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Abstract

Convolutional neural networks are widely used in
computer vision applications. Although they have
achieved great success, these networks can not be
applied to 360° spherical images directly due to
varying distortion effect. In this paper, we present
distortion-aware convolutional network for spheri-
cal images. For each pixel, our network samples a
non-regular grid based on its distortion level, and
convolves the sampled grid using square kernels
shared by all pixels. The network successively ap-
proximates large image patches from different tan-
gent planes of viewing sphere with small local sam-
pling grids, thus improves the computational ef-
ficiency. Our method also deals with the bound-
ary problem, which is an inherent issue for spher-
ical images. To evaluate our method, we apply
our network in spherical image classification prob-
lems based on transformed MNIST and CIFAR-10
datasets. Compared with the baseline method, our
method can get much better performance. We also
analyze the variants of our network.

1 Introduction

In the last decade, the society has witnessed great progress
of deep neural networks [LeCun et al., 2015], which have
been widely used in computer vision, speech recognition,
natural language processing, social network filtering and
bioinformatics. As a specialized kind of deep neural net-
works, convolutional neural networks (CNNs) have made
tremendous successes in computer vision and achieved state-
of-the-art performance in many computer vision applica-
tions, including image classification [Krizhevsky et al., 2012;
Simonyan and Zisserman, 20151, object detection [Girshick
et al., 2014], semantic segmentation [Long et al., 2015], and
image super-resolution [Dong et al., 2016].

By providing fields-of-view far beyond the conventional
planar images, spherical images are becoming more and more
popular and have been successfully applied in a number of
recent new applications, including virtual navigation [Zhao
et al., 2013], 3D scene reconstruction [Micusik and Kosecka,
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Figure 1: The structure of spherical image: the viewing sphere and
equirectangular projected image.

20091, scene recognition [Xiao et al., 2012] and scene under-
standing [Yang and Zhang, 2016]. As a feature extractor, con-
volutional neural networks also have great application poten-
tials in problems involving these particular type of data [Hu et
al., 2017; Lai et al., 2017]. However, existing CNN architec-
ture is awkward to process these images. This is because the
underlying structure of spherical images is different with that
of planar images processed by conventional CNNs. Specifi-
cally, the most existing convolutional networks are designed
to deal with problems where the underlying image data have
a regular planar grid structure, whereas the spherical images
are the signals defined on the sphere as shown in Figure 1.
Due to the non-linearity of this manifold, there is no regular
planar grid available.

To deal with this problem, two simple but naive approaches
are adopted by communities. The first approach ignores the
difference between the underlying structure of planar im-
ages and spherical images, and directly applies conventional
CNNss to spherical images [Boomsma and Frellsen, 2017].
However this approach suffers from distortion problems. As
the sphere is a non-developable surface, there does not ex-
ist any mapping method that will not introduce perceptual
distortions [Zorin and Barr, 1995]. Equirectangular projec-
tion, which is the mapping method of spherical images, is
not an exception. In the second strategy, each spherical im-
age is converted to multiple perspective planar images. These
planar images are then fed to CNNs for further processing.
This approach is immune to image distortions, but needs to
re-sample the spherical image. To achieve high accuracy,
a large number of perspective images should be generated,
which will increase the computational cost. Furthermore, the
intermediate representation in CNN can not be shared across
these perspective images. The reason is that the spherical im-
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age should be projected to different tangent planes. This pre-
vents amortization of convolution operations as noted in [Su
and Grauman, 2017].

In this paper, we propose a distortion-aware CNN for 360°
spherical images. Our network is composed of distortion-
aware convolutional layers and pooling layers, which explic-
itly take the distortions of spherical image into account. For
each pixel, our method samples a non-regular grid based on
its distortion level through perspective projection. As the
sampling process already accounts for distortions, we can
then use regular square kernels for convolution as in conven-
tional CNN. Unlike the method proposed by Su and Grau-
man [2017], which breaks the parameter sharing and learns
one kernel for each row of spherical image, the kernels in our
network are shared by all the pixels. Thus our network has
much less parameters and enjoys the parameter sharing prop-
erty. For efficiency, our network uses the same set of small
local sampling grids to successively approximates larger im-
age patches. This avoids projecting viewing sphere to dif-
ferent tangent planes, which is computationally intensive for
real problems. We also deal with the inherent boundary prob-
lem of spherical images to respect the fact that the sphere is
a closed surface. To evaluate our method, we transform the
well known MNIST and CIFAR-10 dataset to spherical ones
and compare our method with baseline method, i.e. conven-
tional CNNs trained and tested on the transformed dataset.
Experimental results show that our method can get signifi-
cantly better performance than the baseline.

The rest of this paper is organized as follows: Section
2 reviews the most related work including spherical images
and generalized CNNs. We briefly describe the geometry for
spherical images in Section 3, which is followed by the details
of our algorithm in Section 4. Section 5 gives the evaluations
of the proposed method. Section 6 concludes the paper and
gives the possible directions of future work.

2 Related Work

In this section, we discuss some work related to this paper,
covering spherical images and generalized CNNs.

2.1 Spherical Images

Unlike traditional planar images, which only record a small
portion of the 3D scene, spherical images capture all the vi-
sual information of the world surrounding the view point.
Thus they can provide field of view far beyond planar images
and can give more immersive experience to the users.

Due to the development of image stitching tech-
niques [Brown and Lowe, 2007] and the maturity of
panoramic imaging systems [Uyttendaele et al., 2004], the
past decade has witnessed the increasing trend of spherical
images being more and more easily obtained. These large
field of view images are widely used to provide a vivid vi-
sual impression by the head mounted displays such as Oculus
and HTC Vive, media sharing web sites such as Facebook
and YouTube and online street view services such as Google
Street View and Microsoft Bing Maps Streetside.

These data are also capturing the attention of research com-
munities. Micusik and Kosecka [2009] reconstructed the
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3D city models from street view spherical image sequences.
SUN360 [Xiao er al., 2012] project performs scene recogni-
tion and view detection by leveraging spherical image dataset.
Zhao et al. [2013] proposed a real time virtual navigation
method between two spherical images. Yang and Zhang
[2016] recovered the shape of a 3D room from an indoor
spherical image. To extract features, these methods first con-
vert the spherical image to a set of perspective images, then
extract features from these planar images. Contrasted, in this
paper, we propose convolutional networks, which can directly
extract features from spherical images.

2.2 CNNs on General Domains

Conventional CNNs are designed to solve problems where
the coordinates of the underlying data representation have a
regular grid structure. Recently, there appear works that try to
apply convolutional networks on more general domains, such
as graph and spherical signals.

As a natural generalization of grid structure, graphs offer
the possibility for extending the notion of convolution. Bruna
et al. [2014] discussed how to extend the convolutional archi-
tectures to graph structures. They proposed two constructions
of deep neural networks on graphs. The first one is spatial
construction, which is based on the local filtering and hierar-
chical clustering of the nodes of graph. The other one is spec-
tral construction, which is based on the spectrum of graph
Laplacian. Duvenaud et al. [2015] used convolutional net-
works on graphs to learn molecular fingerprints. Their con-
struction is similar to the spatial construction of Bruna, but
can take the graphs of arbitrary size and shape as input.

To process the signals on sphere, Khasanova and Frossard
[2017] treated each spherical image as a graph and used
graph-based CNN to classify these images. Cohen et al.
[2017] proposed spherical convolutional networks. Their
method is based on the convolutions on the sphere and rota-
tion group. However this method may suffer from bandwidth
problem, since the convolutions on the sphere are solved by
generalized Fourier transform. Su and Grauman [2017] trans-
formed the spherical convolutional network learning problem
to a model distillation problem. Their method transfers a
pre-trained conventional CNN model to a new network, so
that the transferred network can be used to process spher-
ical images. To account for the varying distortion effects,
they learned one kernel for each row of the spherical image.
This makes the transferred network has huge number of pa-
rameters and slows the rate of convergence when training.
Our proposed CNN also processes equirectangular projected
spherical images directly. However our method inherits the
parameter sharing property of conventional CNNs and has
much less parameters than that of Su and Grauman [2017].

3 Preliminary

Our goal is to design CNNs that can be applied directly to
spherical images. Before introducing our method, we first de-
scribe the structure of spherical images, i.e. equirectangular
projection.

As shown in Figure 1, equirectangular projection maps
meridians and circles of latitude of viewing sphere to vertical
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Figure 2: The local patches with same polar angle (the red and green
regions) in spherical image have same distortion, while that with dif-
ferent polar angles (the red and blue regions) have different distor-
tion effects. The boundary of spherical image can split one object
into two parts (the magenta regions).

and horizontal coordinates of spherical image respectively.
Given a pixel (z,y) of the spherical image, we can obtain
its spherical coordinates (6, ¢) on the viewing sphere as

9:23771'
{d)_;:r : (1)
~ h

where w and h are the width and height of spherical image
respectively, 6 is the azimuthal angle and ¢ is the polar angle.
Then the 3D position of the pixel on the viewing sphere is

X = cos(8) sin(9)
Y =sin(f)sin(¢) . 2)
Z = cos(¢)

Correspondingly, given a point (X,Y,Z) on the viewing
sphere, its 2D pixel coordinates (z,y) can be determined by
the inverse transformation of the above procedure. For con-
venience, we denote the transformation as 7 and the inverse
transformation as 7 ~! in the following.

4 Our Approach

In this section, we first analyze the problem of spherical im-
age convolution, then we describe the distortion-aware con-
volution and pooling. Finally, we give the discussions about
our approach and the implementation details.

4.1 Problem Analysis

The basic operation in CNN is convolution. This operation
first samples a grid over the input feature map f around a
location p, then takes the sum of sampled values weighted
by convolution kernel w and assigns the result to the corre-
sponding element of output feature map g. This is expressed
as

g(p) = Y w(Ap)f(s(p, Ap)), 3)

Ap€eER

where s(p, Ap) denotes the sampling process and R defines
the convolution region {s(p, Ap)|Ap € R}. The set R
is {(-1,-1),(-1,0),...,(1,0),(1,1)}, for example, when
the convolution kernel size is 3 x 3.

Conventional CNNs always operate on the data that has a
regular grid structure, i.e.

s(p,Ap) =p+ Ap, VAp € R. 4
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Figure 3: To sample the non-regular grid for p, we project the view-
ing sphere to the tangent plane at P = 7 (p) and sample a regular
grid on the tangent plane (the blue points on the left subfigure). Then
the sampled grid is transformed on the original spherical image for
the target grid (the points on the right below image).

However this regular grid sampling strategy can not be ap-
plied to spherical images directly. The main reason is that
equirectangular projection will introduce varying distortions.
That is to say, the distortions of local patches in spherical
image only depend on their polar angles ¢ and are indepen-
dent of azimuthal angles . This is validated by Figure 2, in
which we back project planar images of the same size to dif-
ferent locations of spherical image. We can see that if two
locations have equal ¢, the distortion effects of projected re-
gions would be same, e.g. the two regions bounded by red
and green curves. Another reason is that the boundary pix-
els of spherical image and planar image should be processed
differently. For planar images, if p is a boundary pixel, zero
padding should be applied when sampling the grid through
Equation 4, as p + Ap may be an invalid pixel position. For
spherical images, the padding should be prohibited. Instead,
wrap address mode should be used as the left and right bound-
aries of spherical image correspond to the same meridian of
viewing sphere. The region bounded by magenta curve in
Figure 2 shows this problem.

To solve the varying distortion problem, Su and Grauman
[2017] adopted the usual regular grid sampling in Equation
4, but used different convolution kernels w for the pixels in
different rows. These kernels have different shapes and sizes.
For example, kernels w for pixels close to top and bottom
boundaries of image are long and narrow rectangles, while
those for central pixels are squares. In contrast, our main
idea is sampling a non-regular grid around location p through
sampling operator s(p, Ap), and performing convolution us-
ing Equation 3 without changing the shape and/or size of con-
volution kernel w, which is shared by all the pixels of spher-
ical image. Thus our network has much less parameters than
the work [Su and Grauman, 2017] and is easy and fast to train.

4.2 Distortion-aware Convolution

To sample the distortion-aware non-regular grid for p, we
project the viewing sphere to the tangent plane at point P =
T (p). Then we sample a regular grid on the tangent plane
and transform the grid to the original spherical image for the
target non-regular grid.

We first define a 3D Cartesian coordinate system, whose
origin is given by the point P and axes are determined by the
tangent plane. As shown in Figure 3, we set the look-at axis 1
of the coordinate system as 1 = 7 (p), and compute the right
axis as
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Figure 4: Effective receptive field of convolution layer with large
kernels (top) and that determined by stacked convolution layers with
small 3 x 3 kernels (bottom). In each subfigure, the black square
indicates the receptive field of conventional CNNs.

r=1xn, 5)
where n = (0,0, 1) is the north pole of the viewing sphere.
Then the up axis u is the cross product of look-at axis and
right axis, i.e.

u=1xr. ©6)

Because the patches projected to tangent plane have no dis-
tortions, we can safely sample a regular gird on the tangent
plane. For example, the 3D coordinates of point Q on the
tangent plane with offset Ap are

Q=P+Ap2§[r ul’, ™
where %T computes the scale of one pixel under the as-
sumption that the viewing sphere is an unit sphere. After a
regular grid is sampled on the tangent plane, we transform
it to original spherical image through 7~1(N(Q)), where
N(Q) = Q/||Q]| is the normalization operation. Finally, the
sampling operator taking distortions into account is

(b Ap) = T N(T(p) + Ap 2 [e ™). (®)

Based on Equation §, we can sample a non-regular grid and
perform distortion-aware convolution using Equation 3.

4.3 Distortion-aware Pooling

In convolutional networks, pooling operation is often used to
provide translation invariance and reduce the size of repre-
sentation. Our networks also include distortion-aware pool-
ing layers, which use the operator in Equation 8§ to sample the
pooling region.

4.4 Discussion

In this section, we give some discussions about the boundary
problem and receptive field.

Boundary Problem

The projection given in Section 4.2 is primarily introduced
to deal with the distortion problem. As we treat the spherical
image as a signal on the sphere during projection, it also natu-
rally solves the boundary problem of spherical images, which
is not touched in [Su and Grauman, 2017].
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Receptive Field

Existing convolutional networks often utilise very small ker-
nels, i.e. 3 X 3, in convolutional layers. Besides of increasing
the depth of networks [Simonyan and Zisserman, 2015], this
strategy also implicitly increases the size of effective recep-
tive field, which is necessary for performance improvement.
In this paper, we also use small 3 x 3 convolution kernels
throughout the whole net. However, the effective receptive
field of multiple stacked convolutional layers with small ker-
nels is not the same as that provided by one layer with larger
kernels. This is because the 9 pixels in each 3 x 3 kernels
correspond to different tangent planes, i.e. different points
of tangency 7 (p), we can not simply take the union of their
receptive fields to form a larger one. Therefore stacking mul-
tiple layers with small receptive field is just a way to approxi-
mate one layer with larger receptive field, which is more rea-
sonable. To access whether the differences would greatly af-
fect the performance of our network, we illustrate the effec-
tive receptive field of one convolution layer with large kernels
and that determined by stacked convolution layers with small
3 x 3 kernels. From Figure 4 we can see that the sampling
locations of receptive field are similar, which encourages us
to use small kernels in our networks. We also note that the re-
ceptive field of conventional CNNs indicated by black square
has much deviation from reasonable receptive field. This is
the main reason why conventional CNNs have low perfor-
mance on spherical images.

4.5 Implementation

We implement our distortion-aware CNNs based on Caffe
framework [Jia et al., 2014]. In Caffe, convolution is re-
duced to matrix-matrix multiplication, which is highly opti-
mized in BLAS libraries and can be efficiently computed on
GPU devices. This involves rearranging image patches into
matrix columns during forward pass by im2col and remap-
ping the matrix back to the image during backpropagation by
col2im. Therefore we only need to rewrite these functions.
Distortion-aware pooling is implemented by rewriting corre-
sponding functions in file pooling_layer.

In our CPU implementation, we precompute the sampling
offsets s(p, Ap) — p for each polar angle ¢ and then use them
during forward and backward pass. This strategy can greatly
reduce the computation cost as the distortions only depend
on ¢. For GPU version, we implement the sampling within
CUDA kernels without precomputation, which can be exe-
cuted parallelly. Because the sampling operator s(p, Ap) can
give fractional locations, bilinear interpolation is used when
accessing the features f(s(p, Ap)) in Equation 3.

5 Experimental Result

In this section, we evaluate our approach. We first intro-
duce the experimental setup, then give the main result of our
method and a baseline method on two well known dataset.
Finally, we give some analysis about our networks.

5.1 Experimental Setup

Experimental setup is introduced from three aspects: the
dataset used in our experiment, the network architecture and
the baseline methods.
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airplane

(180°,70°)

Figure 5: Converted CIFAR-10 dataset: for each image, we show its
class, backprojection location (6, ¢) and converted image. Note that
compared with the first two rows, the converted images in the third
row have less distortions.

Dataset

A well-known spherical image dataset is SUN360 dataset
[Xiao et al., 2012], which contains true spherical images be-
longing to different place categories. However the discrimi-
native contents of the images in this dataset all locate at the
less distorted central regions, which can not be used to thor-
oughly evaluate the performances of our method. To make
the discriminative contents of the images having different
levels of distortions, we leverage two existing planar image
datasets, i.e. CIFAR-10 [Krizhevsky, 2009] and MNIST [Le-
cun et al., 1998], and transform the images in each dataset
to spherical ones as if they are captured by panoramic cam-
eras. The CIFAR-10 dataset consists of 50,000 training im-
ages and 10, 000 testing images in 10 classes. Each 32 x 32
image in this dataset is randomly back projected to loca-
tions (0, ¢) € {0°,180°} x {10°,20°,30°} on spherical im-
age. This gives us a dataset of spherical image of resolution
128 x 64. A number of exemplar converted spherical images,
their classes and back projection locations are shown in the
first two rows of Figure 5. MNIST is a dataset of handwritten
digits, which has a training set of 60,000 images and a test
set of 10, 000 images. For each 28 x 28 images of this dataset,
we convert it to a 112 x 56 spherical image using the same
method for CIFAR-10 dataset transformation.

image
module(n) [ module(32) ]
| 3x3 conv, n | [ module(32) |
v v
| ReLU |
v v
| Pooling | | module(64) ]
v
[ fc, 10 |
(a) (b)

Figure 6: The network architecture in our experiment: (a) Each
module module (n) contains a 3 X 3 convolutional layer with n
feature maps and a pooling layer. Between them, a ReLU activa-
tion function is used for non-linearity. (b) The network is com-
posed of different numbers of modules and ends with a 10-way fully-
connected layer and softmax.
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Baseline Methods

Three methods can be used as baseline. The first method is
conventional CNN that trains the model on the original planar
CIFAR-10 dataset or MNIST dataset, and tests it on the cor-
responding transformed dataset. However, according our ex-
periments, this method is not much better than random guess,
e.g. 10.53% classification accuracy for CIFAR-10 dataset.
Therefore we do not give the performance of this baseline
in the following sections. The second method is converting
each spherical image in dataset into a cube map and applying
conventional CNNs on each face of the cube map. Although
this method does not suffer from spherical distortion, it can
not avoid perspective projection distortion [Jaderberg ef al.,
2015]. Thus this method only has a little better performance
than random guess, e.g. 24.87% classification accuracy for
CIFAR-10 dataset, which is also not listed in the following.
The third method is training and testing conventional CNN
both on the transformed datasets, which is used as baseline in
the rest of this paper.

Network Architecture

We stress that our goal is not to achieve competitive perfor-
mance on spherical datasets compared with the state-of-the-
art methods for planar datasets, but to demonstrate that our
method can get better performance than baseline. There-
fore we use simple network for both our method and baseline
method. For fair comparison, the architecture and hyperpa-
rameters of network in our method and baseline are same. As
shown in Figure 6, the networks are composed of different
numbers of modules, each of which contains a 3 x 3 convo-
lutional layer and a pooling layer. ReLU activation function
is used for non-linearity. For networks containing 5 modules,
the size of feature map in each module is 32,32, 64,64 and
64 respectively. The network is ended with a 10-way fully-
connected layer and softmax. When training the networks,
we use ADAM algorithm [Kingma and Ba, 2014] with mini-
batch size of 128. The learning rate is set as 1072.

5.2 Main Result

The classification accuracies of our method and baseline with
5 modules using average pooling on transformed MNIST
dataset and CIFAR-10 dataset are listed in Table 1 '. From
the table we can see that our method achieve better perfor-
mance than baseline method. On the simple MNIST dataset,
both methods have accuracy higher than 90.00%. Our
method achieves 2.10% higher performance than the base-
line method. Compared with MNIST dataset, the CIFAR-10
dataset consists of natural images and is more complex. On
this dataset, our method gains 4.51% improvement, which
validates the importance of distortion-aware CNN in more
difficult classification tasks. This encourages us to test its
performance on larger dataset in future.

5.3 Analysis

Many factors may influence the performance of convolutional
networks. In this section, we analyse the change of classifi-
cation accuracy of networks on CIFAR-10 dataset when we

"The comparison between average pooling and max pooling is
discussed in Section 5.3.
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Table 1: The classification accuracy (%) of different methods on
MNIST and CIFAR-10 datasets: in the third and fifth columns, the
number in the bracket indicates the performance improvement of
our method compared with baseline. The following tables can also
be read with the same way as this.

max pooling average pooling

Table 3: The classification accuracy (%) of different methods on
CIFAR-10 dataset with different level of distortions

distortion max pooling average pooling
level baseline ours baseline ours
more 61.84 65.11 (3.27) 60.11 64.62 (4.51)
less 66.99 67.65 (0.66) 64.81 67.46 (2.65)

dataset  baseline ours baseline ours
MNIST 97.48 98.22 (0.74) 92.98 95.08 (2.10)
CIFAR 61.84 65.11 (3.27) 60.11 64.62 (4.51)

use different pooling functions, different numbers of module
layers and different levels of distortion for spherical dataset.
The result on MNIST is given in Table 4 without discussion
for the sake of space.

Pooling Type

In convolutional networks, the two most popular pooling
functions are max pooling and average pooling. Besides of
average pooling, we have also tested the classification ac-
curacies of networks with 5 modules when max pooling is
used. The performance of networks with different pooling
functions are given in Table 1. We can see that our method
is always better than baseline method, especially when av-
erage pooling is used. Compared with average pooling, the
networks with max pooling achieve better performance both
in our method and baseline method. For example, the max
pooling in baseline makes 1.73% improvement, while that in
our method only makes 0.49% improvement. This shows that
our network is less sensitive to the type of pooling functions.

Module Layers

We test four variants for the networks of our method and base-
line method. These variants contain 2, 3,4 and 5 layers re-
spectively. The performance of different variants is shown
in Table 2. Stacking multiple convolutional layers would in-
crease the overall network receptive field. Theoretically, this
would also improve the network performance. From the ta-
ble we can see that this holds true for our method and base-
line method, where the networks having 5 layers achieve the
best performance. Another fact we can get from the table is
that our method is consistently better than baseline method re-
gardless of what pooling function is used and how many mod-
ule layers are contained in the networks. The performance
improvement is highest when there are 5 layers. This moti-
vates us to use deeper networks in the task. However when
there are 6 module layers, it appears to be overfitting the train-
ing dataset. Therefore the networks in this paper have depth
of up to 5 layers (except for the last fully-connected layer).

Table 2: The classification accuracy (%) of different methods with
different number of module layers on CIFAR-10 dataset

Levels of Distortion

Strictly speaking, the converted images shown in Figure 5 are
not spherical images, as they contain undefined black regions.
Therefore these images only simulate a limited number of dif-
ferent distortion effects compared with true spherical images.
In this section, we additionally collect a new spherical image
dataset by randomly back projecting each image of CIFAR-10
dataset to locations (6, ¢) € {0°,180°} x{60°,70°,80°}. As
these projection locations are near to equator, the new dataset
has less distortion than the dataset introduced in Section 5.1
(the third row vs. the first two rows in Figure 5). Table 3
gives the performance of our method and baseline method
on the old more-distorted dataset and the new less-distorted
dataset. Our method is better than the baseline method on
both dataset with either max pooling or average pooling. For
each method, it can get much better performance when there
are less distortions. For example, baseline method achieve
about 5.15% and 4.70% higher accuracy on the less distorted
dataset when max pooling and average pooling are used per-
spectively. The difference of our method on these two dataset
is small, i.e. 2.54% and 2.84%, due to our distortion-aware
convolution and pooling. The improvement of our method
over baseline method is more obvious when there are more
distortions. Thus our distortion-aware CNNs are indispens-
able tools for spherical image processing, especially when
meaningful parts of these images are more distorted.

6 Conclusion

In this paper, we introduce distortion-aware CNNs for spheri-
cal images. To account for varying distortion effects of spher-
ical images, our method samples different non-regular re-
gions and use the same convolution kernel for different lo-
cations when performing convolution. Our method also deals
with the boundary problem, which is an inherent issue for
spherical images. Experimental results on two datasets show
that our method does not suffer from distortion problem and
can get better performance than baseline methods.

In future, we would like to test the performance of
distortion-aware CNNs on more difficult classification tasks.
We also would like to investigate the possibility of apply-

Table 4: The classification accuracy (%) of different methods with
different number of module layers on MNIST dataset

max pooling average pooling

max pooling average pooling

f layers  baseline ours baseline ours f layers  baseline ours baseline ours
2 52.80  54.32(1.52) 52.03 53.74 (1.71) 2 92.49 93.02 (0.53) 88.90  90.42 (1.52)
3 59.59 61.72 (2.13) 59.56  60.85(1.29) 3 96.89 97.76 (0.87) 93.69 95.34 (1.65)
4 62.32 63.78 (1.46) 60.30  63.74 (3.44) 4 97.49 98.20 (0.71) 93.97 95.17 (1.20)
5 61.84 65.11 (3.27) 60.11 64.62 (4.51) 5 97.48 98.22 (0.74) 92.98 95.08 (2.10)
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ing our distortion-aware CNNs on other tasks, such as object
detection and semantic segmentation. Evaluating the perfor-
mance of distortion-aware CNNs on 360° videos is another
direction of future work.
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