
The FastMap Algorithm for Shortest Path Computations

Liron Cohen1, Tansel Uras1, Shiva Jahangiri2, Aliyah Arunasalam1,
Sven Koenig1 and T. K. Satish Kumar1

1University of Southern California
2University of California, Irvine

{lironcoh, turas, arunasal, skoenig}@usc.edu, shivaj@uci.edu, tkskwork@gmail.com

Abstract
We present a new preprocessing algorithm for em-
bedding the nodes of a given edge-weighted undi-
rected graph into a Euclidean space. The Euclidean
distance between any two nodes in this space ap-
proximates the length of the shortest path between
them in the given graph. Later, at runtime, a
shortest path between any two nodes can be com-
puted with an A* search using the Euclidean dis-
tances as heuristic. Our preprocessing algorithm,
called FastMap, is inspired by the data-mining al-
gorithm of the same name and runs in near-linear
time. Hence, FastMap is orders of magnitude
faster than competing approaches that produce a
Euclidean embedding using Semidefinite Program-
ming. FastMap also produces admissible and con-
sistent heuristics and therefore guarantees the gen-
eration of shortest paths. Moreover, FastMap ap-
plies to general undirected graphs for which many
traditional heuristics, such as the Manhattan Dis-
tance heuristic, are not well defined. Empirically,
we demonstrate that A* search using the FastMap
heuristic is competitive with A* search using other
state-of-the-art heuristics, such as the Differential
heuristic.

1 Introduction and Related Work
Shortest path computations commonly occur in the inner pro-
cedures of many AI programs. In video games, for exam-
ple, a large fraction of CPU cycles is spent on shortest path
computations [Uras and Koenig, 2015]. Many other tasks in
AI, including motion planning, temporal reasoning, and deci-
sion making [Russell and Norvig, 2009], also involve finding
and reasoning about shortest paths. While Dijkstra’s algo-
rithm [Dijkstra, 1959] can be used to compute shortest paths
in polynomial time, speeding up shortest path computations
allows one to solve the aformentioned tasks faster. One way
to do that is to use A* search with an informed heuristic [Hart
et al., 1968].

A perfect heuristic is one that returns the true distance
between any two nodes in a given graph. A* with such

a heuristic and proper tie-breaking is guaranteed to expand
nodes only on a shortest path between the given start and goal
nodes. In general, computing the perfect heuristic between
two nodes is as hard as computing the shortest path between
them. Hence, A* search benefits from a perfect heuristic only
if it is computed offline. However, precomputing all pairwise
distances is not only time-intensive but also requires a pro-
hibitive O(N2) memory where N is the number of nodes.
The memory requirements for storing all-pairs shortest paths
data can be somewhat addressed through compression [Botea
and Harabor, 2013; Strasser et al., 2015].

Existing methods for preprocessing a given graph (with-
out precomputing all pairwise distances) can be grouped into
the following categories: Hierarchical abstractions that yield
suboptimal paths have been used to reduce the size of the
search space by abstracting groups of nodes [Botea et al.,
2004; Sturtevant and Buro, 2005]. More informed heuris-
tics [Björnsson and Halldórsson, 2006; Cazenave, 2006;
Sturtevant et al., 2009] focus A* searches better, resulting
in fewer expanded nodes. Hierarchies can also be used to
derive heuristics during the search [Leighton et al., 2008;
Holte et al., 1994]. Dead-end detection and other pruning
methods [Björnsson and Halldórsson, 2006; Goldenberg et
al., 2010; Pochter et al., 2010] identify areas of the graph
that do not need to be searched to find shortest paths. Search
with contraction hierarchies [Geisberger et al., 2008] is an
optimal hierarchical method, where every level of the hi-
erarchy contains only a single node. It has been shown
to be efficient on road networks but seems to be less effi-
cient on graphs with higher branching factors, such as grid-
based game maps [Storandt, 2013]. N-level graphs [Uras and
Koenig, 2014], constructed from undirected graphs by parti-
tioning the nodes into levels, also allow for significant prun-
ing during the search.

A different approach that does not rely on preprocessing
of the graph is to use some notion of a geometric distance
between two nodes as a heuristic of the distance between
them. One such heuristic for gridworlds is the Manhattan
Distance heuristic.1 For many gridworlds, A* search using

1In a 4-neighbor 2D gridworld, for example, the Manhattan Dis-
tance between two cells (x1, y1) and (x2, y2) is |x1−x2|+|y1−y2|.
Generalizations exist for 8-neighbor 2D and 3D gridworlds.
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the Manhattan Distance heuristic outperforms Dijkstra’s al-
gorithm. However, in complicated 2D/3D gridworlds like
mazes, the Manhattan Distance heuristic may not be suffi-
ciently informed to focus A* searches effectively. Another is-
sue associated with Manhattan Distance-like heuristics is that
they are not well defined for general graphs.2 For a graph that
cannot be conceived in a geometric space, there is no closed-
form formula for a “geometric” heuristic for the distance be-
tween two nodes because there are no coordinates associated
with them.

For a graph that does not already have a geometric embed-
ding in Euclidean space, a preprocessing algorithm can be
used to generate one. As described before, at runtime, A*
search would then use the Euclidean distance between any
two nodes in this space as an estimate for the distance be-
tween them in the given graph. One such approach is Eu-
clidean Heuristic Optimization (EHO) [Rayner et al., 2011].
EHO guarantees admissiblility and consistency and there-
fore generates shortest paths. However, it requires solving
a Semidefinite Program (SDP). SDPs can be solved in poly-
nomial time [Vandenberghe and Boyd, 1996]. EHO leverages
additional structure to solve them in cubic time. Still, a cu-
bic preprocessing time limits the size of the graphs that are
amenable to this approach.

The Differential heuristic is another state-of-the-art ap-
proach that has the benefit of a near-linear runtime. However,
unlike the approach in [Rayner et al., 2011], it does not pro-
duce an explicit Euclidean embedding. In the preprocessing
phase of the Differential heuristic approach, some nodes of
the graph are chosen as pivot nodes. The distances between
each pivot node and every other node are precomputed and
stored [Sturtevant et al., 2009]. At runtime, the heuristic be-
tween two nodes a and b is given by maxp |d(a, p)− d(p, b)|,
where p is a pivot node and d(·, ·) is the precomputed dis-
tance. The preprocessing time is linear in the number of piv-
ots times the size of the graph. The required space is lin-
ear in the number of pivots times the number of nodes, al-
though a more succinct representation is presented in [Gold-
enberg et al., 2011]. Similar preprocessing techniques are
used in Portal-Based True Distance heuristics [Goldenberg et
al., 2010].

In this paper, we present a new preprocessing algorithm,
called FastMap, that produces an explicit Euclidean embed-
ding while running in near-linear time. It therefore has the
benefits of the small preprocessing time of the Differen-
tial heuristic approach and of producing an embedding from
which a heuristic between two nodes can be quickly com-
puted using a closed-form formula. Our preprocessing algo-
rithm, dubbed FastMap, is inspired by the data-mining algo-
rithm of the same name [Faloutsos and Lin, 1995]. It is orders
of magnitude faster than SDP-based approaches for produc-
ing Euclidean embeddings. FastMap also produces admis-
sible and consistent heuristics and therefore guarantees the
generation of shortest paths.

The FastMap heuristic has several advantages: First, it is
defined for general (undirected) graphs. Second, we observe

2Henceforth, whenever we refer to a graph, we mean an edge-
weighted undirected graph unless stated otherwise.

empirically that, in gridworlds, A* using the FastMap heuris-
tic runs faster than A* using the Manhattan or Octile distance
heuristics. A* using the FastMap heuristic runs equally fast or
faster than A* using the Differential heuristic, with the same
memory resources. The (explicit) Euclidean embedding pro-
duced by FastMap also has representational benefits like re-
covering the underlying manifolds of the graph and/or visual-
izing them. Moreover, we observe that the FastMap and Dif-
ferential heuristics have complementary strengths and can be
easily combined to generate an even more informed heuristic.

2 The Origin of FastMap
The FastMap algorithm [Faloutsos and Lin, 1995] was intro-
duced in the data-mining community for automatically gener-
ating geometric embeddings of abstract objects. For example,
if we are given objects in form of long DNA strings, multi-
media datasets such as voice excerpts or images or medical
datasets such as ECGs or MRIs, there is no geometric space
in which these objects can be naturally visualized. However,
there is often a well defined distance function between ev-
ery pair of objects. For example, the edit distance3 between
two DNA strings is well defined although an individual DNA
string cannot be conceptualized in geometric space.

Clustering techniques, such as the k-means algorithm, are
well studied in machine learning [Alpaydin, 2010] but cannot
be applied directly to domains with abstract objects because
they assume that objects are described as points in geomet-
ric space. FastMap revives their applicability by first creat-
ing a Euclidean embedding for the abstract objects that ap-
proximately preserves the pairwise distances between them.
Such an embedding also helps to visualize the abstract ob-
jects, for example, to aid physicians in identifying correla-
tions between symptoms from medical records.

The data-mining FastMap gets as input a complete undi-
rected edge-weighted graph G = (V,E). Each node vi ∈ V
represents an abstract object Oi. Between any two nodes vi
and vj there is an edge (vi, vj) ∈ E with weight D(Oi, Oj)
that corresponds to the given distance between objectsOi and
Oj . A Euclidean embedding assigns to each object Oi a K-
dimensional point pi ∈ RK . A good Euclidean embedding is
one in which the Euclidean distance between any two points
pi and pj closely approximates D(Oi, Oj).

One of the early approaches for generating such an embed-
ding is based on the idea of multi-dimensional scaling (MDS)
[Torgerson, 1952]. Here, the overall distortion of the pair-
wise distances is measured in terms of the “energy” stored in
“springs” that connect each pair of objects. MDS, however,
requires O(|V |2) time and hence does not scale well in prac-
tice. On the other hand, FastMap [Faloutsos and Lin, 1995]
requires only linear time. Both methods embed the objects in
a K-dimensional space for a user-specified K.

FastMap works as follows: In the very first iteration, it
heuristically identifies the farthest pair of objects Oa and Ob
in linear time. It does this by initially choosing a random
object Ob and then choosing Oa to be the farthest object

3The edit distance between two strings is the minimum number
of insertions, deletions or substitutions that are needed to transform
one to the other.
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Figure 1: (a) The three sides of a triangle define its entire geometry.
In particular, xi = (d2ai+d

2
ab−d2ib)/(2dab). (b) Shows a geometric

conceptualization of the recursive step in FastMap. In particular,
Dnew(O

′
i, O

′
j)

2 = D(Oi, Oj)
2 − (xi − xj)2.

away from Ob. It then reassigns Ob to be the farthest ob-
ject away from Oa. Once Oa and Ob are determined, ev-
ery other object Oi defines a triangle with sides of lengths
dai = D(Oa, Oi), dab = D(Oa, Ob) and dib = D(Oi, Ob).
Figure 1(a) shows this triangle. The sides of the triangle de-
fine its entire geometry, and the projection of Oi onto OaOb
is given by xi = (d2ai + d2ab − d2ib)/(2dab). FastMap sets the
first coordinate of pi, the embedding of object Oi, to xi. In
particular, the first coordinate of pa is xa = 0 and of pb is
xb = dab. Computing the first coordinates of all objects takes
only linear time since the distance between any two objects
Oi and Oj for i, j /∈ {a, b} is never computed.

In the subsequent K − 1 iterations, the same procedure is
followed for computing the remaining K − 1 coordinates of
each object. However, the distance function is adapted for
different iterations. For example, for the first iteration, the
coordinates of Oa and Ob are 0 and dab, respectively. Be-
cause these coordinates fully explain the true distance be-
tween them, from the second iteration onwards, the rest of
pa and pb’s coordinates should be identical. Intuitively, this
means that the second iteration should mimic the first one on
a hyperplane that is perpendicular to the line OaOb. Figure
1(b) explains this intuition. Although the hyperplane is never
constructed explicitly, its conceptualization implies that the
distance function for the second iteration should be changed
in the following way: Dnew(O′i, O

′
j)

2 = D(Oi, Oj)
2−(xi−

xj)
2. Here, O′i and O′j are the projections of Oi and Oj ,

respectively, onto this hyperplane, and Dnew is the new dis-
tance function.

3 FastMap for Shortest Path Computations
In this section, we provide the high-level ideas for how to
adapt the data-mining FastMap algorithm to shortest path
computations. In the shortest path computation problem,
we are given a non-negative edge-weighted undirected graph
G = (V,E) along with a start node vs and a goal node vg .
As a preprocessing technique, we can embed the nodes of G
in a Euclidean space. As A* searches for a shortest path from
vs to vg , it can use the Euclidean distance from v ∈ V to vg
as a heuristic for v. The number of node expansions of A*

search depends on the informedness of the heuristic which,
in turn, depends on the ability of the embedding to preserve
the pairwise distances.

The idea is to view the nodes of G as the objects to be
embedded in Euclidean space. As such, the data-mining
FastMap algorithm cannot directly be used for generating an
embedding in linear time. The data-mining FastMap algo-
rithm assumes that the distance dij between two objects Oi
and Oj can be computed in constant time, independent of
the number of objects. Computing the distance between two
nodes depends on the size of the graph. Another problem is
that the Euclidean distances may not satisfy important proper-
ties such as admissibility or consistency. Admissibility guar-
antees that A* finds shortest paths while consistency allows
A* to avoid re-expansions of nodes as well.

The first issue of having to retain (near-)linear time com-
plexity can be addressed as follows: In each iteration, after
we identify the farthest pair of nodes Oa and Ob, the dis-
tances dai and dib need to be computed for all other nodesOi.
Computing dai and dib for any single node Oi can no longer
be done in constant time but requires O(|E| + |V | log |V |)
time instead [Fredman and Tarjan, 1984]. However, since
we need to compute these distances for all nodes, comput-
ing two shortest path trees rooted at nodes Oa and Ob yields
all necessary distances. The complexity of doing so is also
O(|E| + |V | log |V |), which is only linear in the size of the
graph.4 The amortized complexity for computing dai and dib
for any single node Oi is therefore near-constant time.

The second issue of having to generate a consistent (and
thus admissible) heuristic is formally addressed in Theorem
1. The idea is to use L1 distances instead of L2 distances
in each iteration of FastMap. The mathematical properties
of the L1 distance can be used to prove that admissibility and
consistency hold irrespective of the dimensionality of the em-
bedding.

Algorithm 1 presents data-mining FastMap adapted to the
shortest path computation problem. The input is an edge-
weighted undirected graph G = (V,E,w) along with two
user-specified parameters Kmax and ε. Kmax is the max-
imum number of dimensions allowed in the Euclidean em-
bedding. It bounds the amount of memory needed to store
the Euclidean embedding of any node. ε is the threshold that
marks a point of diminishing returns when the distance be-
tween the farthest pair of nodes becomes negligible. The out-
put is an embedding pi ∈ RK (with K ≤ Kmax) for each
node vi ∈ V .

The algorithm maintains a working graph G′ = (V,E,w′)
initialized to G. The nodes and edges of G′ are always
identical to those of G but the weights on the edges of
G′ change with every iteration. In each iteration, the far-
thest pair (na, nb) of nodes in G′ is heuristically identified
in near-linear time (line 4). The Kth coordinate [pi]K of
each node vi is computed using a formula similar to that
for xi in Figure 1(a). However, that formula is modified to
(dai + dab − dib)/2 to ensure admissibility and consistency
of the heuristic. In each iteration, the weight of each edge

4unless |E| = O(|V |), in which case the complexity is near-
linear in the size of the input because of the log |V | factor
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ALGORITHM 1: Shows the FastMap algorithm. G = (V,E,w) is a non-

negative edge-weighted undirected graph;Kmax is the user-specified upper

bound on the dimensionality; ε is a user-specified threshold; K ≤ Kmax

is the dimensionality of the computed embedding; pi is the Euclidean em-

bedding of node vi ∈ V . Line 11 is equivalent tow′(u, v) = w(u, v)−
‖pu − pv‖1.

Input: G = (V,E,w), Kmax and ε.
Output: K and pi ∈ RK for all vi ∈ V .

1 w′ = w; K = 1;
2 while Kmax > 0 do
3 Let G′ = (V,E,w′);
4 (na, nb)← GetFarthestPair(G′);
5 Compute shortest path trees rooted at na and nb

on G′ to obtain dab, dai and dib for all vi ∈ V ;
6 if dab < ε then
7 Break;
8 for each v ∈ V do
9 [pv]K = (dav + dab − dvb)/2

10 for each edge (u, v) ∈ E do
11 w′(u, v) = w′(u, v)− |[pu]K − [pv]K |;
12 K = K + 1; Kmax = Kmax − 1;

is decremented to resemble the update rule for Dnew in Fig-
ure 1(b) (line 11). However, that update rule is modified to
w′(u, v) = w′(u, v)−|[pu]K− [pv]K | to use the L1 distances
instead of the L2 distances.

The method GetFarthestPair(G′) (line 4) computes shortest
path trees in G′ a small constant number of times, denoted by
τ .5 It therefore runs in near-linear time. In the first iteration,
we assign na to be a random node. A shortest path tree rooted
at na is computed to identify the farthest node from it. nb is
assigned to be this farthest node. In the next iteration, a short-
est path tree rooted at nb is computed to identify the farthest
node from it. na is reassigned to be this farthest node. Sub-
sequent iterations follow the same switching rule for na and
nb. The final assignments of nodes to na and nb are returned
after τ iterations. This entire process of starting from a ran-
domly chosen node can be repeated a small constant number
of times.6

Figure 2 shows the working of our algorithm on a small
gridworld example.

3.1 Proof of Consistency
In this section, we prove the consistency of the FastMap
heuristic. Since consistency implies admissibility, this also
proves that A* with the FastMap heuristic returns shortest
paths. We use the following notation in the proofs: wixy is
the weight on the edge between nodes x and y in the ith it-
eration; dixy is the distance between nodes x and y in the ith

iteration (using the weights wi); px is the vector of coordi-
nates produced for node x, and [px]j is its jth coordinate;7

5τ = 10 in our experiments.
6This constant is also 10 in our experiments.
7The ith iteration sets the value of [px]i.

hixy is the FastMap heuristic between nodes x and y after i
iterations. Note that hixy is the L1 distance between px and
py at iteration i, that is hixy :=

∑i
j=1 |[px]j − [py]j |. We also

define ∆i+1
xy := dixy − di+1

xy . In the following proofs, we use
the fact that |A|+ |B| ≥ |A+B| and |A| − |B| ≤ |A−B|.
Lemma 1. For all x, y and i, dixy ≥ 0.

Proof. We prove by induction that, in any iteration i, wiuv ≥
0 for all (u, v) ∈ E. Thus, the weight of each edge in the
ith iteration is non-negative and therefore diuv ≥ 0 for all
u, v. For the base case, w1

uv = w(u, v) ≥ 0. We assume
that wiuv ≥ 0 and show that wi+1

uv ≥ 0. Let na and nb be the
farthest pair of nodes identified in the ith iteration. From lines
9 and 11, wi+1

uv = wiuv−|(diau−diav)/2+(divb−diub)/2|. To
show that wi+1

uv ≥ 0 we show that wiuv ≥ |(diau − diav)/2 +
(divb − diub)/2|. From the triangle inequality, for any node
l, diuv + min(diul, d

i
lv) ≥ max(diul, d

i
lv). Therefore, diuv ≥

|diul−dilv| and thus also 2diuv ≥ |diua−diav|+|diub−dibv|. This
means that diuv ≥ |diau − diav|/2 + |divb − diub|/2. Therefore,
diuv ≥ |(diau − diav)/2 + (divb − diub)/2|. This concludes the
proof since wiuv ≥ diuv .

Lemma 2. For all x, y and i, ∆i+1
xy ≥ |[px]i − [py]i|.

Proof. Let 〈u1 = x, . . . , um = y〉 be the shortest path from
x to y in iteration i. By definition, dixy =

∑m−1
j=1 wiujuj+1

and di+1
xy ≤

∑m−1
j=1 wi+1

ujuj+1
. From line 11, wi+1

ujuj+1
=

wiujuj+1
− |[puj

]i − [puj+1
]i|. Therefore, ∆i+1

xy = dixy −
di+1
xy ≥

∑m−1
j=1 |[puj

]i − [puj+1
]i|. This concludes the proof

since
∑m−1
j=1 |[puj

]i−[puj+1
]i| ≥ |

∑m−1
j=1 [puj

]i−[puj+1
]i| =

|[px]i − [py]i|.

Lemma 3. For all x, y, g and i, d1xy + hiyg − hixg ≥ di+1
xy .

Proof. We prove the lemma by induction on i. The base case
for i = 1 is implied by Lemma 2. We assume that d1xy+hiyg−
hixg ≥ di+1

xy and show d1xy + hi+1
yg − hi+1

xg ≥ di+2
xy . We know

that hi+1
yg −hi+1

xg = hiyg−hixg−(|[px]i+1−[pg]i+1|−|[py]i+1−
[pg]i+1|). Since |[px]i+1 − [pg]i+1| − |[py]i+1 − [pg]i+1| ≤
|[px]i+1 − [py]i+1|, we have hi+1

yg − hi+1
xg ≥ hiyg − hixg −

|[px]i+1−[py]i+1|. Hence, d1xy+hi+1
yg −hi+1

xg ≥ (d1xy+hiyg−
hixg) − |[px]i+1 − [py]i+1|. Using the inductive assumption,
we get d1xy + hi+1

yg − hi+1
xg ≥ di+1

xy − |[px]i+1 − [py]i+1|.
By definition, di+1

xy = ∆i+2
xy + di+2

xy . Substituting for di+1
xy ,

we get d1xy + hi+1
yg − hi+1

xg ≥ di+2
xy + (∆i+2

xy − |[px]i+1 −
[py]i+1|). Lemma 2 shows that ∆i+2

xy ≥ |[px]i+1 − [py]i+1|,
which concludes the proof.

Theorem 1. The FastMap heuristic is consistent.

Proof. For all x, y, g and i: From Lemma 3, we know d1xy +

hiyg − hixg ≥ di+1
xy . From Lemma 1, we know di+1

xy ≥ 0.
Put together, we have d1xy + hiyg ≥ hixg . Finally, higg =∑i
j=1 |[pg]j − [pg]j | = 0.
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Figure 2: Illustrates the working of FastMap. (a) shows a 4-neighbor gridworld with obstacles in black. (b) shows the graphical representation
of (a) with the original unit weights on the edges. (c) shows the identified farthest pair of nodes. (d) shows two numbers in each cell
representing the distances from na and nb, respectively. (e) shows the first coordinate produced for each cell. (f) shows new edge weights for
the next iteration. (g), (h) and (i) correspond to (c), (d) and (e), respectively, in the second iteration. (j) shows the produced 2D embedding.

Theorem 2. The informedness of the FastMap heuristic in-
creases monotonically with the number of dimensions.

Proof. This theorem follows from the fact that for any two
nodes x and g, hi+1

xg = hixg + |[px]i+1 − [pg]i+1| ≥ hixg .

4 Experimental Results
We performed experiments on many benchmark maps from
[Sturtevant, 2012]. Figure 3 presents representative results.
The FastMap heuristic (FM) and the Differential heuristic
(DH) with equal memory resources8 are compared against
each other. In addition, we include the Octile heuristic (OCT)
as a baseline, that also uses a closed-form formula for the
computation of its heuristic.

We observe that, as the number of dimensions increases,
(a) FM and DH perform better than OCT; (b) the median
number of expanded nodes when using the FM heuristic de-
creases (which is consistent with Theorem 2); and (c) the me-
dian absolute deviation (MAD) of the number of expanded
nodes when using the FM heuristic decreases. When FM’s
MADs are high, the variabilities can possibly be exploited in
future work using Rapid Randomized Restart strategies.

FastMap also gives us a framework for identifying a point
of diminishing returns with increasing dimensionality. This
happens when the distance between the farthest pair of nodes
stops being “significant”. For example, such a point is ob-
served in Figure 3(f) around dimensionality 5.9

In mazes, such as in Figure 3(g), A* using the DH heuris-
tic outperforms A* using the FM heuristic. This leads us
to believe that FM provides good heuristic guidance in do-
mains that can be approximated with a low-dimensional man-
ifold. This observation also motivates us to create a hybrid

8The dimensionality of the Euclidean embedding for FM
matches the number of pivots in DH.

9The distances between the farthest pair of nodes, computed
on line 4 of Algorithm 1, for the first 10 dimensions are:
〈581, 36, 22, 15, 14, 10, 6, 6, 5, 4〉.

FM+DH heuristic by taking the maximum of the two heuris-
tics. Some relevant results are shown in Table 1. We use
FM(K) to denote the FM heuristic with K dimensions and
DM(K) to denote the DH heuristic with K pivots. For the re-
sults in Table 1, all heuristics have equal memory resources.
We observe that the number of node expansions of A* using
the FM(5)+DH(5) heuristic is always second best compared
to A* using the FM(10) heuristic and A* using the DH(10)
heuristic. On one hand, this decreases the percentages of in-
stances on which it expands the least number of nodes (as
seen in the second row of Table 1). But, on the other hand, its
median number of node expansions is not far from that of the
best technique in each breakdown.

5 Conclusions

We presented a near-linear time preprocessing algorithm,
called FastMap, for producing a Euclidean embedding of a
general edge-weighted undirected graph. At runtime, the
Euclidean distances were used as heuristic by A* for short-
est path computations. We proved that the FastMap heuris-
tic is admissible and consistent, thereby generating shortest
paths. FastMap produces the Euclidean embedding in near-
linear time, which is significantly faster than competing ap-
proaches for producing Euclidean embeddings with optimal-
ity guarantees that run in cubic time. We also showed that
it is competitive with other state-of-the-art heuristics derived
in near-linear preprocessing time. However, FastMap has the
combined benefits of requiring only near-linear preprocessing
time and producing explicit Euclidean embeddings that try to
recover the underlying manifolds of the given graphs.
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Map ‘lak503d’ ‘brc300d’ ‘maze512-32-0’
FM-WINS 570 DH-WINS 329 FM+DH-WINS 101 FM-WINS 846 DH-WINS 147 FM+DH-WINS 7 FM-WINS 382 DH-WINS 507 FM+DH-WINS 111
Med MAD Med MAD Med MAD Med MAD Med MAD Med MAD Med MAD Med MAD Med MAD

FM(10) 261 112 465 319 2,222 1,111 205 105 285 149 894 472 1,649 747 11,440 9,861 33,734 13,748
DH(10) 358 215 278 156 885 370 217 119 200 129 277 75 3,107 2,569 2,859 2,194 8,156 4,431

FM(5)+DH(5) 303 160 323 170 610 264 206 105 267 135 249 73 2,685 2,091 3,896 2,992 7,439 4,247

Table 1: Shows the median and MAD numbers of A* node expansions for different maps using three different heuristics with equal memory
resources on 1000 random instances. FM(10) denotes the FastMap heuristic with 10 dimensions, DH(10) denotes the Differential heuristic
with 10 pivots, and FM(5)+DH(5) is a combined heuristic which takes the maximum of a 5-dimensional FastMap heuristic and a 5-pivot
Differential heuristic. The results are split into bins according to winners (along with their number of wins).

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 3: Shows empirical results on 3 maps from Bioware’s Dragon Age: Origins. (a) is map ‘lak503d’ containing 17, 953 nodes and
33, 781 edges; (d) is map ‘brc300d’ containing 5, 214 nodes and 9, 687 edges; and (g) is map ‘maze512-32-0’ containing 253, 840 nodes
and 499, 377 edges. In (b), the x-axis shows the number of dimensions for the FastMap heuristic (or the number of pivots for the Differential
heuristic). The y-axis shows the number of instances (out of 1, 000) on which each technique expanded the least number of nodes. Each
instance has randomly chosen start and goal nodes. (c) shows the median number of expanded nodes across all instances. Vertical error bars
indicate the MADs. The figures in the second and third rows follow the same order. In the legends, “FM” denotes the FastMap heuristic,
“DH” denotes the Differential heuristic, and “OCT” denotes the Octile heuristic.
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