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Abstract
In many settings just finding a good clustering is
insufficient and an explanation of the clustering is
required. If the features used to perform the cluster-
ing are interpretable then methods such as concep-
tual clustering can be used. However, in many ap-
plications this is not the case particularly for image,
graph and other complex data. Here we explore the
setting where a set of interpretable discrete tags for
each instance is available. We formulate the de-
scriptive clustering problem as a bi-objective op-
timization to simultaneously find compact clusters
using the features and to describe them using the
tags. We present our formulation in a declarative
platform and show it can be integrated into a stan-
dard iterative algorithm to find all Pareto optimal
solutions to the two objectives. Preliminary results
demonstrate the utility of our approach on real data
sets for images and electronic health care records
and that it outperforms single objective and multi-
view clustering baselines.

1 Introduction
Clustering is a core unsupervised learning task that aims to
partition data into groups to gain a better understanding of
the data. However in many domains interpreting the clus-
tering is important. Methods such as conceptual clustering
address this by attempting to find descriptions of the clus-
ters using the very features the data was clustered on. How-
ever, in many domains that involve images, graphs and other
complex data this is not useful. Consider trying to explain
an image segmentation using SIFT features or a social net-
work segmentation using the edge structure. In this paper,
we explore the scenario where one wants to cluster a data set
using a set of features (or a distance matrix) but also form
useful descriptions using a set of discrete tags. For exam-
ple we may wish to not just find communities in a social
network but efficiently describe each community by the tags
on the people within it. To achieve interpretability, prac-
titioners often perform the clustering and then try to pro-

file each cluster with the tags to describe it. This cluster
(try) then describe (test) approach is common in clustering
and classification and is typically iterative [Ye and Li, 2002;
Cai et al., 2007]. However, since the tags are not directly part
of the optimization, the results may not be interpretable.

Here we propose an alternative approach where we simul-
taneously look for clusters which are both useful/compact in
one modality (e.g. SIFT features or graph distance) and de-
scriptive in another (e.g. tags). We formulate this descrip-
tive clustering1 problem as a bi-objective optimization prob-
lem in a declarative platform and present an algorithm to find
the Pareto front of solutions. This work is inherently differ-
ent from other forms of clustering as discussed in the related
work section. In particular, it is not multi-view clustering as
the objectives applied to each part of the data are fundamen-
tally different and need not be compatible. It is not conceptual
clustering where the concepts are formed from the features
used to perform the clustering.

Our contributions can be summarized as follows.
• We describe a bi-criteria descriptive clustering problem

formulation which to our knowledge is novel.
• We formulate our problems as an Integer Linear Pro-

gramming (ILP) problems and show a significantly more
efficient Constraint Programming (CP) formulation.
• We show how a standard iterative scheme to find the

Pareto optimal solutions can be used to optimize our two
objectives simultaneously.
• We demonstrate the usefulness of our approach on real

data sets including images and health care records. Our
Pareto formulation presents the user a range of cluster-
ings and their descriptions. These are compared against
single objective formulations such as multi-view cluster-
ing which assumes compatible objectives.

2 Related Work and Novelty
We first discuss superficially similar work and then discuss
more closely related work. Approaches such as bi-clustering

1Other formulations use the term descriptive clustering [Weiss,
2006] but these are for settings where the single set of features nat-
urally form descriptions such as in text.
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simultaneously cluster instances and features while our work
directly clusters two distinct descriptions of the same in-
stances. Though there has been work on mining discrete
patterns using CP [De Raedt et al., 2008] and on distance
based clustering using CP [Dao et al., 2017], to our knowl-
edge, there has been no work combining the topics of simul-
taneously finding clusters on set of features whilst also find-
ing patterns amongst discrete features. Multi-view clustering
typically assumes that the same objective is applied to the dif-
ferent views of the data and typically assumes compatibility
in that optimizing one objective helps in optimizing the other.
Our work makes no such assumptions.

Multi-objective optimization has been studied in the con-
text of clustering. Some earlier work [Runkler, 2007] noted
that different clustering objectives and validity indices are not
usually consistent and thus proposed to optimize multiple ob-
jectives simultaneously. Similar ideas have also been used
in the bioinformatics domain to help identify co-expressed
genes [Maulik et al., 2009]. Pareto optimization has been
used in multiview clustering [Wang et al., 2013] and in com-
bining clustering and classification [Cai et al., 2010]. Some
work on multi-objective clustering integrates criteria that rep-
resent the partition quality such as compactness and connec-
tivity [Delattre and Hansen, 1980; Handl and Knowles, 2005;
Faceli et al., 2007]. Our work is different from all above in
that we assume a setting that handles continuous features and
categorical tags distinctively and our second objective aims
to find meaningful descriptions of clusters.

Predictive clustering is a method of performing classifi-
cation which aims to find clusters in the input attributes and
homogeneity in the class labels at the same time. Earlier work
[Langley, 1996] viewed decision trees as a predictive cluster-
ing where each leaf is a “cluster” with a homogeneous class
label and some attributes (those on its path). More recent
work [Ženko et al., 2005] proposed learning predictive clus-
tering rules. In comparison, our work is focused not towards
prediction but explanation. In our setting, we have no initial
class labels.

Distance-based clustering aims at finding homogeneous
clusters only based on a dissimilarity measure between ob-
jects. Different declarative frameworks have been developed,
which rely on SAT [Davidson et al., 2010], CP [Dao et al.,
2013; Dao et al., 2016], ILP [Mueller and Kramer, 2010;
Babaki et al., 2014] or quadratic programming [Wang et al.,
2014]. Our work uses some of the objectives of these works
but only for our first objective function.

Conceptual clustering [Gennari et al., 1989; Fisher, 1987]
tries to put objects into classes where each class is defined
by a concept expressed in a given description language. The
same set of features are used to form and describe the clus-
ters. Declarative approaches have been developed using CP
[Guns et al., 2013], SAT [Métivier et al., 2012] or ILP [Ouali
et al., 2016]. A CP framework for multi-objective conceptual
clustering has been developed where the objectives are de-
fined on the concepts [Chabert and Solnon, 2017]. Our work
is different in that we study the setting where each instance
has both continuous features (to form the clusters) and bi-
nary tags (to describe them).

3 Descriptive Clustering Formulation
A descriptive clustering problem aims at simultaneously find-
ing compact and descriptive clusters. We define below the
compactness and descriptiveness requirements. Let X (the
feature matrix) denote a n×f matrix of n data instances with
f continuous features and let Xi be the i-th row of X . Let D
(the descriptor matrix) be another n×r boolean matrix of the
same n instances, each with r tag indicators. For example, D
can represent some one-hot encoded categorical features; e.g.
if the j-th column encodes gender = male, then Dij = 1
indicates that the i-th instance is a male.

3.1 Variables
Cluster Indication Matrix Z: an (n× k) boolean matrix. Its
entries serve as the cluster indicators, Zic = 1 indicates the
i-th instance is in the c-th cluster. Let Zi be the i-th row of Z.
Cluster Description Matrix S: a (k × r) auxiliary boolean
matrix. Scp = 1 means the p-th tag is included in the descrip-
tion for the c-th cluster.

3.2 Constraints
Here we outline the constraints to ensure that the matrices Z
and S match the requirements of defining a set partition and
a useful set of descriptors, respectively.

Partitioning constraints: They enforce valid clustering and
descriptions.

(C1) ∀i = 1, . . . , n,
∑k

c=1 Zic = 1
(C2) ∀c = 1, . . . , k,

∑n
i=1 Zic ≥ 1

(C3) Z11 = 1

(C4) ∀i = 2, . . . , n, ∀c = 2, . . . , k,
∑i−1

j=1 Zjc−1 ≥ Zic

(C5) ∀c = 1, . . . , k,
∑r

p=1 Scp ≥ 1

(C1) enforces a valid clustering: each instance is in exactly
one cluster. (C2) enforces non-empty clusters: each cluster
has at least one instance. (C3) and (C4) break symmetries
among clusterings: the first instance is in the first cluster and
if instance i is in cluster c then cluster c − 1 must have an
instance j such that j < i. (C5) enforces a valid non-empty
description: each cluster description contains at least one tag.

Description of the clusters: Each cluster is described by
a subset of tags. We introduce two integer variables α and
β. The constraints below enforce the link between cluster
composition and description.

(C6) ∀c = 1, . . . , k, ∀i = 1, . . . , n,
Zic = 1 =⇒

∑r
p=1 Scp(1−Dip) ≤ α

(C7) ∀c = 1, . . . , k, ∀p = 1, . . . , r,
Scp = 1 ⇐⇒

∑n
i=1 Zic(1−Dip) ≤ β

(C6) states that if an instance is in a cluster then it satisfies
most of its description (up to α exceptions). (C7) demands
that a tag is included in a cluster’s description if and only
if most of the instances in the cluster (up to β exceptions)
possess the tag.

These constraints tolerate disagreement and are useful for
datasets with very sparse tags. For datasets with more dense
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tags, a stronger version is as follows:

(C6’) ∀c = 1, . . . , k, ∀i = 1, . . . , n,
Zic = 1 =⇒

∑r
p=1 Scp(1−Dip) = 0

(C7’) ∀c = 1, . . . , k, ∀p = 1, . . . , r,
Scp = 1 ⇐⇒

∑n
i=1 Zic(1−Dip) = 0

(C6’) ensures that each instance must satisfy all the tags that
describe the cluster containing it. (C7’) states that for each
cluster, a tag is included in its description iff all instances in
the cluster have this tag.

Note that (C6’) and (C7’) do not define conceptual cluster-
ing such as defined in [De Raedt et al., 2008]. Indeed in (C6’)
we only enforce one direction ( =⇒ instead of ⇐⇒ as in
[De Raedt et al., 2008]) since it is possible for an instance
to satisfy the descriptions of more than one cluster. In those
cases, the instance can be placed in any such cluster.

3.3 Objectives
We divide the objectives into two categories: feature-focused
and tag/descriptor-focused, and within each introduce more
than one. Our bi-objective framework refers to simultane-
ously optimizing one objective from each category.

Category #1: Feature-focused (compactness)
This type of objective can be from a range of typical clus-
tering objectives which aim to find compact clusters. The
instances are positioned in some metric space with a distance
d(·, ·) defined over pairs of instances.
• Diameter: This is one of the commonly used objectives.

The diameter of a cluster is defined to be the maximum
distance between any pair of instances in that cluster;
and the diameter of the entire clustering is then the max-
imum of all those diameters. Hence we minimize:

f(Z, S) = maxni<j,i,j=1 ZiZ
T
j d(Xi, Xj)

• Sum of Within-cluster Distances: Another common
objective is to minimize the sum over the distances be-
tween all pairs of instances within each cluster:

f(Z, S) =
∑n

i<j,i,j=1 ZiZ
T
j d(Xi, Xj)

Category #2: Descriptor-focused (descriptiveness)
Our aim is to create collections of tags/properties that are use-
ful for describing a cluster. However in practice the tags in
some domains are very sparsely or noisily labeled and enforc-
ing constraints that are too strong is not appropriate. We de-
scribe three objectives, which characterize varying amounts
of relaxation in the requirements and then discuss scenarios
where each is most appropriate.
• Max-Min Complete Tag Agreement (MMCTA): This

is the strongest objective where we look for clusters
where each instance in a cluster shares the common tags
with all other instances in the same cluster. This ob-
jective is subject to the constraints (C1)-(C5), (C6’) and
(C7’). Accordingly, we aim to maximize g(Z, S) = q,
with q being the size of the smallest tag set for a cluster:

q = minc{
∑r

p=1 Scp}
This is most useful when the tags are well populated and
believed to have little noise in them.

• Minimize Tag α-β Disagreement (MTD): This objec-
tive is similar to the above except that now we allow
some instances of each cluster to opt-out by not sharing
the common tags. This could be desirable if we know
the tags contain noise such that some instances will have
features similar to other instances in the cluster but just
not share the same tags. Accordingly, we aim to mini-
mize such violations/disagreements, subject to the con-
straints (C1)-(C5), (C6) and (C7):

g(Z, S, α, β) = α+ β

This is useful when the tags are sparse and/or when we
believe there is significant noise in the tagging process.
• Max-Min Neighborhood Agreement (MMNA): In

this case we no longer require instances in a cluster to
share the same tags; instead, we demand a weaker form
of tag sharing. Specifically, within each cluster, every
instance must share at least some given number of tags,
q with another instance in the cluster. Note that it need
not be the same q tags for different pairs. The objective
to be maximized is g(Z, S, q) = q under the constraints
(C1)-(C5), (C6’), (C7’) and

∀i, j = 1, . . . , n, ZiZ
T
j = 1 =⇒

∑r
p=1DipDjp ≥ q

4 Two Methods For Descriptive Clustering
Our formulation can be implemented using ILP or CP. Sur-
prisingly, we find that the CP formulation is significantly (or-
ders of magnitude) faster than the ILP formulation.

4.1 An ILP Formulation
All our constraints and objectives introduced above are or
can be transformed into linear constraints. Constraint (C6)
is equivalent to ∀c = 1, . . . , k, ∀i = 1, . . . , n,∑r

p=1(Scp + Zic − 1)(1−Dip) ≤ α

and (C7) is equivalent to ∀c = 1, . . . , k, ∀p = 1, . . . , r,∑n
i=1(Scp + Zic − 1)(1−Dip) ≤ β

(n+ 1)Scp ≥ 1 + β −
∑n

i=1 Zic(1−Dip)

The same method can be used to transform the objectives
such as diameter, MMCTA or MMNA into linear form. The
problem therefore becomes an integer linear program.

4.2 A CP Formulation
In our CP model, besides using the variables Z and S, we
introduce n integer variables Gi ∈ {1, .., k} (1 ≤ i ≤ n):
Gi = c means instance i is in cluster c. (C1) is ensured by
channeling constraints on Z and G: Zic = 1 ⇐⇒ Gi = c.
(C2), (C3) and (C4) are ensured by the value precedence
constraint precede(G, [1, .., k]) [Law and Lee, 2004] and
atleast(1, G, k) (at least one variable in G has the value k).
Global constraints introduced in [Dao et al., 2017] are used to
bind the feature-focused objective variable and the variables
in G. Constraints (C6)-(C7) and (C6’)-(C7’) are expressed
using reified constraints.

For MMCTA and MMNA problems we observe that when
the domain of the descriptor-focused objective variable q is
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[q, q), if two instances share less than q tags, they cannot be
in the same cluster. Exploiting this observation we have de-
veloped a global constraint to bind q and G, which enforces
the relation:

∀i, j = 1, .., n, Gi = Gj =⇒
∑r

p=1DipDjp ≥ q

This constraint revises the upper bound q of q using the
variables Gi that have been assigned, and also propagates
Gi 6= Gj for all pairs of instances i, j that share less tags
than the lower bound q of q. It maintains bound consistency
for q and a partial domain consistency for the variables Gi’s.

For each objective, we develop a heuristic search strategy
such that at each choice point, a variable Gi with the smallest
remaining domain is chosen. All values c in the domain ofGi

are examined and the one that gives the best improvement on
the objective variable is chosen. A restart mechanism is used
to switch between the defined search strategy and a standard
search strategy based on the degree of the variables.

Our formulation differs from recent approaches using ILP
[Ouali et al., 2016] or CP [Chabert and Solnon, 2017] which
first preprocess the data using frequent pattern mining to gen-
erate formal concepts and then use ILP/CP to form clusters
by choosing a subset of concepts. These works are in the set-
ting of traditional conceptual clustering but cannot be used in
our case since cluster descriptions are not formal concepts.

5 Simultaneously Finding Compact &
Descriptive Clusters

Let f be a feature-focused objective that we aim to minimize
and g be a descriptor-focused one that we aim to maximize.
These objectives in general are not compatible and the trade-
offs between them are the Pareto optimal solutions of our bi-
objective problem. A solution x dominates another solution
x′ if f(x) ≤ f(x′), g(x) ≥ g(x′) and either f(x) < f(x′)
or g(x) > g(x′). A solution x is Pareto optimal if x is not
dominated by any other solution. The set of all such tuples
form the Pareto front. Each point in the Pareto front repre-
sents a state among the objectives in which no objective can
be improved without jeopardizing another. Thus, we can treat
them as being examples of optimal trade-offs between opti-
mizing both objectives. From these solutions, a user typically
selects one that is most suitable for the intended purpose.

Algorithm 1 presents a general iterative scheme to find a
complete and minimal set of Pareto optimal solutions using
our earlier defined constraints C as sub-problems. This is
standard scheme for any bi-objective optimization, and it has
been used in CP but for different objectives [Dao et al., 2017].
Our claim that Algorithm 1 returns a minimal and complete
set of Pareto optimal solutions can be readily established with
a similar proof. Bi-objective optimization in one search has
been proposed in [Gavanelli, 2002] and used in [Chabert and
Solnon, 2017] for conceptual clustering. This method, in one
optimization phase, searches for new solutions and for each
solution found, dynamically adds constraints to prevent dom-
inated solutions, until no more solutions are found. How-
ever, this method is not appropriate in our case since the
feature-focused objective has a floating point value, the im-
provements are usually very small, which makes the method

converge very slowly. Algorithm 1 has better performance
since it deals only with the best value of each objective.

Algorithm 1: Compute complete Pareto front
Input: Features X , tags D and number of clusters k.
Output: A complete Pareto front P .

1 P ← ∅;
2 sf1 ← minimize f subject to C;
3 i← 1;
4 while sfi 6= NULL do
5 sgi ← maximize g subject to C ∪ {f ≤ f(sfi )};
6 P ← P ∪ {sgi };
7 i← i+ 1;
8 sfi ← minimize f subject to C ∪ {g > g(sgi−1)};
9 return P;

6 Experiments
Here we aim to empirically demonstrate the usefulness of our
approach. In particular we would like to address the follow-
ing three questions.
• Do our objective functions produce clusters that have

meaningful descriptions?
• Does the bi-objective optimization framework produce a

non-trivial Pareto front?
• How do our results compare with base-line non-Pareto

optimization formulations?
The first and third questions test the usefulness of our ob-

jectives in practice whilst the second question addresses the
premise that the objectives are naturally not compatible and
hence require Pareto optimization. If the objective functions
were compatible, the Pareto front would contain just one so-
lution as optimizing one objective optimizes the other. ILP
models are implemented in Gurobi using its MATLAB inter-
face. CP models are implemented using Gecode solver.

6.1 Clustering Tagged Images
In this experiment, we try to cluster a set of tagged ani-
mal images, which were used for attribute-based classifica-
tion [Lampert et al., 2009]. The data set contains 30000
images from 50 classes of animals and 85 distinct (binary)
tags describing the animals such as black, stripes, water, etc.
Each class is associated with a (non-empty) subset of the 85
tags. We randomly sample 100 images from each of the first
10 animal classes: antelope, grizzly bear, killer
whale, beaver, dalmatian, persian cat, horse,
german shepherd, blue whale, siamese cat. We
cluster the data using pairwise Euclidean distance between
images based on the 2000 dimensional SIFT features used in
[Lampert et al., 2009] and describe it using the 85 tags.

For this data since the tags are well populated, the two ob-
jectives are minimizing maximum cluster diameter (based on
the SIFT features) and maximizing minimum neighborhood
agreement (based on the tags). We run our bi-objective for-
mulation with k = 5 and present its Pareto front in Figure
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Cl# Composition by animals Description by tags
C1 1 grizzly bear, 2 dalmatian, 1 horse, 2 blue whale big, fast, strong, muscle, newworld, smart
C2 5 antelope, 2 grizzly bear, 2 beaver, 5 dalmatian, 5 persian cat, 5 horse, 6 german shepherd, 3 siamese

cat
furry, chewteeth, fast, quadrapedal, new-
world, ground

C3 69 beaver, 64 dalmatian, 42 persian cat, 29 blue whale, 42 siamese cat tail, fast, newworld, timid, smart, solitary
C4 100 killer whale, 69 blue whale, 1 siamese cat tail, fast, fish, smart
C5 95 antelope, 97 grizzly bear, 29 beaver, 29 dalmatian, 53 persian cat, 94 horse, 94 german shepherd, 54

siamese cat
furry, chewteeth, fast, quadrapedal, new-
world, ground

(a) First Pareto point: Diameter minimized. MMCTA=4. MMNA=11

Cl# Composition by animals Description by tags
C1 2 antelope, 4 dalmatian, 2 horse, 3 ger-

man shepherd, 4 siamese cat
furry, lean, longleg, tail, chewteeth, walks, fast, muscle, quadrapedal, active, agility, newworld, oldworld,
ground

C2 2 beaver, 1 persian cat, 1 horse, 1 ger-
man shepherd

furry, tail, chewteeth, fast, quadrapedal, agility, newworld, ground, smart

C3 100 grizzly bear, 98 beaver, 99 persian
cat, 1 siamese cat

furry, paws, chewteeth, claws, fast, quadrapedal, fish, newworld, ground, smart, solitary

C4 100 killer whale, 100 blue whale spots, hairless, toughskin, big, bulbous, flippers, tail, strainteeth, swims, fast, strong, fish, plankton, arctic,
ocean, water, smart, group

C5 98 antelope, 96 dalmatian, 97 horse, 96
german shepherd, 95 siamese cat

furry, lean, longleg, tail, chewteeth, walks, fast, muscle, quadrapedal, active, agility, newworld, oldworld,
ground
(b) Third Pareto point. MMCTA=9, MMNA=15

Cl# Composition by animals Description by tags
C1 100 antelope, 100 dalmatian furry, big, lean, longleg, tail, chewteeth, walks, fast, strong, muscle, quadrapedal, active, agility, newworld,

oldworld, ground, timid, group
C2 100 horse, 99 german shepherd, 98

siamese cat
black, brown, gray, patches, furry, lean, longleg, tail, chewteeth, walks, fast, muscle, quadrapedal, active,
agility, newworld, oldworld, ground, smart, domestic

C3 100 grizzly bear, 100 beaver, 1 siamese
cat

brown, furry, paws, chewteeth, claws, fast, muscle, quadrapedal, active, nocturnal, fish, newworld, ground,
smart, solitary

C4 100 killer whale, 100 blue whale spots, hairless, toughskin, big, bulbous, flippers, tail, strainteeth, swims, fast, strong, fish, plankton, arctic,
ocean, water, smart, group

C5 100 persian cat, 1 german shepherd, 1
siamese cat

gray, furry, pads, paws, tail, chewteeth, meatteeth, claws, walks, fast, quadrapedal, agility, meat, newworld,
oldworld, ground, smart, solitary, domestic

(c) Fifth Pareto point: MMNA maximized. MMCTA=15, MMNA=18

Figure 1: Compositions and descriptions of the chosen clusterings

Cl# Size Description
C1 28 Sleepy
C2 25 Light
C3 22 Dizzy
C4 20 Concentrate
C5 14 Sleepy, Light, Dizzy, Concentrate, Vision

Figure 2: Compositions and descriptions of the center point of the
Pareto front for our medical data set.

3(a). The clusterings that correspond to some points in the
Pareto front are given in Figure 1. If we favor compact clus-
ters to better descriptions (point closest to the origin in Figure
3(a)) we can have clusters described by very few tags, as pre-
sented in Figure 1(a). The middle point in the Pareto front,
Figure 1(b) trades-off the two objectives and reaches a very
intuitive compromise. Long haired persian cats are grouped
with similar longer haired animals such as bears, whilst the
shorter haired siamese cats are grouped with many shorter
haired animals such as dogs and antelopes. The last cluster-
ing of the Pareto front favors long description of the clusters,
Figure 1(c). The user is free to choose which compromise
between the two objectives matches the requirements. It is
important to note that the animal labels are not given to the
algorithm.

The strength of CP resides on search strategies and on its
power for pruning inconsistent values. Therefore for MM-
CTA and MMNA problems where relations can be exploited

in our new global constraint, the CP models always perform
better than ILP models. For instance on our 1000 instance
image dataset, our CP model with MMNA takes about 13 sec-
onds to compute the complete Pareto front on a laptop while
the ILP model takes more than 6 hours on a 48 core cluster.

7,200 7,600 8,000 8,400

12

14

16

18

Diameter

M
M

N
A

(a) Sampled animal images.

8 9 10 11 12

5

10

15

20

Diameter

α
+
β

(b) Personal health record data.

Figure 3: Pareto fronts for the two experiments. Since there are
many points, the objectives are not compatible.

6.2 Clustering Personal Health Records
In this smaller experiment we apply our method to a data
set of personal health records from the concussion restoration
care center2. Nevertheless the result is significant as it shows

2http://navymedicine.navylive.dodlive.mil/
archives/tag/concussion-restoration-care-center
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that with even a smaller data set the Pareto front can be rela-
tively large. The data set consists of 109 individuals each with
20 continuous features that are diagnostic scores (i.e. neuro-
logical test results) and 14 binary tags that are the symptoms
of their condition (Blurred Vision, Fatigue, Confusion etc.).
We normalize the continuous features and compute the Eu-
clidean distance between all pairs. We apply our bi-objective
formulation (with k = 5) where the first objective minimizes
the diameter and the second objective looks for minimum tag
disagreement (MTD) within a cluster. The choice of the sec-
ond objective is due to the fact that the tags are very sparse in
this data set and the formulation of complete tag agreement
would have led to infeasibility immediately.

We present the (approximate) Pareto front in Figure 3(b).
It is approximate since we set a time limit and have the solver
return the feasible solutions with the best objective up to the
time limit. Using domain knowledge, a user may further ex-
amine one or more of these solutions. We present the com-
position and the description of a middle solution in Figure 2
(α + β = 16). As α + β becomes even larger, some clusters
contain many tags yet many instances are allowed to disagree
with the description.

6.3 Comparison to Baseline non-Pareto
Formulations

A natural question is how classic clustering methods such as
k-means and multi-view clustering would perform on the set-
ting we describe. Such methods return just a single clustering
and it is interesting to explore if it is a clustering on the Pareto
front. To apply these methods, we must first carefully com-
bine both the features and tags into one vector and weight
the tags more so that the features do not dominate the tags.
This was a sensitive trial and error process and the best re-
sults are shown in Table 1, where the most common tags are
given for each cluster. Though the results seem superficially
similar to our own method, there are core differences. Firstly,
the groupings are contradictory. For example the short haired
siamese cats are grouped with bears and the longer haired
persian cats were grouped with short haired antelopes: this
was never the case with our results for the interior points in
the Pareto front. We can also see that the descriptions are
contradictory. For example the first cluster describes a clus-
ter of grizzly bears as domesticated and siamese cats as fast,
nocturnal and can swim. Similarly for the second cluster, an-
telopes are described as inactive, solitary and domesticated,
while persian cats are described as being fast and active.

Multi-view Clustering. We explored applying multi-view
spectral clustering [Zhou and Burges, 2007] with one view
being the features and the other view the tags. This work ef-
fectively models both sets of descriptors as a graph and the
tags are then clustered based on group-wise similarity rather
than overlap as our objectives do. Multi-view clustering here
assumes both views are compatible with each other and com-
bines both objectives into one. Compatible here means that
a change that minimizes one objective will also minimize the
other. There is no reason this is the case and the benefit of a
Pareto formulation is that it finds a trade-off between optimiz-
ing both objectives rather than assuming compatibility. We
present the results on the image tagged data set (see Table 2).

Cl# Composition by animals Ten most common tags
C1 24 german shepherds,

100 grizzly bear, 99
siamese cats

domestic, tail, fast, nocturnal, fish,
swim

C2 100 antelopes, 100 per-
sian cats

claws, inactive, solitary, domestic,
meat, fast, muscle, quadrapedal, active,
agility

C3 76 german shephards,
100 horses, 100 dalma-
tians

longleg, tail, chewteeth, walks, fast,
muscle, quadrapedal, active, agility,
newworld, ground

C4 100 blue whales, 100
killer whales, 1 siamese
cats

spots, hairless, toughskin, big, bulbous,
flippers, tail, strainteeth, water, smart

C5 100 Beavers brown, furry, tail, chewteeth, fast, mus-
cle, quadrapedal, active, agility, smart

Table 1: Applying k-means clustering to concatenated features and
tags vectors for the Tagged Images data set. Note this solution is
quite different to the solutions in the Pareto front Figure 1.

Cl# Composition by animals Ten most common tags
C1 51 blue whales, 24 ger-

man shepherds, 100 griz-
zly bear, 99 siamese cats

domesticated, fish, flippers, tail, fast,
nocturnal, fish, swims

C2 100 antelopes, 33 per-
sian cats, 68 killer
whales

claws, strainteeth, inactive, toughskin,
domestic, meat, fast, muscle, active,
agility

C3 76 german shephards,
100 horses, 100 dalma-
tians

fast, chewteeth, agile, walks, fast, mus-
cle, quadrapedal, active, furry, new-
world, ground

C4 49 blue whales, 42 killer
whales, 1 siamese cats

spots, hairless, toughskin, big, bulbous,
flippers, tail, strainteeth, water, smart

C5 100 Beavers, 67 persian
cats

brown, furry, tail, chewteeth, fast, mus-
cle, quadrapedal, active, agility, smart

Table 2: Applying multi-view spectral clustering to concatenated
features and tags vectors for the Tagged Images data set. Note this
solution is quite different to the solutions in the Pareto front Figure 1.

We find again the descriptions are unusual when looking at
the content. For example cluster 1 describes whales as do-
mesticated and nocturnal and cluster 2 has antelopes having
strainteeth, being inactive and domesticated.

7 Conclusions and Future Work

Existing clustering methods focus on clustering a set of points
typically modeled as points in a space. Our contribution in
this paper is to formulate and explore descriptive clustering
where each instance is described by a set of features upon
which we find a compact set of clusters and simultaneously a
set of meaningful tags which describes the clusters. We ex-
plore a declarative formulation as a Pareto optimization prob-
lem as the two aims need not be compatible (as our exper-
iments show). Since our Pareto fronts do not contain just
one point, we indeed find these aims are incompatible and
our methods allow users to choose an appropriate trade-off.
We explore CP and ILP implementations and observe that CP
global constraints allow a much more efficient computation.
Baseline k-means and multi-view spectral clustering methods
produce a single and very different clustering. Our experi-
ment on health care records shows an interesting result that
even small data sets can have a relatively large Pareto front.
Future work will explore applications to areas such as social
networks and further enhancing the scalability.
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