrate the instance selection step in
deep architectures by aggregating proposal scores to image-
level predictions [Wu et al., 2015; Bilen and Vedaldi, 2016;
Tang et al., 2017] and build an efficient end-to-end network.

While the above end-to-end weakly supervised networks
have shown great promise for weakly supervised object de-
tection, there is still a large gap in accuracy compared to their
strongly supervised counterparts. Several studies have at-
tempted to combine these two detectors in a cascaded manner,
aiming to further refine coarse detection results by leverag-
ing powerful strongly supervised detectors[Tang er al., 2017;
Dong et al., 2017]. Generally, instance-level predictions from
a trained weakly supervised detector are used as pseudo la-
bels to train strongly supervised detectors. However, these
methods only consider a one-off unidirectional connection
between two kind of detectors, making the prediction accu-
racy of the strongly supervised detectors depend heavily on
that of the corresponding weakly supervised detectors.

In this paper, we propose a novel weakly supervised collab-
orative learning (WSCL) framework which bridges weakly
supervised and strongly supervised learners in a unified learn-
ing process. The consistency of two learners, for both shared
features and model predictions, is enforced under the WSCL
framework. Focusing on object detection, we further develop
an end-to-end weakly supervised collaborative detection net-
work, as illustrated in Fig. 1. A WSDDN-like architecture
is chosen for weakly supervised detector sub-network and a
Faster-RCNN-like architecture is chosen for strongly super-
vised detector sub-network. During each learning iteration,
the entire detection network takes only image-level labels
as the weak supervision and the strongly supervised detec-
tor sub-network is optimized in parallel to the weakly super-
vised detector sub-network by a carefully designed prediction
consistency loss, which enforces the consistency of instance-
level predictions between and within the two detectors. At
the same time, the two detectors are designed to partially
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Figure 1: The proposed weakly supervised collaborative learning

framework. A weakly supervised detector and a strongly supervised
detector are integrated into a unified architecture and trained jointly.

share features to further guarantee the model consistency at
perceptual level. Experimental results on the PASCAL VOC
2007 and 2012 data sets have demonstrated that the two de-
tectors mutually enhance each other through the collaborative
learning process. The resulting strongly supervised detector
manages to outperform several state-of-the-art methods. The
main contributions of the paper are summarized as follows.

e We propose a new collaborative learning framework for
weakly supervised object detection, in which two types of
detectors are trained jointly and mutually enhanced.

To optimize the strongly supervised detector sub-network
without strong supervisions, a prediction consistency loss
is defined between the two sub-networks as well as within
the strongly supervised detector sub-network.

We experiment with the widely used PASCAL VOC 2007
and 2012 data sets and show that the proposed approach
outperforms several state-of-the-art methods.

2  Weakly Supervised Collaborative Learning
Framework

Given two related learners, one weakly supervised learner
Dy and one strongly supervised learner Dg, we propose a
weakly supervised collaborative learning (WSCL) framework
to jointly train the two learners, leveraging the task similarity
between the two learners. As shown in Fig. 2(a), Dy learns
from weak supervisions and generates fine-grained predic-
tions such as object locations. Due to lack of strong super-
visions, Dg cannot be directly trained. But it is expected that
Dg and Dyy shall output similar predictions for the same im-
age if trained properly. Hence, Dg learns by keeping its pre-
dictions consistent with that of Dy,. Meanwhile, Dg and
Dy are also expected to partially share feature representa-
tions as their tasks are the same. The WSCL framework thus
enforces Dg and Dy to partially share network structures
and parameters. Intuitively, Dg with reasonable amount of
strong supervisions is expected to learn better feature repre-
sentation than Dy. By bridging the two learners under this
collaborative learning framework, we enable them to mutual
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Figure 2: Comparison of WSCL with co-training and EM-style
frameworks. SS denotes a strongly-supervsed learning style and WS
denotes a weakly-supervised learning style. See text for details.

reinforcement each other through the joint learning process.

WSCL is similar to several learning frameworks such as
co-training and the EM-style learning as shown in Fig. 2.
Co-training framework [Blum and Mitchell, 1998] is de-
signed for semi-supervised settings, where two parallel learn-
ers are optimized with distinct views of data. Whenever the
labels in either learner are unavailable, its partner’s predic-
tion can be used for auxiliary training. Compared with the
homogeneous collaboration in co-training, the WSCL frame-
work is heterogeneous, i.e. the two learners have different
types of supervisions. Moreover, two learners in WSCL are
trained jointly rather than iteratively. EM-style framework
for weakly supervised object detection task [Jie ef al., 2017,
Yan er al., 2017] usually utilizes a strongly supervised learner
to iteratively select training samples according to its own pre-
dictions. However, the strongly supervised learner in this
framework may not get stable training samples since it is sen-
sitive to the initialization. By contrast, WSCL trains a weakly
supervised and a strongly supervised learner jointly and en-
ables them to mutually enhance each other.

3 Weakly Supervised Collaborative Detection

In this section, we focus on the object detection applications.
Given a training set {(Xpn,¥n),n = 1,--- , N}, where N is
the size of training set, x,, is an image, and the image’s la-
bel y, € RY is a C-dimensional binary vector indicating the
presence or absence of each category. The task is to learn an
object detector which predicts the locations of objects in an
image as {(p;,t;),% = 1,--- , B}, where B is the number of
proposal regions. And for the i-th proposal region z(?), p;
is a vector of category probability, and t; is a vector of four
parameterized bounding box coordinates. The image-level
annotation y is considered as a form of weak supervisions,
because the detector is also expected to predict object cate-
gories and locations in terms of bounding boxes.

Under the weakly supervised collaborative learning frame-
work, we propose a Weakly Supervised Collaborative Detec-
tion Network (WSCDN). A two-stream CNN similar to WS-
DDN [Bilen and Vedaldi, 2016] is chosen as the weakly su-
pervised learner Dy and Faster-RCNN [Ren et al., 2015] is
chosen as the strongly supervised learner Dg. The two learn-
ers are integrated into an end-to-end collaborative learning
network. The overall architecture is illustrated in Fig. 3.
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Figure 3: The architecture of our WSCDN model built based on VGG16. Red and blue lines are the forward paths for the strongly and weakly
supervised detectors respectively, while black solid and dashed lines indicate the shared parts of two detectors.

3.1 Base Detectors

As shown in the blue area of Fig. 3, the weakly supervised
detector Dyy is composed of three parts. The first part (up to
FC7) takes pre-generated proposal regions and extracts fea-
tures for each proposal. The middle part consists of two par-

allel streams, one to compute classification score sjlcs and the

loc

other to compute location score s:%° of each proposal region

jc
x\9) for category c. The last part computes product over the
two scores to get a proposal’s detection score pj., and then
aggregates the detection scores over all proposals to generate
the image-level prediction ¢.. Suppose the weakly supervised
detector Dy has a total number of By proposal regions, the
aggregation of prediction scores from the instance-level to the
image-level can be represented as

Bw

~ cls loc

Je = E Pje, Wwhere pjo = s5° - s5F. (1
j=1

With the above aggregation layer, Dy can be trained in an
end-to-end manner given the image-level annotations y and
is able to give coordinate predictions directly from () and
category predictions from pjc.

The network architecture of the strongly supervised detec-
tor Dg is shown in the red area of Fig. 3. Region proposal
network (RPN) is used to extract proposals online. Then
bounding box predictions {(p,t)} are made through classi-
fying the proposals and refining their coordinates.

3.2 Collaborative Learning Network

For collaborative learning, the two learners are integrated into
an end-to-end architecture as two sub-networks and trained
jointly in each forward-backward iteration. Because the train-
ing data only have weak supervision in forms of classification
labels, we design the following two sets of losses for model
training. The first one is similar to WSDDN and many other
weakly supervised detectors and the second one focuses on
checking the prediction consistency, both between the two
detectors and within the strongly supervised detector itself.
For the weakly supervised detector sub-network Dyy, it
outputs category predictions on the image level as well as
location predictions on the object level. Given weak super-
vision y at the image level, we define a classification loss in
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the form of a multi-label binary cross-entropy loss between y
and the image-level prediction g, from Dyy:

C
L(Dw) == (yelog e + (1 — yc) log(1 — iic)). (2)

c=1

L(Dy) itself can be used to train a weakly supervised de-
tector, as has been demonstrated in WSDDN. Under the
proposed collaborative learning framework, L(Dy) is also
adopted to train the weakly supervised sub-network Dyy .

Training the strongly supervised detector sub-network Dg
independently usually involves losses consisting of a category
classification term and a coordinate regression term, which
requires instance-level bounding box annotations. However,
the strong supervisions in terms of instance-level labels are
not available in the weak settings. The major challenge
for training the weakly supervised collaborative detector net-
work is how to define loss to optimize Dg without requiring
instance-level supervisions at all. Considering both Dy and
Dg are designed to predict object bounding boxes, we pro-
pose to leverage the prediction consistency in order to train
the strongly supervised sub-network Dg. The prediction con-
sistency consists of two parts: between both Dy and Dg and
only within Dg. The former one enforces that the two detec-
tors give similar predictions both in object classification and
object locations when converged. The latter one is included
because the output of Dyy is expected to be quite noisy, es-
pecially at the initial rounds of the training. Combining these
above two kinds of prediction consistency, we define the loss
function for training Dg as

l?vv 135 C
LDs)==3.> >
j=1i=1c=1
Iij (ﬂpjc Ingic +(]— - ﬂ) Dic Ingic +pch(tjc - tzc))
— N——

cL

inter

ck i
inter inner

3)

where the first two cross-entropy terms C,. and CL
consider the consistency of category predictions both on the
inter and inner level; p;. and p;. are the category predic-

tions from Dy, and Dg respectively; the last one CL s
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a regression term promising the consistency of only inter-
networks’ localization predictions, which measures the co-
ordinate difference between proposals from Dg and Dyy.
Here, R (-) denotes a smooth L; loss [Girshick, 2015] and
is weighted by p;; By and Bg are the numbers of proposal
regions for Dy and Dy in a mini-batch respectively; I;; is
a binary indicator with the value of 1 if the two proposal re-
gions z(¥) and z() are closet and have a overlap ratio (IoU)
more than 0.5, and 0 otherwise; 8 € (0, 1) is a hyper parame-
ter which balances two terms of consistency loss for category
predictions. If 3 is larger than 0.5, Dg will trust predictions
from Dy more than from itself.

Max-out Strategy. The predictions of Dg and Dy could
be inaccurate, especially in the initial rounds of training. For
measuring the prediction consistency, it is important to select
only the most confident predictions. We thus apply a Max-out
strategy to filter out most predictions. For each positive cate-
gory, only the region with highest prediction score by Dy is
chosen. That is, if y. = 1, we have:

Pjze =1, 8.4. Zﬁjc =1, wherej; = argmax pj.. (4)
- J
j

If y. = 0, we have p;. = 0,Vj,c. The category prediction
Djc is then used to replace p;. when calculating the consis-
tency loss in L (Dg). The Max-out strategy can also reduce
the region numbers of Dy, used to calculate the prediction
consistency loss and thus can save much training time.
Feature Sharing. As the two detectors in WSCDN are de-
signed to learn under different forms of supervision but for
the same prediction task, the feature representations learned
through the collaboration process are expected to be similar
to each other. We thus enforce the partial feature sharing be-
tween two sub-networks so as to ensure the perceptual consis-
tency of the two detectors. Specifically, the weights of convo-
lutional (conv) layers and part of bottom fully-connected (fc)
layers are shared between Dy and Dg.

Network Training. With the image-level classification
loss L (Dy ) and instance-level prediction consistency loss
L (Dg), the parameters of two detectors can be updated
jointly with only image-level labels by the stochastic gradi-
ent descent (SGD) algorithm. The gradients for individual
layers of Dg and Dy are computed only respect to L (Dg)
and L (D) respectively, while the shared layers’ gradients
are produced by both loss functions.

4 Experimental Results

4.1 Data Sets and Metrics

We experiment with two widely used benchmark data sets:
PASCAL VOC 2007 and 2012 [Everingham et al., 2010],
both containing 20 common object categories with a total of
9,962 and 22,531 images respectively. We follow the stan-
dard splits of the data sets and use the trainval set with only
image-level labels for training and the fest set with ground-
truth bounding boxes for testing.

Two standard metrics, Mean average precision (mAP) and
Correct localization (CorLoc) are adopted to evaluate differ-
ent weakly supervised object detection methods. The mAP
measures the quality of bounding box predictions in test set.
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Methods Iw | CLy | CLs | CSg
mAP(%) 285 | 40.0 | 483 | 394
CorLoc(%) | 45.6 | 584 | 64.7 | 59.3

Table 1: Comparison of detectors built with the WSCL framework
to their baselines and counterparts in terms of mAP and CorLoc on
PASCAL VOC 2007 data set.

Following [Everingham et al., 2010], a prediction is consid-
ered as true positive if its IoU with the target ground-truth is
larger than 0.5. CorLoc of one category is computed as the
ratio of images with at least one object being localized cor-
rectly. It is usually used to measure the localization ability in
localization tasks where image labels are given. Therefore,
it is a common practice to validate the model’s CorLoc on
training set [Deselaers et al., 2012].

4.2 Implementation Details

Both the weakly and strongly supervised detectors in the
WSCDN model are built on VGG16 [Simonyan and Zisser-
man, 2014], which is pre-trained on a large scale image clas-
sification data set, ImageNet [Russakovsky ef al., 2015]. We
replace Pool5 layer with SPP layer [He et al., 2014] to ex-
tract region features. Two detectors share weights for con-
volutional (conv) layers and two fully-connected (fc) layers,
i.e., fc6, fc7. For the weakly supervised detector, we use
SelectiveSearch [Uijlings et al., 2013] to generate propos-
als and build network similar with WSDDN: the last fc layer
in VGG16 is replaced with a two-stream structure in 3.1, as
each stream consists a fc layer followed by a softmax layer
focusing on classification and localization respectively. For
the strongly supervised detector Faster-RCNN, we follow the
model structure and setting of its original implementation.

At training time, we apply image multi-scaling and random
horizontal flipping for data augmentation, with the same pa-
rameters in [Ren ef al., 2015]. We empirically set the hyper
parameter 3 to 0.8. RPN and the following region-based de-
tector in Faster-RCNN are trained simultaneously. We train
our networks for total 20 epochs, setting the learning rate of
the first 12 epochs to le-3, and the last 8 epochs to le-4. At
test time, we obtain two sets of predictions for each image
from the weakly and strongly supervised detectors, respec-
tively. We apply non-maximum suppression to all predicted
bounding boxes, with the IoU threshold set to 0.6.

4.3 Influence of Collaborative Learning

To investigate the effectiveness of the collaborative learning
framework for weakly supervised object detection, we com-
pare the following detectors: 1) the weakly and strongly su-
pervised detectors built with the collaborative learning frame-
work, denoted as C' Ly, and C'Lg, respectively; 2) The initial
weakly supervised detector built above, denoted as Iy; 3)
The same weakly supervised and strongly supervised detec-
tor networks trained in cascaded manner similar to [Tang et
al.,2017; Yan et al., 2017]. The resulting strongly supervised
detector is denoted as C'Sg.

The results on PASCAL VOC 2007 data set are presented
in Table 1. Among the four detectors under comparison, C'Lg
achieves the best performance in terms of mAP and CorLoc
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Figure 4: Visualization of the detection results of four detectors in Table 1. Images from the 1st to 4th row are results from the Iy, C' Ly,

CSs and C'Lg respectively.

and outperforms the baseline [y, its collaborator C' Ly, and
its cascade counterpart, C'Sg. Compared to C'Sg, the mAP
and CorLoc are improved from 39.4% to 48.3% and from
59.3% to 64.7%, respectively, suggesting the effectiveness of
the proposed collaborative learning framework. Furthermore,
CLyw outperforms Iy in terms of mAP and CorLoc by a
large margin of 11.5% and 12.8%, respectively, showing that
the parameters sharing between the two detectors enables a
better feature representation and thus leading to significant
improvement of the weakly supervised detector.

We also qualitatively compare the detection results of Iy,
CLyw, CSs and CLg. As shown in Fig. 4, the strongly
supervised detector C'Lg clearly outperforms the other three
detectors, with more objects correctly detected. For example,
in the first column and fifth column where there are multiple
objects in one images, only C'Lg is able to correctly detect all
of them, while the other three detectors missed one or more
objects. Moreover, C'Lg generates more accurate bounding
boxes. Weakly supervised detectors are known for often gen-
erating bounding boxes that only cover the most discriminate
part of an object (e.g. face of a person or wings/head of a
bird). C'Lg can generate more bounding boxes that tightly
cover the entire objects as shown in the third and sixth column
of Fig. 4, indicating the collaborative learning framework is
able to learn a better feature representation for objects. Com-
pared to Iy, C Ly, generates tighter object bounding box
in the second and fourth columns, i.e. the performance of
the weakly supervised detector is improved after collabora-
tive learning, suggesting that feature sharing between the two
detectors helps optimizing the weakly supervised detector.

To show how C' Ly and C'Lg improve during the collab-
orative learning, we plot mAPs of the two detectors for dif-
ferent training iterations. As shown in Fig. 5, both detectors
get improved with increasing training iterations. Initially, the
strongly supervised detector C'Lg has a smaller mAP than
the weakly supervised detector C'Ly,. But in a dozen thou-
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Figure 5: The changes of mAP for CLg and CLw on PASCAL
VOC 2007 data set during the process of collaborative learning.
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sands iterations, C'Lg surpasses C'Ly, and further outper-
forms C'Lyy by a large margin in the end, suggesting the ef-
fectiveness of the prediction consistency loss we proposed.

4.4 Comparison with State-of-the-Arts

In general, two types of weakly supervised object detec-
tion methods are compared. The first includes the MIL
methods [Cinbis er al., 2017; Wang et al., 2014] and vari-
ous end-to-end MIL-CNN models [Bilen and Vedaldi, 2016;
Kantorov et al., 2016; Tang et al., 2017] following the two-
stream structure of WSDDN [Bilen and Vedaldi, 2016]. The
second type of methods builds a curriculum pipeline to find
confident regions online, and trains an instance-level mod-
ern detector in a strongly supervised manner [Li ef al., 2016;
Jie et al., 2017]. So the detectors they used to report the
results share a similar structure and characteristics with our
strongly supervised detector.

For the PASCAL VOC 2007 dataset, the mAP and CorLoc
results are shown in Table 2 and Table 3, respectively. The
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Methods aer bik brd boa btl bus car cat cha cow tbl dog hrs mbk prs plt shp sfa trn tv Avg.
[Cinbis et al., 2017] 38.1 47.6 282 139 132 452 480 193 17.1 27.7 173 19.0 30.1 454 13.5 17.0 288 24.8 382 15.0 | 274
[Wang et al., 20141 489 423 261 11.3 119 413 409 347 108 347 188 344 354 527 19.1 174 359 333 348 465 | 31.6
[Bilen and Vedaldi, 2016] 394 50.1 315 163 12.6 645 428 42.6 10.1 357 249 382 344 556 94 147 302 40.7 547 469 | 348
[Kantorov et al., 2016] 57.1 520 315 7.6 115 550 53.1 341 1.7 331 492 420 473 56.6 153 12.8 248 489 444 478 | 363
[Tang et al., 2017] 58.0 624 31.1 194 13.0 651 622 284 24.8 447 30.6 253 37.8 655 157 241 417 469 643 62.6 | 41.2
[Li ez al., 2016] 545 474 413 208 17.7 519 635 46.1 21.8 57.1 22.1 344 50.5 61.8 162 299 40.7 159 553 40.2 | 395
[Jie et al., 2017] 522 47.1 350 26.7 154 613 66.0 543 3.0 53.6 247 43.6 484 658 6.6 188 519 43.6 53.6 624 | 41.7
CLw 59.7 547 31.6 24.1 132 59.6 532 39.0 193 499 358 450 382 63.6 7.1 169 36.6 479 549 50.0 | 40.0
CLg 61.2 66.6 483 260 158 66.5 654 539 247 612 462 53.5 485 66.1 12.1 22.0 492 532 662 594 | 483

Table 2: Comparison of WSCDN to the state-of-the-art on PASCAL VOC 2007 test set in terms of average precision (AP) (%).

Methods aer bik brd boa btl bus car cat cha cow tbl dog hrs mbk prs plt shp sfa trn tv Avg.
[Cinbis et al., 2017] 572 622 509 379 239 648 744 248 297 64.1 408 373 556 68.1 255 385 652 358 56.6 33.5 | 473
[Wang et al., 2014] 80.1 639 515 149 21.0 557 742 435 262 534 163 56.7 583 69.5 14.1 383 58.8 47.2 49.1 609 | 485
[Bilen and Vedaldi, 2016] 65.1 58.8 585 33.1 39.8 683 602 59.6 348 645 305 43.0 56.8 824 255 41.6 61.5 559 659 63.7 | 53.5
[Kantorov et al., 2016] 833 68.6 547 234 183 73.6 741 541 86 651 471 595 67.0 835 353 399 67.0 49.7 63.5 652 | 55.1
[Tang et al., 2017] 81.7 80.4 48.7 49.5 32.8 81.7 854 40.1 40.6 79.5 357 33.7 60.5 88.8 21.8 579 763 599 753 814 | 60.6
[Li et al., 2016] 782 67.1 61.8 38.1 36.1 61.8 78.8 552 285 688 185 492 64.1 735 214 474 64.6 223 609 523 | 524
[Jie et al., 20171 72.7 553 530 27.8 352 68.6 819 60.7 11.6 71.6 29.7 543 643 882 222 537 722 52.6 689 755 | 56.1
CLw 825 757 63.1 44.1 324 721 767 503 350 74.0 30.8 579 575 823 19.1 47.6 763 50.0 71.1 69.5 | 584
CLg 85.8 804 73.0 426 36.6 79.7 828 66.0 34.1 78.1 369 68.6 724 91.6 222 513 794 63.7 745 74.6 | 64.7

Table 3: Comparison of WSCDN to the state-of-the-art on PASCAL VOC 2007 trainval set in terms of Correct Localization (CorLoc) (%).

Methods aer bik brd boa btl bus car cat cha cow tbl dog hrs mbk prs plt shp sfa trn tv Avg.
[Kantorov e al., 2016] 64.0 549 364 81 12.6 53.1 405 284 6.6 353 344 49.1 426 624 198 152 27.0 33.1 33.0 50.0 | 353
[Tang et al., 2017] 67.7 612 415 25.6 222 54.6 49.7 254 199 47.0 181 260 389 67.7 2.0 22.6 41.1 343 379 553 | 379
[Jie et al., 2017] 60.8 542 34.1 149 13.1 543 534 58.6 3.7 531 83 434 498 692 4.1 175 438 25.6 550 50.1 | 38.3
CLw 64.0 60.3 40.1 185 15.0 57.4 383 253 173 324 165 33.1 28.6 648 69 166 343 414 524 512 | 357
CLg 70.5 67.8 49.6 208 22.1 614 51.7 347 203 503 19.0 435 493 70.8 102 20.8 48.1 41.0 56.5 56.7 | 43.3

Table 4: Comparison of WSCDN to the state-of-the-art on PASCAL VOC 2012 test set in terms of average precision (AP) (%).

Methods aer bik brd boa btl bus car cat cha cow tbl dog hrs mbk prs plt shp sfa trn tv Avg.
[Kantorov et al., 2016] 783 70.8 52.5 347 36.6 80.0 58.7 38.6 27.7 71.2 323 487 762 774 16.0 484 69.9 475 669 629 | 548
[Tang ez al., 2017] 86.2 842 68.7 554 46.5 828 749 322 46.7 82.8 429 41.0 68.1 89.6 9.2 539 81.0 529 59.5 83.2| 62.1
[Jie et al., 20171 82.4 68.1 545 389 359 847 73.1 648 17.1 783 225 57.0 708 86.6 18.7 49.7 80.7 453 70.1 77.3 | 58.8
CLw 88.0 79.7 664 51.0 409 84.0 654 356 465 69.9 46.6 49.7 524 892 21.2 472 733 548 70.5 755 | 604
CLg 89.2 86.0 72.8 50.4 40.1 87.7 72.6 37.0 48.2 80.3 49.3 544 7277 888 21.6 439 856 61.0 745 822 | 65.2

Table 5: Comparison of WSCDN to the state-of-the-art on PASCAL VOC 2012 trainval set in terms of Correct Localization (CorLoc) (%).

proposed model gets 39.4% and 49.4% in terms of map for
the weakly supervised detector and the strongly supervised
detector respectively. On CorLoc, our two detectors also per-
form well, get 61.1% and 67.5%. In particular, the strongly
supervised detector C'Lg in our model receives best results
among those methods by both mAP and CorLoc.

Compared to the first type of methods, C'Lg improves de-
tection performance by more than 7.1% on mAP and 4.1% on
CorLoc. Our C'Lyy that has a similar but the simplest struc-
ture, also gets comparable results with regard to other modi-
fied models, revealing the mutual enhancement of two kinds
of detectors with collaborative learning. With respect to the
second set of methods under comparison, we use a weakly
supervised detector to achieve confident region selection in a
collaboration learning process, instead of those complicated
schemes. The collaborative learning framework enables the
strongly supervised detector C'Lg to outperform [Jie er al.,
20171 by 6.6% and 8.6% on mAP and CorLoc respectively.

Similar results are obtained on PASCAL VOC 2012 dataset
as shown in Table 4 and Table 5. C'Lg achieved 43.3% on
mAP and 65.2% on CorLoc, both of which outperform the
other state-of-the-art methods, indicating the effectiveness of
the collaborative learning framework.
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5 Conclusion

In this paper, we propose a simple but effective WSCL frame-
work for weakly supervised object detection, in which two
detectors with different mechanics and characteristics are in-
tegrated in a unified architecture. In particular, we propose an
end-to-end Weakly Supervised Collaborative Detection Net-
work (WSCDN). The weakly supervised learner, WSDDN-
like sub-network, is trained with the image-level classifica-
tion loss. To train the strongly supervised learner, Faster-
RCNN-like sub-network, a new prediction consistency loss is
defined to enforce the prediction consistency of the two net-
works. Moreover, the two learners are required to partially
share parameters to achieve feature sharing. Extensive ex-
periments on benchmark data sets have shown that WSCDN
outperforms the state-of-the-arts. The weakly supervised de-
tector and the strongly supervised detector are also shown to
benefit each other in the collaborative learning process.
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