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Abstract

Modeling the evolution of user feedback and social
links in dynamic social networks is of considerable
significance, because it is the basis of many ap-
plications, including recommendation systems and
user behavior analyses. Most of the existing meth-
ods in this area model user behaviors separately
and consider only certain aspects of this problem,
such as dynamic preferences of users, dynamic at-
tributes of items, evolutions of social networks, and
their partial integration. This work proposes a com-
prehensive general neural framework with several
optimal strategies to jointly model the evolution
of user feedback and social links. The framework
considers the dynamic user preferences, dynamic
item attributes, and time-dependent social links in
time-evolving social networks. Experimental re-
sults conducted on two real-world datasets demon-
strate that our proposed model performs remark-
ably better than state-of-the-art methods.

1 Introduction
Over the last years, social network services (SNSs) have be-
come one of the most important and popular tools for users to
communicate, share, and deliver information. The available
information from SNSs (e.g., user attributes and preferences)
and related resources (e.g., user purchase logs) allow in-depth
understanding and modeling of user behaviors, thereby po-
tentially benefiting certain important applications, such as
recommendation systems, link prediction, and so forth.

In SNSs, giving feedback about items consumed by users
and creating social links with others are two pivotal types of
user behaviors that have been individually studied by many
previous works [Mnih and Salakhutdinov, 2008; Salakhutdi-
nov et al., 2007; Liben-Nowell and Kleinberg, 2007]. How-
ever, social scientists have demonstrated that the two core be-
haviors in SNSs, i.e., user feedback and social links, are not
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independent of each other [Crandall et al., 2008]. Specifi-
cally, future user preferences are affected by their social in-
fluences, such as word of mouth. Moreover, users who share
similar consumption preferences have a high likelihood to as-
sociate with one another. This phenomenon is called the ho-
mophily effect. To address these observations, most of the
prior studies utilized only one of the two behaviors to boost
the prediction of another behavior [Jamali and Ester, 2010;
Tang et al., 2013]. Only a few works attempted the joint mod-
eling of the two user behaviors, which enhances the predic-
tions of user behaviors [Wu et al., 2016; Jamali et al., 2011].

In the real world, social networks evolve over time, and
user preferences are likewise dynamic. In addition, item at-
tributes often change as well, as a function of user inclinations
and other factors [Wu et al., 2017a]. These time-evolving
aspects make the effective and comprehensive modeling of
user behavior increasingly challenging. Most previous works
jointly modeled user feedback and social link behaviors, with
the assumption of static social networks, or considered only
a partial integration of the three dynamic aspects [Yang et al.,
2011; Wu et al., 2017b]. To address these issues, we propose
to jointly model the temporal evolution of user feedback and
social link behaviors via capturing the dynamic user prefer-
ences, dynamic item attributes and time-evolving social net-
works. We introduce a social network embedding framework
to explore how social influences and the homphily effect im-
pact future user feedback and social linking behaviors.

Recently, neural networks (NN) have achieved remarkable
successes in computer vision, speech recognition, and text
processing. NNs have been then applied by many studies to
model user feedback or social links and have shown promis-
ing results. However, the number of NN-based approaches
that jointly model the two user behaviors and benefit both
tasks of user feedback and social link prediction, is limited.

In this paper, we present a novel NN-based model to jointly
learn the two user behaviors by considering the three afore-
mentioned dynamic aspects in SNS. The main contributions
of this paper are as follows:

• We propose Neural Joint Modeling (NJM), a novel deep
learning based architecture to model the evolution of user
feedback and social links in dynamic social networks by
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considering dynamic user preferences, dynamic item at-
tributes, and time-evolving social networks. This work is
the first one based on deep learning that jointly models the
evolution of the two user behaviors.

• We leverage expressive NNs to thoroughly study the high-
level nonlinear interactions between user historical prefer-
ence and social influence as well as between user social
structure and the homophily effect.

• We conduct extensive experiments on two real-world
datasets, and the experimental results illustrate that our
model achieves a promising effectiveness in recommenda-
tion and social link prediction compared with state-of-the-
art methods.

2 Related Work
We first summarize the general approaches for separately
modeling user feedback and predicting social links. Then we
introduce the joint modeling of these two user behaviors.

User feedback is mainly affected by user preferences and
item attributes, which can be modeled by Collaborative Fil-
tering (CF). One of the most traditional CF techniques is
matrix factorization (MF) [Mnih and Salakhutdinov, 2008].
Since user preferences and item attributes generally change
over time certain MF models consider temporal dynamics
by creating handcrafted features [Koren, 2010; Xiong et al.,
2010]. However, with such an approach, they cannot cap-
ture complex temporal patterns [Wu et al., 2017a]. Recently,
deep learning-based techniques have been widely leveraged
for MF in modeling user feedback in static networks [He et
al., 2017; Zheng et al., 2016]. By contrast, [Wu et al., 2017a]
proposed recurrent recommender network that can model the
dynamics of users and items. Based on the social influence
theory, many studies integrated the context of user friendship
with feedback data in static social networks [Jamali and Ester,
2010; Deng et al., 2017].

The problem of link prediction viewed as computing the
node proximityis to predict potential new links on the ba-
sis of partially observed connections in a social network.
Early approaches predicted possible links only in static net-
works [Liben-Nowell and Kleinberg, 2007]. With the avail-
ability of temporal information in social networks, other
scholars analyzed the patterns of the evolution of networks
[Zhu et al., 2016; Sarkar et al., 2012; Yu et al., 2017]. A few
deep learning based models have been used for the link pre-
diction problem recently. For example, [Kipf and Welling,
2016] devised variational graph autoencoder to learn mean-
ingful latent embeddings on the link prediction task. [Liao et
al., 2017] leveraged attributed social network embedding for
link prediction. [Zhang and Chen, 2017] proposed a next-
generation link prediction method, called Weisfeiler-Lehman
Neural Machine. To utilize the homophily effect, [Tang et
al., 2013] proposed to exploit user preferences on items for
link prediction.

[Jamali et al., 2011] analyzed the temporal dynamics of
social networks by using bidirectional effects, but that work
cannot be used for personalized recommendation. [Yang et
al., 2011] jointly modeled the two user behaviors by using
a unified framework that assumes a static representation of

social networks. [Wu et al., 2017b] proposed a model that
captures the temporal dynamics of the two user behaviors yet
it assumes item attributes to be static. Nevertheless, no exist-
ing work has explored the idea of taking into account all the
three aforementioned dynamic aspects to jointly learn the two
kinds of user behaviors.

To the best of our knowledge, our model is the first one
based on deep learning that jointly models the evolution of
the two user behaviors and considers dynamic item attributes,
dynamic user preferences, and time-dependent social links.

3 The Proposed Model
3.1 Problem Definition
A social network has a set of users U = {u1, u2, ..., uN} and
a set of items V = {v1, v2, ..., vM}. Users consume items
and create links with others over time. The feedback data on
items expressed by users at time t are described in a feedback
matrix Ct ∈ RN×M . Ct

a,i denotes the rating of user ua on
item vi at time t. On the other hand, social links built by users
are given in a link matrix St ∈ RN×N . St

a,b = 1 means that
user ua forms a link with user ub at time t. We use a, b to
represent users and i, j to denote items.

Given two matrix sequences: a feedback matrix sequence
C = [C1,C2, ...,CT ] and a social link matrix sequence S =
[S1,S2, ...,ST ], the tasks of our model are to: (1) quantify
the social influence in user feedback behavior and homophily
effect in social link behavior; (2) depict the dynamic states
of items; and (3) predict each user’s new feedback and social
link behaviors at the next time.

3.2 Overall Framework
To solve the tasks mentioned above, we propose a framework
that comprises two modules: (1) user feedback model (Fig. 1,
left) which captures user dynamic preferences by quantifying
historical user preferences and social influences, and which
uses LSTM to learn the dynamic states of items; (2) social
link model (Fig. 1, right) which considers the homophily ef-
fect when predicting social links. The two modules are jointly
trained to achieve superior prediction performance.

Given the dimension of the latent space as D, we propose
two time-dependent embeddings (1) ut

a, which is called la-
tent preference embedding and describes the latent preference
of user ua on items at time t and (2) pt

a, which is called latent
link embedding and represents the latent structure of user ua
at time t. Moreover, we denote U t = {ut

a} ∈ RN×D and
P t = {pt

a} ∈ RN×D. The one-hot vector is employed for
user ID, as shown at the bottom of Fig. 1.

3.3 User Feedback Model
User feedback is determined by user preferences and item at-
tributes. In following, we introduce the user preference and
item attribute parts of this model.

User Preference
The new preferences of each user are affected by their histor-
ical preferences and social influences.
Impact Factors of User Preference. ut

a represents the time-
dependent latent preference of user ua at time t. On the
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Figure 1: The structure of the proposed model

other hand, we propose qt
a, which is called latent influence

embedding and describes the time-dependent latent influence
of user ua on other users at time t. Consequently, we have
Qt = {qt

a} ∈ RN×D.
In most previous works [Wu et al., 2017b], time-dependent

latent preference and time-dependent latent influence were
considered equal. In our work, we argue that both terms do
not describe the same concept because users may exaggerate
or diminish their specific tastes and characters due to some
reasons. For example, an introverted user may perform ac-
tively in SNSs as he might want to appear outgoing; mean-
while, another user may hide his preferences on some fea-
tures, such as crime movies, to protect his privacy. Therefore,
we propose an effective strategy to correlate ut

a and qt
a here.

We use the recommendation transformation factor matrix,
denoted as T ∈ RN×D, to describe the change from users’
preferences to users’ influences on other users. Each row in
T reflects the extent to which the corresponding user exag-
gerates or diminishes each feature. Furthermore, users’ trust
degrees on others vary. Therefore, we propose f t−1

a to denote
the vector of the trust score of user ua on his friends at time
t-1. Specifically, the b-th element in f t−1

a is user ua’s trust
score in user ub at time t-1. Besides, let N t

a denote the set of
linked users of ua till time t and It

a denote the friend indicator
vector. It

ab equals 1 if b ∈ N t
a, otherwise it equals 0. Here,

one rational way to set f t−1
a is to use the node proximity be-

tween the user and his friends: It−1
a ◦ (pt−1

a (P t−1)T ), where
◦ denotes the Hadamard product operation. In addition, we
need to standardize the product to ensure the trust scores sum
of 1. Thus, we employ q̃t−1

a to represent the time-dependent
latent influence of friendship on user ua:

q̃t−1
a = f t−1

a Qt−1 = f t−1
a (U t−1 ◦ T )

= τ(It−1
a ◦ (pt−1

a (P t−1)T ))(U t−1 ◦ T ),
(1)

where τ represents the standardization function.
Integrating Impact Factors of User Preference. To predict
the new preferences of user ua at time t, we need to integrate

the user preference embedding ut−1
a and the latent influence

of friendship on user ua, q̃t−1
a . In [Wu et al., 2017b], the au-

thor implemented this idea by linear combination. Inspired by
[He et al., 2017], we believe that the simple linear combina-
tion of ut−1

a and q̃t−1
a will limit the representation capability

of the model.
A standard Multi-Layer Perceptron (MLP) is adopted in

our model to identify the nonlinear interaction between ut−1
a

and q̃t−1
a . The output of the user preference hidden layer is

the latent preference prediction vector of user a at time t, ût
a.

And we obtain Û t = {ût
a} ∈ RN×D.

The MLP model under the user feedback model is defined
as:

zt
a1 = φf1 (u

t−1
a , q̃t−1

a ),

zt
ai = φfi (Wiz

t
i−1 + bi), i = 2, ..., nf ,

ût
a = zt

anf
,

(2)

where nf denotes the number of feedback hidden layers, and
WL, bL denote the weight matrix and bias vector. No social
influence is present at time 1; thus, we set z1

a1 = φf1 (u
1
a,0).

Item Attribute
In our model, we suppose that the item attributes change over
time (e.g., a restaurant serves different food in different sea-
sons). We utilize the LSTM recurrent NNs to determine the
inherent item dynamics instead of the states of items. This
technique can help address the vanishing gradient problem
and enables us to incorporate past observations and predict
future trajectories in an integrated manner. We use vt

i to de-
note the latent attributes embedding of item vi at time t. In
addition, we use a nonparametric model to learn the inherent
item dynamics. Then, we can extrapolate the future behav-
iors of the items. Here, our model learns only the dynamics
of items and not their states.

The parameters of an item are dependent on its popularity
and the users who have consumed it. Accordingly, the in-
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put of the item attribute model are items with ratings from
users at a previous time. Then, we use a transformation ma-
trix to learn how to project this information into an embed-
ding space, and obtain the item latent vector yt

i , which serves
as the input to the LSTM. The output of the item attribute
part vt

i is the latent attribute embedding of item vi at time t:
vt
i = LSTM(vt−1

i ,yt
i).

Objective
The output of the user preference part and the item attribute
part serves as the input of the recommendation output layer.
The states of user ua and item vi change with time, but we
assume that some components of them still remain stationary,
such as the item genre or user gender. Thus, we propose the
dynamic vectors ût

a and vt
i with stationary components ua

and vi: r̂tai = sigmoid(< ût
a, v̄

t
i > + < ua,vi >), where

<,> denotes the inner product operation and v̄t
i is the affine

function of vt
i . The loss function of user feedback model is

defined as follows:

Lu =
∑

(a,i,t)∈train

(rtai − r̂tai)2. (3)

3.4 Social Link Model
The construction of a social link is mainly determined by two
factors. First, users who share similar consumption prefer-
ences have a high probability to form a link connection. This
phenomenon is called homophily effect. Second, users who
have high node proximity are highly likely to be associated
with one other and make friends.

Hence, given the latent link embeddings and latent pref-
erence embeddings, this model aims to estimate the time-
dependent pairwise link probability of nodes. We use the
softmax function to define the conditional link probability of
user ub on ua at time t:

pt(ub|ua) =
exp(g(ut−1

a ,ut−1
b ,pt−1

a ,pt−1
b ))∑N

b′=1 exp(g(u
t−1
a ,ut−1

b′ ,pt−1
a ,pt−1

b′ ))
, (4)

where g is the function that map nodes ua and ub to their
estimated link score.

Furthermore, we maximize the likelihood function for the
global social link modeling:

l =
T∏

t=1

N∏
a=1

∏
b∈N t

a

pt(ub|ua). (5)

When predicting user ua’s link probability at time t, an
intuitive method to combine the homophily effect and node
proximity involves first measuring the similarity of user pref-
erence and user link embeddings between user ua and others
directly and then integrating the two similarities via linear ad-
dition [Wu et al., 2017b].

ŝta = σ(ut−1
a (U t−1)T ,pt−1

a (P t−1)T ), (6)
where ŝta is the link probability vector of ua at time t, σ is the
linear addition function.

However, this simple method ignores the nonlinear re-
lationship among the heterogeneous factors. In the social

link model, we explore the nonlinear interaction between
the homophily effect and node proximity, which lets a deep
NN to learn the complex interactions between the two factors.

Input Layer. Two components ut−1
a and pt−1

a serve as
the input of this layer. One component captures the latent
information of the user preference, and the other component
represents the latent structure of user ua.

Hidden Layer. After feeding ut−1
a and pt−1

a to the multi-
layer NN, we obtain ht

ak from the output of the last hidden
layer. ht

ak represents the abstract embedding, which bridges
the preference information and social structure information
of user ua.

ht
a1 = φs1(u

t−1
a ,pt−1

a ),

ht
ak = φsk(Wkh

t
a(k−1) + bk), k = 2, ..., ns,

(7)

where ns represents the number of link hidden layers and
φs denotes the activation function. The homophily effect is
absent at time 1, so we set h1

a1 = φs1(0,p
1
a).

Output Layer. In this layer, the output of the last hidden
layer is transformed into a probability vector ŝta, which is the
link probability of ua at time t.

We denote the time-dependent user neighborhood embed-
ding of user ua at time t as eta and assume that eta is evolved
from user abstract embedding ht

ak. In addition, We denote
Et = {eta} ∈ RN×D. Therefore, the regularization of this
evolution is defined as:

Lre =
T∑

t=1

N∑
a=1

‖1−eta(h
t
ak)

T ‖2F +‖1−et+1
a (eta)

T ‖2F . (8)

To be detailed, we obtain

g(ut−1
a ,ut−1

b ,pt−1
a ,pt−1

b ) =< etb,h
t
ak >, (9)

which can be fed into Eq. 4.
Predicting all the missing links in social networks is com-

putationally inefficient. To address this issue, we apply nega-
tive sampling procedure [Jamali et al., 2011]. Thus, we min-
imize the cross-entropy loss function defined as

Ls = −
∑

(a,b,t)∈Z+

logŝtab −
∑

(a,b,t)∈Z−
log(1− ŝtab), (10)

where Z+ ⊂ Z denotes the set of positive link interactions in
Z, and Z− ⊂ Z denotes the set of negative interactions in Z.

3.5 Joint Training
To penalize large deviations of user embedding over time, we
obtain

Lr = Lre +
T∑

t=2

N∑
a=1

‖1−Û t
a(U

t
a)

T ‖2F +‖1−P t
a(P

t−1
a )T ‖2F .

(11)
The whole loss function of our framework is defined as

L = Lu + λLs + βLr +R(θ), (12)
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Algorithm 1 Joint training of our model

Input: latent dimension D, the number of timestamps T ,
batch size B, the feedback sequence C, the social link
sequence S

Output: All parameters in our framework θ that minimize
the total loss L

1: repeat
2: Sample a batch of (ua, vi, Cai = {C1

ai, ...,C
T
ai},

C∗i = {C1
∗i, ...,C

T
∗i}, Na = {N 1

a , ...,N T
a }, Za ⊂ Z)

of size B
3: for t← 1 to T do
4: Accumulate feedback prediction loss Lu by Eq. 3
5: Accumulate link prediction loss Ls by Eq. 10
6: Accumulate evolution smoothness loss Lr by Eq. 11
7: end for
8: Accumulate the total loss L by Eq. 12
9: Take a gradient step to optimize L

10: until L converges or is sufficiently small
11: return θ

where λ is the trade-off parameter between user feedback pre-
diction loss and social link prediction loss. β regularizes the
evolution of user embeddings over time.

We implement our neural framework with TensorFlow to
jointly train the multiple optimization objectives in Eq. 12
by performing stochastic gradient descent with mini-batch
Adam. Algorithm 1 illustrates the SGD-based joint training
procedure of our model.

Our model has two variants. If we do not minimize the
social link prediction loss, then the degenerated model NJM-
F can be used to make direct user feedback prediction. If we
disregard the optimization of user feedback prediction loss,
then we can use the degenerated model NJM-L to make a
direct social link prediction.

4 Experiments
In this section, we describe the two-fold experiments for feed-
back prediction and link prediction. The source code is avail-
able at https://github.com/NJMCODE2018/NJM.

4.1 Experimental Setting
We evaluate our model on two benchmark datasets, i.e., the
who-trust-whom online product sharing dataset Epinions and
the location based social networking dataset Gowalla. In the
data preparation procedure, we filter out users with less than
two feedback records and two social link records. Table 1
shows the basic statics of the two datasets after filtering. Dur-
ing data splitting, we use the data up to time T as the training
data and the new behaviors in T+1 as the test data. Without
loss of generality, we normalize the user feedback ratings into
the interval [0,1].

4.2 Feedback Prediction
Compared Algorithm. We compare our model with the
following feedback prediction algorithms: PMF [Mnih and
Salakhutdinov, 2008], TimeSVD++ [Koren, 2010], RRN [Wu
et al., 2017a], NCF [He et al., 2017], FIP [Yang et al., 2011],

Dataset users items feedback records links
Gowalla 21,755 71,139 330,602 257,550
Epinions 4630 26,991 65,683 78,356

Table 1: The statistics of the benchmark datasets

Figure 2: Performance comparison of user feedback prediction on
RMSE

ELJP [Wu et al., 2017b]. FIP and ELJP are joint training
methods. We analyze all algorithms by measuring the accu-
racy of feedback prediction based on root mean-square error
(RMSE) and we report the results with different numbers of
dimensions. For fair comparison, we choose the best results
of all algorithms to represent the best performances.

Performance Comparison. We observe from Figure 2 that
NCF generates better results than MF based methods, and
this comparison shows that applying deep learning methods
on learning nonlinear interactions between users and items
is effective. The experimental results show that our model
achieves promising prediction effectiveness, yielding 7.4%
and 9.1% improvements on Epinions and Gowalla data, re-
spectively, over the best baselines. These results demonstrate
that the neural structures of our model can accurately cap-
ture the dynamic user preferences with social influence and
dynamic item attributes. Specifically, NJM performs better
than NJM-F, which explains the benefits of jointly training
the perspectives in feedback prediction.

4.3 Link Prediction
Compared Algorithm. Next, we quantitatively compare the
proposed method with all the following link prediction algo-
rithms: AA [Liben-Nowell and Kleinberg, 2007], Node2Vec
[Grover and Leskovec, 2016], SNE [Liao et al., 2017],
FIP [Yang et al., 2011], ELJP [Wu et al., 2017b]. We use
feedback records as the attributes of users and items in SNE.
For convenient calculation, we follow the same procedure as
one applied by [Wu et al., 2017b] to process link prediction:
for a test user ua, we randomly sample 100 negative users
that do not link to user ua untill time t. Then, we mix these
negative users and those positive linked users to select top K
potential linked users as the link prediction results. We adopt
three widely-used metrics: precision@K, recall@K, and F1.
Here, we set K = 5 in the evaluation.

Performance Comparison. From the prediction results dis-
played in Figure 3, we observe that ELJP shows great per-
formance. This proves that leveraging the homophily effect
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Figure 3: Performance comparison of link prediction on precision, recall and F1

User feedback model
nf RMSE
0 0.269
1 0.236
2 0.233
3 0.231

Social link model
ns precision recall F1
0 0.203 0.298 0.237
1 0.246 0.318 0.278
2 0.249 0.327 0.282
3 0.249 0.330 0.284

Table 2: Performance of the proposed model using different number
of hidden layers

boosts social link prediction. Our model also has the best
predictive power among all the proposed models on the Epin-
ions dataset, which incorporates social network information
and user feedback. This finding illustrates that exploring the
high-level interactions between node proximity and the ho-
mophily effect is helpful. Moreover, our model exhibits bet-
ter performance than NJM-P, and this result shows the power
of jointly training for link prediction. The evaluation of dif-
ferent approaches on Gowalla shows similar performance and
is not presented here due to space limitation.

4.4 Parameter Exploration
We set β 0.01 in Epinions data and 0.1 in Gowalla data. In
addition, we explore how parameter differences influence the
performance of our model through an in-depth analysis.

Neural Architectures. We apply different architectures of
hidden layers in the user feedback and social link models
in our framework to evaluate the model performance. We
follow a tower pattern, where each successive layer has half
the number of neurons of the lower layer. For example, if the
number of latent dimensions is 10 and the number of hidden
layers is 3, then the sizes of the layers are 40→ 20→ 10. We
evaluate the performance of the two models by varying the
number of hidden layers from 0 to 3 with the number of latent
dimensions D = 10. Table 2 demonstrates the prediction per-
formance with different numbers of hidden layers in the two
models. We find that 2 is the best number of hidden layers
in both the models, considering the cost of training time
and prediction results. Due to space limitations and the fact
that the results on Gowalla data have similar performance,
we only report the experimental results on Epinions data here.

Trade-off Parameter λ. λ is the trade-off parameter between
user feedback prediction loss and social link prediction loss.

Figure 4: Performance of the proposed model with the impact of the
recommendation transformation factor matrix on RMSE

We set λ 0.1 in Epinions data and 1 in Gowalla data, in view
of the balance of the two prediction tasks.

Recommendation Transformation Factor. We also inves-
tigate the effect of the recommendation transformation fac-
tor matrix T on feedback prediction. When the recommen-
dation transformation factor is not considered, it means that
T is fixed to be an all 1’s matrix and untrainable. Figure 4
shows that the performance of NJM with trainable T is supe-
rior over the one with untrainable T on the two datasets. This
demonstrates the usefulness of the proposed recommendation
transformation factor matrix.

5 Conclusion
In this work, we propose a general end-to-end neural frame-
work for modeling the evolution of user feedback and social
links in dynamic social networks. We leverage sophisticated
NNs to describe dynamic user preferences, dynamic item at-
tributes, and time-evolving social links in a unified manner.
We then obtain insights into the formation of the two user
behaviors with social influence and the homophily effect us-
ing deep NNs. The experimental evaluation demonstrates the
effectiveness of the introduced model.

People tend to form various communities according to their
social relations, and these communities should have different
contributions to the formation of user preferences, which is
called the community effect. An interesting future work is
the modeling of user feedback with social influence and the
community effect. Our future work is thus to investigate this
problem by expanding our model.
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