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Abstract

The performance of data-driven learning ap-
proaches is often unsatisfactory when the train-
ing data is inadequate either in quantity or qual-
ity. Manually labeled privileged information (PI),
e.g., attributes, tags or properties, is usually incor-
porated to improve classifier learning. However,
the process of manually labeling is time-consuming
and labor-intensive. To address this issue, we pro-
pose to enhance classifier learning by extracting PI
from untagged corpora, which can effectively elim-
inate the dependency on manually labeled data. In
detail, we treat each selected PI as a subcategory
and learn one classifier for per subcategory inde-
pendently. The classifiers for all subcategories are
then integrated together to form a more powerful
category classifier. Particularly, we propose a new
instance-level multi-instance learning (MIL) model
to simultaneously select a subset of training images
from each subcategory and learn the optimal classi-
fiers based on the selected images. Extensive exper-
iments demonstrate the superiority of our approach.

1 Introduction

Over the past decades, classifier learning approaches have
been mostly data-driven [Coates et al., 2011; Liu et al.,
2013; 2015; Yao et al, 2016; Shen et al., 2017]. The
classifier is purely learned from a set of training samples
(1,Y1)5---(Tn,Yn). Despite the success achieved, data-driven
approaches become very brittle and prone to overfitting when
the training data is inadequate either in quantity or quality.

A natural solution to alleviate this limitation is incorpo-
rating additional PI [Wang and Ji, 2015; Li et al., 2014;
Niu et al., 2017]. For example, in object recognition, in ad-
dition to the image features and labels (e.g., “horse”), the
learner may also leverage object attributes (e.g., “walking”
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Tags: Tags:
Animal Vehicle
Horse Jets
Running aircraft
Kerala Outdoor
Canon Rotor
Tags: Tags:
Indoor Group Tripod
Photo frame Mouse
mouse Glasses

Figure 1: Examples of textual tags (privileged information) for im-
ages on image sharing website “Flickr”. Both of useful and noisy
tags are included.

and “jumping”) in the training process. In human action
recognition, besides the RGB features and human action la-
bels, human joint positions can be incorporated into the clas-
sifier training. In practice, the PI can be tags, properties, at-
tributes, positions or the context of the web images.

However, learning classifier with PI is a challenging prob-
lem. The difficulty lies in three aspects. Firstly, the process of
manually labeling PI is very expensive. Secondly, it is only
available during training and unseen during testing. Thirdly,
learning classifiers with PI overly depends on the quality of
the collected PI. As shown in Fig 1, PI is often associated
with noise in practice. If we failed to remove noise, the ro-
bustness of the learned classifier would be greatly reduced,
and, in extreme cases, may become even worse.

Motivated by that, we seek to extract and leverage useful PI
to enhance classifier learning. Different from previous works
which discover PI from manually labeled descriptions, our
approach extracts the PI from untagged corpora. The motiva-
tion is to eliminate the dependency on labeled data. In addi-
tion, different from previous works which usually encode PI
into the parameters of the classifier, we focus on encoding PI
into the structure of the classifier during training.

In our work, we mainly consider two critical issues. The
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first is the PI derived from untagged corpora are usually noisy,
how to remove noise and select the useful PI. The second is
the retrieved web images are often associated with inaccu-
rate labels, so the learned classifiers may be less robust and
the classification performance may be significantly degraded,
how one can purify noise and select useful images for learn-
ing robust classifiers. Specifically, we formulate noisy PI
and noisy web images removing as a multi-view and multi-
instance learning problem respectively. We propose a new
instance-level MIL model to select images from each subcat-
egory and simultaneously learn the optimal classifiers based
on the selected images. To verify the effectiveness of our pro-
posed approach, we conducted experiments on the tasks of
image categorization and sub-categorization. Experimental
results demonstrated the superiority of our proposed method.

The main contributions of this work consist of three as-
pects. Firstly, we eliminate the dependency on manually la-
beled PI and propose to extract that from untagged corpora.
Secondly, we propose a novel instance-level MIL model to
jointly learn the classifiers for categories and subcategories.
Thirdly, from the experimental results, our proposed ap-
proach shows substantial improvement over existing weakly
supervised methods.

2 Framework and Methods

Our proposed approach mainly consists of three major steps.
Namely, discovering privileged information, purifying privi-
leged information, and learning integrated classifier.

2.1 Discovering Privileged Information

Inspired by recent work [Divvala et al., 2014], we can use
Google Books Corpora [Lin ef al., 2012] to discover an ex-
haustive vocabulary explaining all the appearance variations
for the given category. Following [Lin e al., 2012] (see sec-
tion 4.3), we specifically treat the dependency gram data with
parts-of-speech (POS) as the PI. For example, given a cat-
egory (e.g., “horse”) and its corresponding POS tag (e.g.,
‘jumping, VERB’), we find all its occurrences annotated with
POS tag within the dependency gram data. Of all the n-gram
dependencies retrieved for the given category, we choose
those whose modifiers are NOUN, VERB, ADJECTIVE, and
ADVERSB as the discovered candidate PI.

2.2 Purifying Privileged Information

Not all the candidate PI is useful, some noise may also be in-
cluded. Using the noisy PI to enhance classifier learning will
hurt both of the accuracy and robustness. To this end, we need
to separate useful PI from noise before learning classifiers.

Our basic idea is to filter out the noisy PI from the perspec-
tive of relevance. Specifically, we denote the semantic dis-
tance of all discovered PI by a graph in which the given cate-
gory (e.g., “dog”) is center y. Other candidate PI has a score
Szy corresponds to the Normalized Google Distance (NGD)
[Cilibrasi and Vitanyi, 2007] between term x and y. Semanti-
cally relevant PI tend to have a smaller semantic distance than
less-relevant PI. For example, PI “yawning dog”, “Eskimo
dog” and “police dog” which has a score 0.388, 0.286 and
0.372 respectively is much smaller than “down dog” which
has a score 0.703.
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However, this assumption is not always true from the per-
spective of visual relevance. For example, “hot dog” has a
relatively smaller semantic distance 0.213, but is not relevant
to the given category “dog” from the visual perspective. Thus,
we need to identify both semantic and visual relevant PI. We
retrieve the top K images from image search engine for each
candidate PI. We denote each image as =; and the compound

feature of K images as ¢y, = % Zle x; to represent its vi-
sual distribution. We calculate the Euclidean Distance be-
tween each candidate PI and the given category by using the
compound feature to represent the visual distance. Similarly,
visual relevant PI usually has a relatively smaller visual dis-
tance to the given category.

By treating semantic and visual distance as features from
two different views, we formulate less relevant PI pruning
as a multi-view learning problem. Our motivation is to find
both semantically and visually relevant PI. During training,
we model each view with one classifier and jointly learn two
classifiers with a regularization term that penalizes the differ-
ences between two different classifiers.

Two views are reproducing kernel Hilbert spaces H y 1)
and H (2. Given [ labeled data (z1,y1),...(z;, 1) € X X
{#1} and u unlabeled data z;; 1, ..., € X, we seek to find
predictors f(V* € H ) and fP* € H o) that minimize
the following objective function:

(f<1)*,f(2)*) = argminf<1)eHK(1)LOSS(f<1), f(2)) +m
f<2)€HK(2)

2 2

Hf(l)

+ 72 Hfm

I+u

FA Y (V@) = FP (@)
i=l+1

(1

The first term is loss function and the next two are
the regularization terms. The last term is called “co-
regularization” which encourages the selection of a pair pre-
dictors (f(1)*, f(2*) that agree on the unlabeled data. During
testing, we make predictions by averaging the classification
results from both of two views and the prediction rule is:

T =50V @) + 12 @), @

Following [Sindhwani et al, 20051, we adopt
the form of loss function as: Loss(f("), f?) =
2% 22:1 ((f(l)(xi) — )2+ (fP () — y,)z) We take the
co-regularised least squares regression algorithm proposed in
[Brefeld et al., 2006] to solve (1). After we obtain the models
for two views, we use (2) to prune noise and select useful PI.

Hpe() Hy(2)

2.3 Learning Integrated Classifier

We treat each selected PI as a subcategory for the target cat-
egory. Suppose we obtain M subcategories, we collect the
top few candidate images from image search engine for each
subcategory. Although the image search engine has ranked
the returned images, due to the error index of image search
engine, some noisy images may still be included. We need to
prune noise before learning integrated classifier.

By treating each subcategory as a “bag” and the retrieved
images therein as “instances”, we formulate noisy images re-
moving and robust classifiers learning as an instance-level
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MIL problem. For ease of presentation, we denote each in-
stance as x; with its label y; and each bag G,,, with the label
Y,.. A matrix/vector is denoted by an uppercase/lowercase
letter in boldface. The transpose of a vector or matrix is rep-
resented by "

Since the retrieved images may contain noise, we need to
select appropriate samples to train robust classifiers. To this
end, a binary indicator h; € {0, 1} is used to indicate whether
or not training instance z; is selected. To be exact, h; = 1
when z; is selected, and h; = 0 otherwise. Due to the preci-
sion of images returned from the image search engine tends
to have a relatively high accuracy, we define each positive bag
as at least having a portion of 7 positive instances. The value
of 7 can be estimated from some prior knowledge [Li et al.,
2011; Yao et al., 2016]. We define h = [hy,...hy] " as the
indicator vector, and use H = {h[},.; h; = n|Gy|,Vm}
to represent the feasible set of h, where I,,, represents the
set of instance indices in G,,, and |G,,| denotes the cardi-
nality of G,,,. We assume there are IV retrieved web images
coming from C' categories and belonging to .S subcategories.
zi,s € {0,1} is a binary indicator variable and takes the value
of 1 when x; belongs to the s-th subcategory, and 0 otherwise.
We denote N, = Zfil 2; s as the number of web training
images from the s-th subcategory. f.(x) = (WC’S)TQ(ZL‘)
representing the classifier of the s-th subcategory and the c-th
category. Based on existing MIL method [Li ez al., 20111, we
propose our new MIL formulation as follows:

i ZZancm +Clz€m

c=1s=1

TemPIL (S Pl ) ow)— O
m s=1

€L

(We,ﬁ)ch)(iCi)) 2N —E&m,Vm,5,¢# Yy,

Em = 0,Ym

where (' is a trade-off parameter, &, are slack variables
and ¢(-) is the feature mapping function. P; ; is the prob-
ability that the i-th training sample comes from the s-th
subcategories. It can be obtained by calculating P;, =
(Zi,s/Ns)/Zle(Zi,s/Ns)- In our model, we consider not
only the relationship between category and its subcategories
but also the relationship across different categories. Com-
pared with classical MIL methods which mainly consider
the relationship between category and its subcategories, our
model has a better robustness.

Optimization
Problem (3) is a non-convex mixed integer problem and is

hard to solve directly. However, the dual form of (3) can be
relaxed as a multiple kernel learning (MKL) problem:

1
min max ffaTQhaJr CTOC
h o7 2
s.t. Zam,c,s =C1, Vm, “)
Om,c,s >0, Vm,c,s.
a € RP D = M-
dual variables ay,cs. €

C - S) is a vector containing
€ RP is a vector, in which
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Cmye,s = 0if ¢ = Yy, and (¢ = 7 otherwise. Ma-
trix Q" € RP*P can be calculated through (1/ |G| |Gwl)
Yier, jer, hihjo(x:)To(x;)A(, ), c, ¢ 5, 3).

Problem (4) is a mixed integer programming problem and
is hard to directly optimize the indicator vector h. How-
ever, we can find the coefficients of hthT We denote d =
[dy,...d7]T, T = |H|, and the feasible set of cv, d as v and
D = {d|dT1 = 1,d > 0}, respectively. Then we can get
the following optimization problem:

min max
deD acv

T
1
- 5ZdtaTtha+<Ta. 6))
t=1

When we set the base kernel as th, the above problem is
similar to the MKL dual form and we are able to solve it on
its primal form, which is a convex optimization problem:

[l w H
deDwtgm Z t +CZ§"L

t=1
s.t. ZWIQO(htyGTmC:S)

t=1

(0)
= Cm,c,s -

Em, Ym,c, s

where ¢(h;, G,,,c,s) is the feature mapping function in-
duced by Q" We solve the convex problem in (6) by up-
dating d and {wy, &, } in an alternative way.

Update d: We firstly fix {wy, &, } to solve d. By introduc-
ing a dual variable 3 for constraint d "1 = 1, the Lagrangian
form of (6) can be derived as:

1 T 2 M
52 +Clzgm_ Zam,c,s
t=1 m=1 m,c,s
r r )
O wlo(he, G, c,8) = Cmcs +&m) + B di — 1),
— t=1
Through set the derivative of (7) w.r.t d; as zero, we get:
lwell
dy = vt=1,..,T.
¢ V2B’ 3

For parameter (3, ||w;||/+/28 is monotonically decreasing.
Parameter d; satisfy 23:1 d: = 1. We can use binary search
method to solve 5 and recover d; according to (8).

Update w: When d is fixed, w; can be obtained by solv-
ing o in (5). Problem (5) is a quadratic programming prob-
lem w.r.t «. We employ the cutting-plane algorithm [Kelley,
1960] to solve this problem. By setting the derivatives of (7)
w.r.t {wy, &, d;} as zeros, (5) can be rewritten as:

max —ﬂ—l—( a
B,axEv

) ©)
s.t. gaTtha < B, Vt.

We solve (9) by solving o with only one constraint at the first,
then add a new violating constraint iteratively. We obtain the
most violated constraint by optimizing:

1 t.n
= 1
max 2a Q'«x 10)
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After a simple derivation, we can rewrite (10) as:
max hT(%Q@ (@é " ))h (11)

where &; = 1/|Gp| Zc,s Qs for i € I, and Q =
Yo ess @) To(x;)A(i, j, ¢, ¢, 5,8). Problem (11) can be
solved approximately through enumerate the binary indicator
vector h in a bag by bag fashion iteratively to maximize (11)
until there is no change in h.

We train one classifier for each category and each subcat-
egory. In general, a total of C' x S classifiers f. s(z)|c =
1,...C,s = 1,...S will be learned. The decision function for
category C is obtained by integrating the learned classifiers
from multiple subcategories: f.(x;) = Zle P sfe,s(zi).

During testing, we want to find the labels of the most
matched subcategory and category, whose classifier achieves
the largest decision value from all the subcategories and cat-
egories respectively. Thus, the subcategory label of image x
can be predicted by:

arg max wzsqb(x) (12)
and the category label by:

arg mgx(mgx wzsqb(x)) (13)

3 Experiments

In this section, we first conduct experiments on both image
categorization and sub-categorization to demonstrate the ef-
fectiveness of our proposed approach. We then quantitatively
analyze the role of different steps contributing to the final re-
sults. In addition, we also analyze the time complexity of our
proposed model.

3.1 Image Categorization

Experimental setting: We follow the setting in [Yao et
al., 2017; 2018] and exploit web images as the training set,
human-labeled images as the testing set. Particularly, we
evaluate the performance of our approach and other baseline
methods on dataset PASCAL VOC 2007 [Everingham et al.,
2010], CIFAR-10 [Krizhevsky and Hinton, 2009] and STL-
10 [Coates et al., 2011].

For each category, we first discover the PI by searching
in the Google Books Corpora. We calculate the NGD be-
tween the discovered PI and its target category as the seman-
tic distance. The top K = 100 images from image search
engine were retrieved for each discovered PI. We obtain the
compound feature of each PI and calculate the Euclidean Dis-
tance between PI and its target category as the visual distance.
We model each view with one classifier and jointly learn two
classifiers with a regularization term that penalizes the differ-
ences between two different classifiers. We label a set of 500
relevant PI and 500 irrelevant PI to learn the prediction rule
(2) for removing noise and selecting useful PIL.

After we obtain the selected PI, the top 100 images were
chosen for constructing the positive bags which correspond-
ing to the selected PI. Negative bags can be obtained by ran-
domly sampling a few irrelevant images. We use the proposed
MIL model to select a subset of training images from each
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Dataset

Method 5 SGAL T STL-10 | CIFAR-10
SMIL 0383 | 0351 0.254
Mi-SVM 0414 | 0381 0.278
RN-CMF 0499 | 0394 0313
Sub-Cate 0432 | 0426 0.336
SMIL-PI 0437 | 0454 0355
LIR 0482 | 0472 0.376
WSDG-PI | 0522 | 0485 0.432
VCL 0545 | 0513 0.429
Ours 0.582 | 0.557 0.464

Table 1: The average performance comparison on the PASCAL
VOC 2007, STL-10 and CIFAR-10 dataset.

bag and simultaneously learn the optimal classifiers based on
the selected images. We define each positive bag as having at
least a portion of 77 = 0.7 positive instances and set the trade-
off parameter C'; = 10~1. We evenly select 500 images from
positive bags for each category to learn the integrated classi-
fier. The features are 4096 dimensional deep features based
on AlexNet [Krizhevsky et al., 2012].

Baselines: We compare our approach with three sets of
weakly supervised baseline methods, the sub-categorization
methods, the MIL methods, and the PI methods. The sub-
categorization methods include Sub-Cate [Hoai and Zisser-
man, 2013] and RN-CMF [Ristin et al., 2015]. The MIL
methods contain instance-level method mi-SVM [Andrews et
al., 2003] and bag-level method sMIL [Bunescu and Mooney,
2007]. The PI methods consist of SMIL-PI [Li et al., 2014],
LIR [Wang and Ji, 2015], WSDG-PI [Niu et al., 2017] and
VCL [Divvala et al., 2014].

Experimental results: The average performance compari-
son results are summarized in Table 1. From Table 1, we have
the following observations:

PI methods VCL and our method performed better than
three other PI methods sMIL-PI, LIR and WSDG-PI on the
task of image categorization. One possible explanation is that
the PI extracted from untagged corpora in both of our method
and VCL is much richer and more accurate than three other
methods in which the PI is obtained from the surrounding
textual descriptions. Due to the complexity of the Internet, it
is difficult to extract PI correctly from the descriptions.

Our proposed approach achieved the best average perfor-
mance on all three datasets. Compared to MIL and sub-
categorization methods, the classifiers learned by our ap-
proach not only using the visual features, but also the tex-
tual PI. Privileged information is usually more discriminative
than the visual features in practical applications. Compared
to PI methods which extract PI from the surrounding textual
descriptions, the PI extracted by our method from untagged
corpora is much more accurate and general. So the learned
classifiers are more robust. Compared to VCL which takes
multiple PI to learn a single classifier, our method exploits
multiple PI to learn integrated classifier is more robust.
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Figure 2: Sub-categorization accuracy (%) of different methods: (a)
using a varying number of training images for per subcategory, (b)
using a varying number of testing images for per subcategory.

3.2 Image Sub-categorization

Experimental setting: For image sub-categorization, we
choose a subset of ImageNet as the testing dataset. The rea-
son is that ImageNet has a hierarchy structure. In particular,
we select five categories including “airplane”, “bird”, “cat”,
“dog” and “horse” as the target categories and all their leaf
synsets as the subcategories. Therefore, we can obtain 5 cat-
egories and 97 subcategories. The top 1000 images for each
subcategory were retrieved from image search engine (Bing
Image Search API-v7). We perform a cleanup step for bro-
ken links, webpages and obtain top ranked 700 images for
each subcategory. We leverage the proposed MIL model to
remove noise and learn classifiers. Specifically, we exploit
the learned classifiers to re-rank the images in each subcate-
gory according to the probability to be a positive sample. We
sequentially select the top-ranked [100, 150, 200, 250, 300,
350, 400, 450, 500] images from each subcategory as the pos-
itive training samples to learn classifiers. 500 images per sub-
category from ImageNet were selected as the testing data. In
addition, we leveraged the top-ranked 500 images per subcat-
egory as the positive training samples to learn classifiers and
sequentially select [100, 150, 200, 250, 300, 350, 400, 450,
500] images per subcategory from ImageNet as the testing
data. For this experiment, we also use the 4096 dimensional
deep features based on AlexNet.

Baselines: We compare the image sub-categorization abil-
ity of our method with four weakly supervised baseline
methods, multi-SVM [Weston and Watkins, 1998], Sub-Cate
[Hoai and Zisserman, 2013], RN-CMF [Ristin et al., 2015],
and MMDL [Wang et al., 2013].

Experimental results: The experimental results were pro-
vided in Fig 2 (a) and Fig 2 (b) respectively. The accuracy is
measured by the average classification rate per subcategory.

By observing Fig 2 (a), we can see the best performance
is achieved by our method, which produces significant im-
provements over other methods, particularly the number of
positive training images over 250 for each subcategory. The
reason is that our method considers the noisy images during
the process of classifier learning. Due to the error index of
image search engine, some noise may be included. We need
to remove noise and select useful images from the retrieved
web images to learn robust classifiers for each subcategory.
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Figure 3: Image categorization ability of NR and ours on PASCAL
dataset: (a) “airplane”, (b) “dog”.

It is interesting to note in Fig 2 (a), while method RN-CMF
implements a form of noisy images removing, the accuracy
did not improve with the number of positive training images
increase. The reason is that the noise is not the only factor that
affects the classification accuracy. The visual distribution of
selected images is another important factor.

By observing Fig 2 (a) and Fig 2 (b), our approach com-
pares very favorably with competing algorithms, in terms of
different numbers of training and testing images. Compared
to method multi-SVM, Sub-Cate, RN-CMF, and MMDL,
our approach achieves significant improvements in the sub-
categorization accuracy. The reason is our proposed MIL
model not only considers the possible presence of noise in
the web training data, but also tries to ensure the diversity of
the selected images for classifier learning.

3.3 Performances of Methods with/without PI

To compare the classification performance with/without PI,
we construct a new framework NR. We directly retrieve the
web images as the candidate training data. We then take the
MIL model to prune noisy images and train classifiers.

Specifically, “airplane” and “dog” are selected as two tar-
get categories to compare the image categorization ability.
We sequentially collect [200,400,600,800,1000] images for
each category to learn the classifiers. We test the catego-
rization ability of NR and ours on the PASCAL VOC 2007
dataset. The results were shown in Fig. 3.

From Fig. 3, we can observe that PI-based approach per-
forms better than NR, especially when the training number is
greater than 200. The explanation is that with the increase of
image numbers for each category, the retrieved images con-
tain more and more noise. The noisy images caused by the
image search engine have a worse effect than those induced
by noisy PI. In this condition, our approach obviously outper-
forms method NR.

3.4 Different Steps Analysis

Our proposed framework involves three major steps. To
quantify the role of different steps contributing to the final
classifiers, we construct two new frameworks.

One is based on PI discovering and PI purifying (which
we refer to PIDP). Another one is based on PI discovering
and integrated classifier learning (which we refer to PICL).
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Figure 4: Image categorization ability of PIDP, PICL and ours on
PASCAL dataset: (a) “bird”, (b) “horse”.

For framework PIDP, we first obtain the PI through searching
in the Google Books Corpora. Then we apply the PI puri-
fying procedure to get the selected PI. We directly retrieve
the top images from image search engine for selected PI to
train image classifiers (without noisy images removing). For
framework PICL, we also first obtain the candidate PI. Then
we retrieve the top images from image search engine for all
the candidate PI (without noisy PI purifying). We apply the
MIL model to select images and train image classifiers.

We compare the image categorization ability of these two
new frameworks with our proposed framework. Specifically,
“horse” and “bird” are selected as two target categories to
compare the image categorization ability. We sequentially
collect [200,400,600,800,1000] images for each category as
the positive training samples and use 1000 fixed irrelevant
negative samples to learn image classifiers. We test the image
classification ability of these three frameworks on the PAS-
CAL VOC 2007 dataset. The results are shown in Fig. 4.

From Fig. 4, we can observe that Framework PIDP usually
performs better than PICL when the training number for each
category is below 600. The explanation is that the first few re-
trieved images tend to have a relatively high accuracy. When
the number of training images is below 600, the noisy images
induced by noisy PI are more serious than those caused by the
image search engine. With the increase of image numbers for
each category, the images retrieved from the image search en-
gine contain more and more noise. In this condition, the noisy
images caused by the image search engine have a worse effect
than those induced by noisy PI.

Our proposed framework outperforms both PIDP and
PICL. This is because our approach, which takes a combi-
nation of noisy PI removing and noisy images filtering, can
effectively remove the noisy images induced by both noisy PI
and the error index of image search engine.

3.5 Parameter Sensitivity Analysis

For parameter sensitivity analysis, we mainly analyse two pa-
rameters C; and 7 in our MIL model. PASCAL VOC 2007
was selected as the benchmark testing dataset to evaluate the
performance variation of our proposed approach. In particu-
lar, we vary one parameter by fixing another parameter as the
default value. Fig 5 presents the parameter sensitiveness of
C1 and 7 in terms of image categorization accuracy.
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Figure 5: The parameter sensitiveness of C'; and 7 in terms of image
categorization accuracy.

By observing Fig 5 (a), we found our method is robust to
the parameter C; when it is varied in a certain range [10~3,
1072, 1071, 109, 10, 102, 10?]. From Fig 5 (b), we noticed
that the performance of our method is growing when 7 in-
creases but less than 0.7. The reason is perhaps that our train-
ing data was derived from image search engine. Due to the
error index of image search engine, there may be too much
noise in each bag which will result in decreasing the clas-
sification accuracy when 7 < 0.7. When 7 increases over
0.7, the performance of our method decreases. One possi-
ble explanation is that the training set is less diverse. With
the increase of 7, the number of subcategories is decreasing,
which may lead to the degradation of domain robustness of
the classifier.

3.6 Time Complexity Analysis

During the process of solving our proposed MIL model,
we solve the convex problem by using the cutting-plane al-
gorithm. Through finding the most violating candidate h,
and solve the MKL subproblem at each iteration, the time
complexity of our model can be approximately computed as
T - O(MKL), where the T is the number of iterations and the
O(MKL) is the time complexity of the MKL sub-problem.
According to [Platt ez al., 1999], the time complexity of MKL
is between t-O(LCM) and t-O((LC M )?-3), where M, L,C
are the numbers of latent domains, bags and categories re-
spectively. ¢ is the number of iterations in MKL.

4 Conclusion

In this paper, we presented a new approach for enhancing
classifier learning by using privileged information. Differ-
ent from previous works, our approach, while improving the
accuracy and robustness of the classifier, greatly reduces the
time and labor dependence. In our work, three successive
modules were employed including PI discovering, PI purify-
ing and integrated classifier learning. Specifically, we pro-
posed a new instance-level MIL model to select a subset of
training images from each selected PI and simultaneously
learn the optimal classifiers based on the selected images. To
verify the effectiveness of our proposed approach, we con-
ducted experiments on both image categorization and sub-
categorization tasks. The experimental results demonstrated
the superiority of our proposed approach over existing weakly
supervised methods.
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