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Abstract
This paper investigates a challenging problem,
which is known as fine-grained image classification
(FGIC). Different from conventional computer vi-
sion problems, FGIC suffers from the large intra-
class diversities and subtle inter-class differences.
Existing FGIC approaches are limited to explore
only the visual information embedded in the im-
ages. In this paper, we present a novel approach
which can use handy prior knowledge from either
structured knowledge bases or unstructured text to
facilitate FGIC. Specifically, we propose a visual-
semantic embedding model which explores seman-
tic embedding from knowledge bases and text, and
further trains a novel end-to-end CNN framework
to linearly map image features to a rich semantic
embedding space. Experimental results on a chal-
lenging large-scale UCSD Bird-200-2011 dataset
verify that our approach outperforms several state-
of-the-art methods with significant advances.

1 Introduction
Fine-grained image classification aims to recognize sub-
categories, such as identifying the species of birds [Wah et al.,
2011], under some basic-level categories. Different from the
general-level object classification problem, fine-grained im-
age classification is quite challenging due to the high degree
of similarity among categories and the high degree of dissimi-
larity for a specific category caused by different poses, scales
and so on ( as shown in Figure 1). Most of the current ap-
proaches of FGIC attempt to learn discriminative visual rep-
resentations [Lin et al., 2015b; Jaderberg et al., 2015] or try
to localize various parts of the object [Zhang et al., 2014;
Huang et al., 2016; Peng et al., 2018] to capture fine-grained
features for classification. These works focus on learning vi-
sual information with thousands of labeled images for each
category. However, for human’s recognition mechanism,
when human beings recognize an object of an image, they not
only focus on visual information but also consider some prior
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(a) Black Footed Albatross

(b) Sooty Albatross

Figure 1: Illustration of the difficulty to discriminate large intra-
class variance and small inter-class variance. Birds in each row are
the same category with very large visual variance, but birds in each
column are two different categories with a very similar visual aspect.

knowledge gained from their experience and text descriptions
of the object. It is obvious that there is a latent correlation be-
tween visual and the external knowledge in human’s brain.
For example, when a man sees a bird of black footed al-
batross in the wild, he would recall some prior knowledge:
black footed albatross has brown to black feathers with white
around its eyes and bill (as illustrated in text column of Fig-
ure 2). Combining the visual and prior external information,
human could able to classify it correctly.

There are two kinds of prior external information, one is
the text information and the other is knowledge base infor-
mation. In the text context, class labels of images often
have well-defined internal structure, where labels are more
likely to co-occur with their related information (such as the
feather color of black footed albatross, shown in the text col-
umn of Figure 2). Moreover, in the knowledge base con-
text, class labels often contain multiple types and properties
(as shown in the knowledge base column of Figure 2), and
links among classes describe the relationship among them (in
knowledge bases, a class label of an image is viewed as an en-
tity). However, the existing approaches solve FGIC by artifi-
cially encoding image labels as sparse vectors by one-hot en-
coding, then train a deep network with softmax output layer.
The problem of these approaches is that different labels are
considered to be statistically independent, resulting in visual
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Black-footed albatross is between two  and 
three feet  long with  a large wingspan. It has 
brown to black feathers with  white around its 
eyes and bill and  has a large brown bill with a 
curved tip and black feet. 
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Figure 2: Since subtle differences between fine-grained categories are often determined by the specific properties or parts of object, utilizing
the fine properties of knowledge bases or text is significant for FGIC. Examples contain lots of discriminative information for recognizing
black-footed albatross and laysan albatross, and properties of classes in knowledge bases shared characteristics of the two classes.

models that cannot leverage external knowledge to learn vi-
sual and semantic relationships. Suppose there are two class
labels black footed albatross and sooty albatross. By one-hot
encoding, these two labels will be encoded as 2-dimensional
vectors: a = [1, 0], b = [0, 1]. By applying traditional simi-
larity measures (e.g., cosine similarity), the similarity of these
two vectors is 0, that is to say none prior knowledge has been
encoded to the class vectors.

To leverage the prior external knowledge, we propose a
novel two-level convolutional neural network that uses handy
prior knowledge from either structured knowledge bases or
unstructured text to improve fine-grained image classifica-
tion. We utilize a visual-semantic embedding framework to
learn the relationship between classes and images. Specifi-
cally, our model is explicitly trained to project feature space
of images into a rich semantic embedding space of classes
in an end-to-end way, where the prior external knowledge is
encoded into the embedding vectors of classes. Experimen-
tal results show that our method outperforms several state-of-
the-art methods with significant advances.

2 Related Work
In this section, we review the current approaches in the field
of FGIC and discuss some visual-semantic embedding ap-
proaches which use side information for visual tasks.

2.1 Fine-grained Image Classification
Over the past several years, many researchers have worked on
exploring discriminative visual features or using part-based
representation. These methods can be roughly categorized
into three groups. For the first group, the works given in [Lin
et al., 2015b; Jaderberg et al., 2015] attempt to get more dis-
criminative visual representation by developing deep models,
e.g., deep convolution neural network, for classifying fine-
grained images. Bilinear CNN [Lin et al., 2015b] considers
a novel architecture that uses two separated CNNs to extract
the visual part based on where the parts are and what the parts
look like, which is slightly similar to our two-level CNN.
Spatial transformer is introduced in [Jaderberg et al., 2015],
where a new differentiable module can be inserted into exist-
ing convolutional architectures to spatially transform feature

maps without any extra training supervision. However, the
subtle and local visual feature are particularly difficult to be
captured. Therefore, some approaches [Zhang et al., 2014;
Huang et al., 2016; Zhang et al., 2016a] focus on part-
based representation which tries to discovery classification
criteria from object parts. However, these approaches need
large amounts of human effort to annotate parts and bound-
ing boxes. The last group tries to align the objects in different
categories of images to reduce the influence of pose varia-
tions [Lin et al., 2015a], or use object/parts spatial constraint
to eliminate redundancy and enhances discrimination of se-
lected parts [Peng et al., 2018].

2.2 Visual-Semantic Embedding
The previous approaches of FGIC primarily focus on the vi-
sual information and ignore the external information. Many
works use side information to solve other visual tasks
[Marino et al., 2017; Akata et al., 2015; Frome et al., 2013],
and some of these works can be considered as visual-semantic
embedding. SJE [Akata et al., 2015] considers attribute-
based image classification as a label-embedding problem for
zero-shot learning. Specifically, a class is embedded in the
space of attributes and learns a compatibility function be-
tween the image embedding and class embedding. Similarly,
DeViSE [Frome et al., 2013] finds that the semantic informa-
tion can be exploited to make predictions about image classes,
which uses image as input of CNN and Word2Vec [Mikolov
et al., 2013] representation as output embedding.

Different from all existing approaches, our method not
only use external information, including knowledge bases and
text, but also train it in an end-to-end manner. Attributes of-
ten are defined as discriminative properties, which have been
shown very helpful to some visual recognition tasks [Akata
et al., 2015; Farhadi et al., 2009]. We consider attributes as
properties of classes into knowledge bases to enrich the em-
bedding space.

3 The Proposed Model
In this section, we describe our two-level attention convolu-
tion neural network which jointly integrates semantic embed-
ding from knowledge bases and text. Here, the core part of
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Figure 3: Our two-level convolutional neural network for FGIC. FA aims to get the local feature of an object based on the detection mechanism
and FB works to linearly map visual feature of an image to the semantic embedding space (FB embeds each image into nearby position of
its corresponding label in the knowledge base embedding space and text embedding space).

our model is a visual-semantic mapping. Specifically, we use
convolutional neural network to get image features as the vi-
sual embedding, and the visual embedding is linearly pro-
jected to its corresponding semantic embedding. We present
a two-level CNN framework FA and FB . The overall model
is summarized in Figure 3.

3.1 Problem Statement
Suppose that we have a labeled training dataset of images
X = {(xi, yi)}(i = 1, ...,m), where each image is annotated
with one of C fine-grained class labels, Y = {y1, y2, ..., yC}.
The goal of our model is to learn a mapping function f :
X → Y by minimizing the empirical loss which calculates
the difference between the visual output of our model and the
embedding of the true class y. Given a specific input image x,
knowledge base embedding δ1(y) ∈ Rk of the corresponding
class y and text embedding δ2(y)∈ Rk of the corresponding
class y, our model aims to maximize the posterior probability:

f(x, y) = argmaxy∈Y P (δ1(y), δ2(y)|x; θ), (1)

where θ is the learning parameter of our model. We use two
different models TransR [Lin et al., 2015c] and Word2Vec
[Mikolov et al., 2013] to get the embeddings δ1(y) and
δ2(y) from textual corpus and knowledge bases respectively.
Hence, δ1(y) and δ2(y) are conditionally independent. We
reformulate Eq. 1 as follows:

f(x, y) = argmaxy∈Y
∏
i∈1,2

P (δi(y)|x; θ). (2)

Eq. 2 is inspired from the work given in DeViSE [Frome
et al., 2013] and SJE [Akata et al., 2015]. Within the visual-
semantic embedding framework, DeViSE uses pairwise rank-
ing objective function to explicitly map images into a rich
semantic embedding space. SJE uses a compatibility func-
tion to map visual embedding of images and text embedding
of classes while trains its model in a two-step way. Differ-
ent from DeViSE and SJE, we integrate multiple domains
(knowledge bases and text) into our model, and train our
model in an end-to-end fashion.

3.2 Two-level Convolutional Neural Network
The subtle and local differences are crucial for distinguishing
sub-categories and these differences often locate at the
regions or parts of objects. Therefor, a two-stage frame-
work is used by some previous works [Zhang et al., 2014;
Huang et al., 2016]. The first stage is to localize the object
or its discriminative parts based on a R-CNN framework
[Girshick et al., 2014], and the second stage is to extract
visual features from the previous parts or the object. Bilinear
CNN [Lin et al., 2015b] uses two feature extractors based on
CNN, where the first extractor emphasizes on the object iden-
tification and the second one focuses on the spatial location.
The two CNN extractors consider pairwise interactions in a
translationally invariant manner which is particularly suitable
for fine-grained classification task. Based on Bilinear CNN
and visual-semantic embedding work (e.g., DeViSE and
SJE), we propose our two-level CNN.

Localization CNN: The first level of our model is to train a
localization network (FA) which aims to detect the bounding
box of an object. The idea is inspired by region-based CNN
[Zhang et al., 2014] whose goal is to extract the candidate
region proposals and check whether these proposals have the
target objects. The feature of a region proposal is sensitive to
the parts or the bounding of an object if the proposal is posi-
tive [Ouyang et al., 2017]. For fine-grained classification, an
image generally contains only one object which can be seen
as a positive proposal. Thus, we use the raw image as a posi-
tive proposal and the output is similar to region-based CNNs.
The learning target of FA is the bounding box (x, y, h, w).
Given an image, we formulate the objective of FA as follows:

lA =
4∑
i=1

(ti − t′i)2, (3)

where ti and t′i (i = 1, 2, 3, 4), for simplicity, are used to
represent the true bounding box (x, y, h, w) and the output
of FA respectively.

Regression Ranking Network: The second level of our
model is a regression ranking network (FB) which tries to
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get the global visual feature of an image object. To integrate
semantic embedding, FB is trained jointly with two parallel
fully connected (FC) layers without the softmax layer. The
FC layers project the visual embedding of images (learned by
deep CNN) to the semantic embedding of classes (learned by
TransR or Word2Vec). The two parallel FC layers are called
projection layers, where the first FC layer is to project the vi-
sual embedding to the text embedding (as DeViSE) of classes,
and the second one is to project the visual embedding to the
knowledge base embedding of classes. We use M ∈ Rd×k
and M ∈ Rd×k as the parameters of projection layers and
v ∈ Rd as visual embedding, where d is the size of visual
embedding and k is the size of embedding vector of image
classes.

To utilize the complementary information of the two dif-
ferent embeddings, FB is trained to linearly project the vi-
sual embedding to the text embedding δ1(y) and the knowl-
edge base embedding δ2(y) simultaneously when an x im-
age is given. Because dot-product similarity measures the co-
sine of the angle between two vectors and euclidean distance
gives the magnitude of the difference between the two vectors
[Sidorov et al., 2014], we propose a novel loss function which
combines the dot-product similarity1 and euclidean distance
to measure the proximity between the projection results and
a candidate class embeddings δ1(y) and δ2(y) of y. The for-
mulation is defined as follows:

π(x, y) =
2∑
i=1

(1− vTMiδi(y) + |vTMi − δi(y)|2), (4)

where 1 − vTMiδ(y)i is the negative dot-product similarity
with margin 1 and the second part |vTMi − δ(y)i|2 is the
euclidean distance. For a fine-grained scenario, some classes
are very difficult to distinguish the differences between them
both in the visual and semantic space. To tackle this problem,
the loss function of FB is defined as follows:

lB = π(x, y)− π(x, y−), (5)
where y− is selected by a ranking formula:

y− = argmin(y′∈Y,y′ 6=y)π(x, y
′). (6)

These functions (i.e, Eq. 6 and Eq. 5 ) are designed such that,
for a given image, the distance of the visual output of FB is
encouraged to be closer to the embedding of the positive class
y. Furthermore, the distances of the visual output of FB and
the embeddings of all negative classes are encouraged to be
maximized, since the embedding of the selected y− has the
minimal distance with the visual output of FB .

3.3 Parameter Learning
We model localization network’s features and the regression
ranking network’s features by Hadamard product (element-
wise multiplication) as in shown Figure 3. By learning the
bounding box in FA and the class embedding of object in
FB simultaneously, our model can be seen as a multi-task
learning with the objective loss as follows:

L(x, y) = α ∗ lA + lB , (7)
1Dot product similarity is an equivalent similarity measurement

as cosine similarity when normalize vectors in unit form.
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Figure 4: Gradients influence of our two-level CNN.

where α is a hyperparameter. By adding the two loss func-
tions lA and lB in an overall architecture, our model can be
trained by back-propagation in an end-to-end form. Suppose
the learned features of localization network and regression
ranking network are fixed-size vectors xA = fA(x; θ1) and
xB = fB(x; θ2), where θ1 and θ2 are the parameters of FA,
FB respectively. The output of Hadamard product is:

xAB = xA � xB . (8)

The gradients of lA only back-propagate FA by chain rule,
while the gradients of lB back-propagate to FA and FB . Let
∂L(x,y)
∂θ be the gradient of the loss w.r.t. θ, we get the gradi-

ents:

∂L(x, y)

∂θ1
= α ∗ ∂lA

∂θ1
+
∂lB
∂θ1

= α ∗ ∂lA
∂fA

∂fA
∂θ1

+
∂lB
∂xAB

∂xAB
∂fA

∂fA
∂θ1

= α ∗ ∂lA
∂fA

∂fA
∂θ1

+ xB
∂lB
∂xAB

∂fA
∂θ1

,

(9)

∂L(x, y)

∂θ2
= α ∗ ∂lA

∂θ2
+
∂lB
∂θ2

= α ∗ ∂lA
∂fB

∂fB
∂θ2

+
∂lB
∂xAB

∂xAB
∂fB

∂fB
∂θ2

= xA
∂lB
∂fB

∂fB
∂θ2

.

(10)

A simple illustration of parameter learning process in our
model is shown in Figure 4. The gradients of FB back-
propagate to the total network (as shown in Eq. 9), so the
classification error makes an interaction learning between FA
and FB . We observe the learned features xA of FA are usu-
ally sensitive to discriminative parts, such as head and tail.
Thus, the features learned by FA can be seen as attention in-
formation to FB , which shows that the discriminative features
embedded in xB of FB will be given more attention by filter-
ing less import information via xA of FA, such as the back-
ground of an image[Wang et al., 2016].

4 Semantic Embedding of Image Class
Semantic embedding indicates latent representation of classes
in knowledge bases or text . In this section, we will first clar-
ify the embeddings used in our model, and introduce how we
extract embedding representation of classes from knowledge
bases and text.
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Method Train Anno Train BBox Test Anno Test BBox Accuracy
PB R-CNN [Zhang et al., 2014] X X X X 82.02%
PS R-CNN [Huang et al., 2016] X X X 76.2%
SPDA-CNN [Zhang et al., 2016a] X X X 85.14%
ST CNN [Jaderberg et al., 2015] 84.1%
Bilinear CNN [Lin et al., 2015b] 84.1%
PDFS [Zhang et al., 2016b] 84.5%
CVL [He and Peng, 2017] 85.55%
Our T-CNN 86.2%
Our T-CNN average X 86.5%
Ensemble T-CNN X 87.3%

Table 1: Experimental results on Caltech-UCSD Bird dataset, where BBox refers to bounding box and Anno refers to part annotations.

4.1 Knowledge Base Embedding
Knowledge base (KB) is a repository which stores complex
structured information about things of our world. KB con-
tains multiple types of entities with their properties and links
among entities, and the links describe the relationship of en-
tities. To fully represent entities in KB as low dimensional
vectors, a novel KB embedding model called TransR [Lin et
al., 2015c] is applied to get the embedding representation of
entities. In TransR, KB is a set of triples, as the form (h,r,t),
where h, t, and r indicate head entity, tail entity, and rela-
tionship between the two entities respectively. For each triple
(h,r,t), entities and relationship are first embedded into con-
tinuous vectors h ∈ Rd′ , t ∈ Rd′ and r ∈ Rk, then entity
vectors are projected into the r-relation space as hr ∈ Rk
and tr ∈ Rk using a relation-specific matrix Mr ∈ Rd′×k.
hr = hMr, tr = hMr. The objective of TransR is a trans-
lation based function: fr(h, t) = ||hr + r − tr||22, which
makes the learned vectors of entities to reserve latent struc-
tured knowledge.
Attribute-based KB. In general KB (e.g., DBpedia), it has
a huge coverage of knowledge across domains, but it has
incomplete knowledge in specific domains. A specific do-
main in general KB lacks of lots of fine-grained properties,
i.e., semantic attributes of fine-grained objects [Akata et al.,
2015]. The attributes provide a way to describe such fine-
grained concepts. For example, the wing color of black
footed albatross is grey, which is a very significant part to
distinguish black footed albatross. Suppose there exist C
classes of images, Y = {y1, y2, ..., yC} and E attributes
A = {a1, a2, ..., aE}, to make the embedding vector of
classes to capture those fine-grained properties, we construct
domain-specific attribute knowledge into the general KB, i.e.,
we construct a triple (y, has property of, ai) for each attribute
ai of each class y .

4.2 Text Embedding
Word2Vec [Mikolov et al., 2013] is a shallow neural network
that is trained to reconstruct linguistic contexts of words.
The embedding of a class term from Word2Vec can capture
semantically-meaningful properties of the class since prop-
erty words often couple with the context of a class word.

Fine-tuning Word2Vec. In Word2Vec, the embeddings
of words are affected by their statistical contexts [Mikolov

et al., 2013], so it is difficult to accurately learn the embed-
ding vectors of infrequent words. For a fine-grained scenario,
the class labels often belong to the infrequent words in gen-
eral domain text, such as Wikipedia. In order to learn high-
quality representation of class labels, we first train Word2Vec
in Wikipedia corpus as the initialization of Word2Vec, then
fine-tune Word2Vec on a domain-specific corpora, where the
domain-specific corpora is extracted from Wikipedia.

5 Experiments
In this section, we present the experimental settings and show
experimental results of our proposed model on the widely-
used benchmark Caltech-UCSD Bird-200-2011 [Wah et al.,
2011]. The dataset contains 200 bird categories with 312 at-
tributes. We choose DBpedia [Lehmann et al., 2015] (KB)
and English-language Wikipedia (text) from 06.01.2016 as
external knowledge. Word2Vec and TransR (described in
Section 4) are used to get the class embedding.

5.1 Experiment Setting
In our experiment, the regression ranking network of our
model is forked from existing CNN architectures with fine
tuning (e.g., AlexNet [Krizhevsky et al., 2012], VGG [Si-
monyan and Zisserman, 2014], GoogleNet [Szegedy et al.,
2016], ResNet [He et al., 2016]). In addition, two projec-
tion layers are added to the regression ranking network after
the last fully connected layer. We first resize all images to
224×224 pixels and then get image feature vectors from FB .
The projection layers of FB project the visual features to the
embedding of classes. The localization network is based on
AlexNet which is also trained as regression to get the bound-
ing box of an object. We train our model using stochas-
tic gradient descent with mini-batches 40 and learning rate
0.0015. The hyperparameter α of Eq. 7 is set to be 0.85 with
cross-validation . To train a fast convergent network, batch-
normalization [Ioffe and Szegedy, 2015] layer is used after
each convolutional layer. Random dropout tricks [Srivastava
et al., 2014] are used in the fully connected layers for allevi-
ating overfitting. Moreover, all parameters of convolutional
layers of FB are pre-trained on the ImageNet and fine-tuned
on the Caltech-UCSD data.

We use two different embeddings of classes based on
Word2Vec and TransR. For Word2Vec embedding, we first
train Word2Vec on Wikipedia with one pass through the
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Method Accuracy
ResNet+Embedding 85.78%

AlexNet+ResNet+Embedding 86.2%
AlexNet+ResNet+Embedding+BBox 87.0%

Table 2: Analysis of different variants of our model on Caltech-
UCSD Bird.

corpus, then fine-tune Word2Vec on a domain-specific cor-
pus extracted fromWikipedia articles which are related with
Caltech-UCSD Birds. For TransR embedding, we combine
DBpedia with Attribute-based KB (described in 4.1) as the
knowledge base and train TransR with the same setting in
[Lin et al., 2015c] to get the embedding.

5.2 Classification Result and Comparison
The results of our proposed two-level CNN and the state-
of-art methods are presented in Table 1. We list bounding
box and part annotation for fair comparison. From the re-
sults, we can see that part-based methods[Zhang et al., 2014;
2016a], which use both annotation and bounding box get the
best result of 82.02% and 85.14%, respectively. Our model,
however, can achieve an average accuracy about 86.5% with
only bounding box needed in the training step. This (our T-
CNN average row in Table 1) verifies our proposition that
the external information from KB and text is helpful for fine-
grained classification without any part annotations. Com-
pared with Bilinear CNN [Lin et al., 2015b] and PDFS
[Zhang et al., 2016b] which are free of any bounding box or
part annotation at both training and testing stages, we change
our model with only the second loss lB , in other words, FA
is used for feature extraction which is similar with Bilinear
CNN. We achieve an accuracy (Our T-CNN row in Table 1)
86.2% compared with 84.1% of Bilinear CNN and 84.5%
of PDFS. It verities the effectiveness of our two-level CNN,
which jointly integrates visual and semantic embedding to ex-
ploit the correction between visual and external knowledge.
Furthermore, we compare with the latest state-of-art CVL [He
and Peng, 2017] which utilizes the prior language descrip-
tions in a language learning stream to point out the discrim-
inative parts of images, our model performs about 1% better
than CVL. This also verities that the prior external knowledge
can be used via the visual-embedding way. We ensemble the
results of different CNN-based architectures, and get the ac-
curacy of 87.3%. All in all, the results clearly demonstrate
the effectiveness of our two-level CNN-based model.

5.3 Model Analysis
We perform detailed analysis by comparing different variants
of our model: (1) Only regression ranking network as FB
with semantic embedding; (2) Two-level CNN model without
using bounding box; (3) Our full two-level CNN model with
bounding box at training stage. The results are shown in Table
2. By leveraging semantic embedding from external knowl-
edge, we get the highest result 87.0% when the most powerful
feature extractors (AlexNet+ResNet) are used. By comparing
the setting of (1) and (2), we demonstrate the effectiveness of
localization network. In particular, the feature learned by lo-
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Figure 5: Results of different embedding size with different CNN-
based architectures of our model on Caltech-UCSD Bird dataset.

calization network is attention information to our regression
ranking network.

To evaluate the impact of dimension of embedding vector
to the classification result, we train Word2Vec and TransR
with various embedding dimensions, ranging from 20-D to
200-D. We also test different CNN-based architectures of our
regression ranking network. Experimental results show that
the best size of dimension is 120 (as shown in Figure 5), with
the size we can achieve an accuracy more than 86.0% on av-
erage. Specifically, dimension size 120 of embedding vector
can make the representation be more discriminative for FGIC.

6 Conclusion
In this paper, we proposed a novel two-level CNN regres-
sion model as a way of efficiently leveraging external knowl-
edge to improve FGIC. In particular, we observed that the
implicit structured information of KB and unstructured in-
formation of text can be embedded into semantic embed-
ding vectors, then our method utilized the semantic embed-
ding in a visual-semantic embedding framework. Moreover,
by leveraging external knowledge, our model was more in-
terpretable and similar with human recognition mechanism.
One important advantage of our method was that our two-
level CNN could reinforce each other, which led to capturing
better discriminative features for fine-grained classification,
as the two networks were trained in an end-to-end fashion
to have pairwise interaction. The experimental results on a
widely used Caltech-UCSD Bird dataset shown that our pro-
posed model can outperform state-of-the-art methods. In the
future, we would consider deep symbolic reasoning on the
external knowledge into our work to make our model more
reasonable and interpretable as the human recognition mech-
anism.
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van Kleef, Sören Auer, and Christian Bizer. Dbpedia -
A large-scale, multilingual knowledge base extracted from
wikipedia. Semantic Web Journal, pages 167–195, 2015.

[Lin et al., 2015a] Di Lin, Xiaoyong Shen, Cewu Lu, and Ji-
aya Jia. Deep LAC: deep localization, alignment and clas-
sification for fine-grained recognition. In CVPR, pages
1666–1674, 2015.

[Lin et al., 2015b] Tsung-Yu Lin, Aruni.R Chowdhury, and
Subhransu Maji. Bilinear CNN models for fine-grained
visual recognition. In ICCV, pages 1449–1457, 2015.

[Lin et al., 2015c] Yankai Lin, Zhiyuan Liu, Maosong Sun,
Yang Liu, and Xuan Zhu. Learning entity and relation
embeddings for knowledge graph completion. In AAAI,
pages 2181–2187, 2015.

[Marino et al., 2017] Kenneth Marino, Ruslan Salakhutdi-
nov, and Abhinav Gupta. The more you know: Using
knowledge graphs for image classification. In CVPR,
pages 20–28, 2017.

[Mikolov et al., 2013] Tomas Mikolov, Ilya Sutskever, Kai
Chen, Gregory S. Corrado, and Jeffrey Dean. Distributed
representations of words and phrases and their composi-
tionality. In NIPS, pages 3111–3119, 2013.

[Ouyang et al., 2017] Wanli Ouyang, Xingyu Zeng, Xiao-
gang Wang, Shi Qiu, Ping Luo, Yonglong Tian, Hong-
sheng Li, Shuo Yang, Zhe Wang, Hongyang Li, et al.
Deepid-net: Object detection with deformable part based
convolutional neural networks. IEEE TPAMI, pages 1320–
1334, 2017.

[Peng et al., 2018] Yuxin Peng, Xiangteng He, and Junjie
Zhao. Object-part attention model for fine-grained im-
age classification. IEEE Trans. Image Processing, pages
1487–1500, 2018.

[Sidorov et al., 2014] Grigori Sidorov, Alexander Gelbukh,
Helena G.Adorno, and David Pinto. Soft similarity and
soft cosine measure: Similarity of features in vector space
model. Computación y Sistemas, pages 491–504, 2014.

[Simonyan and Zisserman, 2014] Karen Simonyan and An-
drew Zisserman. Very deep convolutional networks for
large-scale image recognition. CoRR, abs/1409.1556,
2014.

[Srivastava et al., 2014] Nitish Srivastava, Geoffrey Hinton,
Alex Krizhevsky, and Ruslan Salakhutdinov. Dropout: A
simple way to prevent neural networks from overfitting. J.
Mach. Learn. Res., pages 1929–1958, 2014.

[Szegedy et al., 2016] Christian Szegedy, Vincent Van-
houcke, Sergey Ioffe, Jon Shlens, and Zbigniew Wojna.
Rethinking the inception architecture for computer vision.
In CVPR, pages 2818–2826, 2016.

[Wah et al., 2011] C. Wah, S. Branson, P. Welinder, P. Per-
ona, and S. Belongie. The Caltech-UCSD Birds-200-2011
Dataset. Technical Report CNS-TR-2011-001, California
Institute of Technology, 2011.

[Wang et al., 2016] Sen Wang, Pingbo Pan, Guodong Long,
Weitong Chen, Xue Li, and Quan Z. Sheng. Compact
representation for large-scale unconstrained video analy-
sis. World Wide Web, pages 231–246, 2016.

[Zhang et al., 2014] Ning Zhang, Jeff Donahue, Ross B. Gir-
shick, and Trevor Darrell. Part-based r-cnns for fine-
grained category detection. In ECCV, pages 834–849,
2014.

[Zhang et al., 2016a] Han Zhang, Tao Xu, Mohamed Elho-
seiny, Xiaolei Huang, Shaoting Zhang, Ahmed Elgammal,
and Dimitris Metaxas. Spda-cnn: Unifying semantic part
detection and abstraction for fine-grained recognition. In
CVPR, pages 1143–1152, 2016.

[Zhang et al., 2016b] Xiaopeng Zhang, Hongkai Xiong,
Wengang Zhou, Weiyao Lin, and Qi Tian. Picking deep fil-
ter responses for fine-grained image recognition. In CVPR,
pages 1134–1142, 2016.

Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)

1049


