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Abstract
Case-Based Reasoning provides a framework for
integrating domain knowledge with data in the
form of four knowledge containers namely Case
base, Vocabulary, Similarity, and Adaptation. It is
a known fact in Case-Based Reasoning community
that knowledge can be interchanged between the
containers. However, the explicit interplay between
them, and how this interchange is affected by the
knowledge richness of the underlying domain is not
yet fully understood. We attempt to bridge this gap
by proposing footprint size reduction as a measure
for quantifying knowledge tradeoffs between con-
tainers. The proposed measure is empirically eval-
uated on synthetic as well as real-world datasets.
From a practical standpoint, footprint size reduc-
tion provides a unified way of estimating the impact
of a given piece of knowledge in any knowledge
container, and can also suggest ways of characteriz-
ing the nature of domains ranging from ill-defined
to well-defined ones. Our study also makes evi-
dent the need for maintenance approaches that go
beyond case base and competence to include other
containers and performance objectives.

1 Introduction
Case-Based Reasoning (CBR) is a paradigm of reasoning in-
spired by the human way of using past experiences to solve
new problems [Kolodner, 1992; Aamodt and Plaza, 1994].
Unlike most machine learning algorithms that are purely
data-driven, CBR provides a framework for combining do-
main knowledge with data. Problem-solving in CBR in-
volves the use of four knowledge containers namely Vocabu-
lary, Case Base, Similarity and Adaptation. The effectiveness
of the reasoner can be improved by carefully handling the
knowledge containers [Richter, 1995], i.e. interchanging the
knowledge between containers to improve its performance.
While past work on CBR has realized the interplay between
the containers, the impact of this interchangeability across a
diversity of domains has not been studied in isolation.

The interplay between containers also has an important
role to play in the evolution of a CBR system. An initial CBR
system could be just a large collection of cases. As the system

evolves, knowledge can be shifted from case-base to similar-
ity or adaptation containers and can even lead to a revised
vocabulary. Learning to improve vocabulary is very hard to
be automated and is still largely dependent on the domain
experts. However, there has been past work on inducing sim-
ilarity measures [Stahl, 2001; Cheng and Hüllermeier, 2008]
and adaptation rules [Hanney and Keane, 1997; Craw et al.,
2006] from case base either with minimal or no feedback
from domain experts. These learning techniques have largely
focussed on individual knowledge containers, thus not laying
adequate emphasis on the interdependence between contain-
ers. Realizing the utility of cases present in a case base is im-
possible without a good similarity measure. Similarly, adap-
tation knowledge is effective only when the relevant case is
retrieved from the case base in the first place, and this, in turn,
is dependent on the similarity measure.

The observation above motivates the need to seek a uni-
fied ground for studying the interchangeability between CBR
knowledge containers. More specifically, in this work we
propose a novel measure based on footprint set [Smyth and
McKenna, 1999] to quantify knowledge tradeoffs between
containers. The proposed idea is evaluated using synthetic
and real-world datasets, and the tradeoffs are visually illus-
trated using parallel coordinate plots [Inselberg, 2009]. Our
work also includes a study of the following two factors that
influence tradeoffs between containers: nature of underlying
domain and user demands on solution quality. The paper is
concluded with a discussion on practical implications and fu-
ture extensions of the proposed idea. In particular, we envis-
age that our interpretation of footprint cases and knowledge
transfers will streamline and motivate new avenues of cross-
container maintenance activities in CBR.

2 Background
Knowledge Containers The four knowledge containers
and problem-solving methodology in CBR are briefly ex-
plained in this section. Case base is the repository of ex-
periences known to a case-based reasoner. Each experience
is stored as a problem-solution pair known as a case. Vocabu-
lary specifies the choice of language that is used to gather, or-
ganize and represent the cases. Similarity knowledge guides
the retrieval of past experiences that are potentially useful in
solving the target problem. Adaptation knowledge is used to
modify the retrieved solution to address the specific needs of
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Figure 1: The Solves function in footprint algorithm connects the footprint set to all four knowledge containers.

the target problem. A typical problem-solving cycle involves
four steps – Retrieve, Reuse, Revise and Retain [Aamodt and
Plaza, 1994]. In Retrieve step, the reasoner searches its repos-
itory for the cases most similar to the target problem. In
Reuse step, the retrieved cases are adapted to propose a so-
lution for the target problem. The proposed solution is op-
tionally revised by a domain expert and retained in case base
if deemed useful.

Competence and Footprint Set Competence of a CBR
system is the range of target problems it can solve. It de-
pends critically on the competence of its case base, which in
turn, is estimated from the competence of its individual cases.
Smyth and McKenna [1998] propose a model of case compe-
tence which assumes that the cases in the case base are a rep-
resentative sample of the target problems. Under this model,
the local competence of a case is computed from its coverage
and reachability sets, which are defined based on the solves
function. A case c is said to solve a target problem t if and
only if c can be retrieved and adapted to solve t. Coverage
set includes those target problems t that c can solve. Reacha-
bility set includes those cases that can solve c. Related set is
the union of the coverage and reachability sets. Some cases
may exhibit shared coverage due to overlap of their related
sets. While calculating the global competence of a reasoner,
the cases are grouped into competence groups to avoid the
problem of duplicate coverage.

Footprint set proposed by Smyth and McKenna [1999] is a
minimal set of cases that has the same competence (problem-
solving ability) as the entire case base. To compute the foot-
print set, the authors define a measure called relative cover-
age. For a case c, its relative coverage is computed by weigh-
ing the contribution of each of its covered cases by the degree
to which these cases are themselves covered. By definition,
each competence group makes a unique contribution to the
competence of the case base. Hence, footprint set of the case
base is the union of the footprint cases of all its competence
groups. The non-redundant cases within each competence
group constitute its footprint cases.

3 Approach
Footprint Size as a Unit of Knowledge In our work, we
hypothesize that knowledge contained in a case base is only
as good as the knowledge contained in its footprint cases. We
use footprint size to quantify the knowledge contained in case
base. One simplifying assumption is the equivalence of foot-
print cases in their contribution to case base competence.

Iglezakis and Roth-Berghofer [2000] discuss the centrality
of case base in maintenance activities and one of their hy-

potheses is that cases are natural crystallization points for the
knowledge in case-based reasoning systems. Further, accord-
ing to Smyth and McKenna [1998], the competence group is
a fundamental unit of competence in a case base. Their views
reinforce the use of footprint size to quantify the knowledge
contained in the case base.

Footprint Size Reduction to Quantify Knowledge Trade-
offs The function solves in footprint algorithm connects the
footprint set to the four knowledge containers (Figure 1).
Adding or removing knowledge from containers impacts the
footprint set through the solves function. This motivates our
second hypothesis that adding useful knowledge to the Vocab-
ulary, Similarity or Adaptation container leads to a reduction
in footprint size, i.e. knowledge is traded off between case
base and other containers. Under this hypothesis, we propose
footprint size reduction as a unit for measuring knowledge
tradeoffs between containers.

Let V,CB, S,R represent the Vocabulary, Case Base, Sim-
ilarity and Adaptation (Reuse) containers and |FP(V,CB,S,R)|
be the size of footprint set. The knowledge added by chang-
ing V to V ′, S to S′ and R to R′ can be quantified as below.

∆Knowledge ≈ |FP(V,CB,S,R)| − |FP(V ′,CB,S′,R′)| (1)

Pairwise Tradeoffs To keep the discussion simple while
retaining the essence of the idea proposed, we focus on the
following four types of knowledge tradeoffs in a case-based
reasoner.
• Case base and Vocabulary tradeoff
• Case base and Similarity tradeoff
• Case base and Adaptation tradeoff
• Similarity and Adaptation tradeoff
In practice, it may be necessary to update more than one

container simultaneously. For example, changing the vocab-
ulary may trigger a corresponding change in similarity mea-
sure. This paper focusses only on the above pairs of isolated
containers as it serves as a proof of concept for the proposed
measure.

4 Experiments and Results
In this section, we use footprint size reduction to quan-
tify tradeoffs between containers on synthetic and real world
datasets.

4.1 Synthetic Dataset
We generated a synthetic case base (Table 1) using the func-
tion D = 6A + 3B + C. (A,B,C) represents the prob-
lem component of a case while D is the solution component.
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A,B,C,D A,B,C,D A,B,C,D
1,1,1,10 1,1,2,11 1,1,3,12
1,2,1,13 1,2,2,14 1,2,3,15
1,3,1,16 1,3,2,17 1,3,3,18
2,1,1,16 2,1,2,17 2,1,3,18
2,2,1,19 2,2,2,20 2,2,3,21
2,3,1,22 2,3,2,23 2,3,3,24
3,1,1,22 3,1,2,23 3,1,3,24
3,2,1,25 3,2,2,26 3,2,3,27
3,3,1,28 3,3,2,29 3,3,3,30

Table 1: Synthetic case base (27 cases) for regression.

Vocabulary Footprint Size Tradeoff (CB, V ′)
V : A,B,C as attributes 18.0 -

V ′: X,C as attributes 9.2 8.8

Table 2: Tradeoffs between case base and vocabulary, calculated
using Equation 2.

A case-based reasoner to predict D given the target problem
(A,B,C) is said to solve it when the predicted solution is
within 10% of D. Effects of change in the acceptable predic-
tion error are studied in Section 5. In all the experiments on
synthetic case base, the results are averaged from 5 fold train-
test splits, and the relation between footprint size reduction
and knowledge transfers is tested for statistical significance.

Case base and Vocabulary Tradeoff
Tradeoff between case base and vocabulary container is mea-
sured by fixing the knowledge in similarity and adaptation
containers and revising V to V ′ as given in the equation be-
low.

Tradeoff(CB, V ′) = |FP(V,CB,S,R)|− |FP(V ′,CB,S,R)| (2)

In the synthetic case base, we fix S and R as uniform global
similarity and null adaptation respectively. Vocabulary re-
vision changes the problem representation from (A,B,C)
to (X,C). X is a virtual attribute calculated from A,B as
X = 6A + 3B. From Table 2, vocabulary revision from V
to V ′ is equivalent to a knowledge tradeoff of 8.8 footprint
cases between case base and vocabulary container. We found
that the reduction in footprint size with increase in vocabulary
knowledge is statistically significant (p < 0.001). A designer
can choose to have a case base with 18 footprint cases and
low vocabulary knowledge or a case base with 9 footprint
cases and high vocabulary knowledge since both configura-
tions have the same competence.

Case base and Similarity Tradeoff
Tradeoff between case base and similarity container is mea-
sured by fixing the knowledge in vocabulary and adaptation
containers and revising S to S′ as given in below equation.

Tradeoff(CB,S′) ..= |FP(V,CB,S,R)|− |FP(V,CB,S′,R)| (3)

In the synthetic dataset, similarity knowledge is repre-
sented using the global weight vector. For example, weight
vectors (3, 2, 1) and (6, 3, 1) are in line with the relative im-
portance of attributes in domain theory. Table 3 shows five
different similarity knowledge settings S through S4; the col-
umn named domain knowledge is a qualitative description

Similarity Domain
Knowledge

Footprint Size Tradeoff
(CB,S′)

S: 1,1,1 Low 18.0 -
S1: 2,1,1 Mid 15.2 2.8
S2: 3,1,1 Mid 15.0 3.0
S3: 3,2,1 High 9.4 8.6
S4: 6,3,1 High 9.4 8.6

Table 3: Tradeoffs between case base and similarity, calculated us-
ing Equation 3 where S′ varies from S1 to S4.

Adaptation Domain
Knowledge

Footprint Size Tradeoff
(CB,R′)

R Null 18.0 -
R1 Low 17.4 0.6
R2 Mid 14.6 3.4
R3 High 11.0 7.0

Table 4: Tradeoffs between case base and adaptation knowledge,
calculated using Equation 4 where R′ varies from R1 to R3.

of similarity knowledge based on how reflective the global
weight vector is, of the underlying domain theory.

When S is revised to S4, knowledge equivalent to 8.6 foot-
print cases is traded off between case base and similarity con-
tainer. The reduction in footprint size with increase in do-
main knowledge in the weight vectors is statistically signifi-
cant (p < 0.001). All 5 design choices corresponding to each
row in Table 3 have the same competence but varying levels
of knowledge in similarity container and case base.

Case base and Adaptation Tradeoff
Tradeoff between case base and adaptation container is mea-
sured by fixing the knowledge in vocabulary and similarity
containers and revising R to R′ as given in the equation be-
low.

Tradeoff(CB,R′) ..= |FP(V,CB,S,R)|−|FP(V,CB,S,R′)| (4)

Let Q be the query problem and N be the nearest case in
terms of absolute distance. Adaptation rules used are null
adaptation R; R1: add 3 × (NA −QA) to N ’s solution; R2:
add 3 × (NA − QA) + 2 × (NB − QB) + (NC − QC) to
N ’s solution; R3: add 6× (NA −QA) + 3× (NB −QB) +
(NC−QC) to N ’s solution. As in previous cases, reduction in
footprint size with richer adaptation knowledge is statistically
significant (p < 0.001).

Similarity and Adaptation Tradeoff
The tradeoff between similarity and adaptation containers is
measured by fixing the knowledge in vocabulary and case
base (Equation 5). In Table 5, same adaptation knowledge

Knowledge R: Null R1 R2 R3

S: 1,1,1 18.0 (-) 17.4 (0.6) 14.6 (3.4) 11.0 (7.0)
S1: 2,1,1 15.2 (2.8) 15.2 (2.8) 10.0 (8.0) 10.0 (8.0)
S2: 3,1,1 15.0 (3.0) 15.0 (3.0) 9.8 (8.2) 9.8 (8.2)
S3: 3,2,1 9.4 (8.6) 9.4 (8.6) 9 (9.0) 9 (9.0)
S4: 6,3,1 9.4 (8.6) 9.4 (8.6) 8.6 (9.4) 8.6 (9.4)

Table 5: Tradeoffs between similarity and adaptation containers,
measured using Equation 5 where S′ varies from S1 to S4 and R′

from R1 to R3. A value of 15.0 (3.0) stands for footprint size of 15
and Tradeoff(S′, R′) of 3 footprint cases.
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Figure 2: Visualization of knowledge tradeoffs in synthetic dataset. Minimal CB size is the effective case base required and is the same as the
footprint size. Each polyline represents a choice of knowledge distribution in containers and has the same competence as all other polylines

gives different tradeoffs with different similarity measures.
For example, R1 yields a tradeoff of 0.6 with S; this increases
to 8.6 for S3 and S4. This shows that the effectiveness of
adaptation knowledge depends on the similarity measure as
the retrieved case must be appropriate for adaptation.

Tradeoff(S′, R′) ..= |FP(V,CB,S,R)| − |FP(V,CB,S′,R′)| (5)

Parallel Coordinates for Visualization
Parallel Coordinates (|| coords) is a visualization technique
introduced by Alfred Inselberg [Inselberg, 2009], popularly
used for discovering visual patterns in multivariate datasets.
A dataset of n dimensions is plotted on n equally spaced and
parallel axes. As shown in Figure 2a, a point in n dimensional
space becomes a polyline in || coords. Figure 2 shows the ||
coords plots for pairwise tradeoffs. We experimented with al-
ternate visualizations like 3D scatter plots and bubble charts,
and found || coords to be most expressive in demonstrating
the trends as well as extents of tradeoffs. Figures 2b and 2c
show that as knowledge in one container decreases, knowl-
edge in the other needs to increase to maintain the same com-
petence. Figure 2d shows the interaction between similarity
and adaptation containers as described in previous section.

4.2 Real-World Datasets
Next, we discuss empirical results on three real world datasets
taken from UCI machine learning repository [Dheeru and
Karra Taniskidou, 2017] namely Iris, Auto-MPG and Boston
Housing and two textual datasets based on 20 Newsgroups
[Lang, 1999]. Our choice of datasets is guided by char-
acteristics such as size of case base, number of attributes,
choice of representation and our knowledge about their do-
mains. Primarily, our emphasis is on demonstrating knowl-
edge tradeoffs in representative datasets from diverse CBR
settings like regression, classification, conversational CBR
and textual CBR.

Iris Dataset
Iris is a widely used benchmark dataset for classification and
has 150 cases with 4 attributes each. Initial exploratory anal-
ysis of data revealed that the attributes petal length and petal
width are more important than others for Iris species classi-
fication. We incorporated this knowledge in two ways - into
similarity measure and into the vocabulary. We found that
this knowledge is best represented in vocabulary container as
it gives the maximum tradeoff with case base.

Vocabulary Similarity Footprint
Size

Tradeoff

V1: Flat Attribute S1:(3,2,0,0) 87 63
S2:(1,1,1,1) 64 86
S3:(0,0,3,2) 57 93

V2: Decision Tree
+ Flat Attribute

S1:(3,2,0,0) 43 107

S2:(1,1,1,1) 30 120
S3:(0,0,3,2) 27 123

Table 6: Iris dataset: Tradeoffs among Case base, Vocabulary and
Similarity containers, with null adaptation. Tradeoff is (case base
size − footprint size).

Domain Knowledge in Similarity Container As in the
case of the synthetic dataset, the global weight vector is mod-
ified to impart domain knowledge. The vector (0, 0, 3, 2) em-
phasizes the importance of petal length and petal width while
(3, 2, 0, 0) downplays them. S3 gives the maximum tradeoff
with case base (Table 6). One can also compare two similarity
measures in terms of their footprint size reduction. Knowl-
edge in S3 is more than in S1 by 30 footprint cases.

Domain Knowledge in Vocabulary Container From data
analysis using decision trees, we found that the species Iris
Setosa always has petal width lesser than 1 while Iris Ver-
sicolor always has petal length greater than 5.1. We added
two binary valued attributes one each for petallength < 1
and petalwidth > 5.1 and used a Conversational Case Base
Reasoning (CCBR) [Aha and Muñoz-Avila, 2001] style ap-
proach to return the corresponding label based on two succes-
sive questions. Only when the user answers negatively to both
these questions, does the retrieval step proceed to search the
case base. Search space is reduced because the first two ques-
tions have eliminated some portion of the case base. Hence,
a richer vocabulary further reduces the footprint size as em-
pirically confirmed by the results reported in Table 6.

Auto-MPG Dataset
The Auto-MPG dataset contains 392 cases with 8 attributes
and the task is to predict the miles per gallon (mpg) of a car.
The attributes displacement and weight are important factors
affecting the fuel consumption. S0 is a similarity measure
that ascribes equal weights to all attributes. S1 emphasizes
the weight attribute and S2 emphasizes both weight and dis-
placement attributes. Adaptation knowledge is R0 which is
null adaptation, or R1 which is adapting the mpg value of
the 1-Nearest Neighbour proportionate to the differences in
weight and displacement attributes. Acceptable Prediction
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Adaptation→ R0-Low R1-High
Similarity Footprint Size Tradeoff Footprint Size Tradeoff
S0-Low 304 88 302 90
S1-Mid 309 83 291 101
S2-High 300 92 298 94

Table 7: Auto-MPG dataset: Tradeoffs among Case base, Similarity
and Adaptation containers. Vocabulary is flat attribute representa-
tion. Tradeoff is (case base size − footprint size).

Adaptation→ R0-Low R1-High
Similarity Footprint Size Tradeoff Footprint Size Tradeoff
S0-Low 413 93 382 124
S1-Mid 407 99 394 112
S2-High 405 101 389 117

Table 8: Boston housing dataset: Tradeoffs among Case base, Sim-
ilarity and Adaptation containers. Vocabulary is flat attribute repre-
sentation. Tradeoff is (case base size − footprint size). Acceptable
Prediction Error is 5%.

Error is 5%. From Table 7, the combination of S1 and R1

gives the maximum tradeoff with case base. It is interest-
ing to note that the pair S2, R1 is outperformed by S1, R1;
this confirms that a chosen similarity knowledge shows pref-
erential attachment to a certain adaptation knowledge; best
performance is not necessarily obtained when both similarity
and adaptation knowledge are rich, since they interact with
each other non-linearly.

Boston Housing Dataset
The housing dataset contains 506 cases and the task is to pre-
dict the price of a house given 14 other attribute values. Ex-
ploratory data analysis revealed the attributes INDUS, RM,
DIS, PTRATIO, LSTAT to be important for predicting the
house price. INDUS is the proportion of non-retail business
acres per town; RM is the average rooms per house; DIS is
the weighted distances to employment centers; PTRATIO is
the pupil to teacher ratio in the neighborhood; LSTAT is the
percentage of lower status of the population. As before, the
global weight vector was used to incorporate domain knowl-
edge into the similarity container. S0 is a similarity mea-
sure that uniformly weighs the attributes, S1 emphasizes RM,
PTRATIO, LSTAT uniformly and S2 emphasizes INDUS, DIS
additionally over S1. Adaptation was either null adaptation
(R0) or included three rules (R1) based on the following do-
main knowledge: If the number of rooms increases, the house
price increases; If the distance to employment centers in-
crease, the house price decreases; If the proportion of lower
status population in the housing location is high, the house
price decreases. From Table 8, the combination of S0 and R1

gives the maximum tradeoff with case base. In addition to the
results reported above, we have also examined the impact of
knowledge transfer and footprint reduction on generalization
over test data. In the Iris dataset, test accuracies improved
conspicuously by 12.66% and 23.67% as similarity knowl-
edge was enriched from S1 through S3 under settings of V1

and V2 respectively (Table 6). Similar trends were observed
for Auto-MPG and Boston, though the accuracy improve-
ments due to footprint size reduction were less conspicuous
in the relatively less knowledge-rich domains like Boston.

Relpol Hardware
Vocabulary Footprint

Size
%CB Com-
pression

Footprint
Size

%CB Com-
pression

Count Vectors 1276 57.9 564 51.7
Tfidf Vectors 1259 58.4 563 51.8
LSA vectors 670 77.9 497 57.4

Table 9: Textual CBR: Tradeoffs between Vocabulary and Case base
on Relpol and Hardware datasets. Cosine similarity measure and
null adaptation were used.

Textual CBR
Relpol and Hardware are two text classification datasets
based on 20 Newsgroups [Lang, 1999] with 3031 and 1168
cases respectively. Relpol has two classes religion and poli-
tics and is relatively easy to classify. In contrast, the Hard-
ware domain is harder to classify since there is considerable
vocabulary overlap between documents of the two classes
IBM and Mac. On these two datasets, we experimented with
different representations: count-based, Term Frequency In-
verse Document Frequency (TFIDF)1 and Latent Semantic
Analysis (LSA) [Deerwester et al., 1990] vectors. In Table
9, we observe that footprint size decreases as the representa-
tion becomes richer. LSA gives the maximum reduction in
footprint size on both datasets. We also measured the extent
of compression of case base by footprint set. The case base
compression ratio in the Hardware dataset is lower than that
of the Relpol dataset; this is in line with their complexity es-
timates, 2.0358 and 1.0028, reported in [Chakraborti et al.,
2008].

5 Characterization of Domains
Though CBR is intended to operate over ill-defined domains
[Kolodner, 1992], the general CBR paradigm does not place
any restrictions on modeling of a wide spectrum of domains.
At one extreme are the well-defined domains where we em-
ploy knowledge-rich approaches. At the other extreme are
the ill-defined domains, where we employ knowledge-light
or data intensive approaches. We see a CBR system that re-
lies only on cases as the equivalent of a data-driven reasoner
as opposed to a knowledge-driven reasoner that uses rich do-
main knowledge in its containers. We expect that in well-
defined domains, the benefit of using domain knowledge is
very high whereas the benefit fades as we move towards ill-
defined domains. In an attempt to demonstrate this trend, we
represent the benefit of domain knowledge (referred hence-
forth as Benefit) by the maximum reduction in footprint size.

To simulate a spectrum of domains, we employ a noisy
channel model. The synthetic case base in Table 1 illustrates
a well-defined domain where perfect domain theory is avail-
able. We assume that the more ill-defined the domain is,
the less faithful is the domain model we have to explain our
observations. To simulate this scenario in a controlled set-
ting, we make the data points deviate from domain theory (D
= 6A+3B+C). The extent of this deviation is called ‘noise’,
which we vary to simulate domains of different knowledge
levels. This notion of ‘noise’ may be contrasted with the usual
notion of noise in a non-synthetic setting.

1https://en.wikipedia.org/wiki/Tf-idf
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Figure 3: Data and knowledge tradeoffs decrease as we move from well-defined to ill-defined domains. In each || coord plot, the
polylines correspond to different combinations of similarity and adaptation knowledge and their footprint sizes. Each color corresponds
to a distinct similarity configuration.

We measure the footprint size across the simulated do-
mains and the maximum reduction is marked by double-
headed arrows on || coords in Figure 3. As the scale of noise
is increased from 1% to 10%, the maximum footprint reduc-
tion decreases and a corresponding reduction in Benefit (see
Figure 3). In ill-defined domains (noise levels close to 10%),
while global knowledge pertaining to underlying domain the-
ory becomes less useful, any local knowledge (i.e. knowledge
from the cases and/or adaptation knowledge pertaining to the
local neighbourhood of cases) may still be useful. This is in-
dicative of the fact that we need more and more data to get
good predictions in ill-defined domains.

Impact of User Demands on Knowledge Tradeoffs The de-
sign of a case-based reasoner is influenced not only by the na-
ture of underlying domain but also by the user requirements
on solution quality. Footprint algorithm naturally accommo-
dates user demands on solution quality by way of its Solves
function. In regression settings, the allowable prediction error
represents the quality demands. Each row in Figure 4 shows
the trend that a given piece of knowledge (similarity or adap-
tation) is likely to result in a higher reduction in footprint size
if the user is less stringent (APE: 10%), than in a scenario
where she is stringent (APE: 2%).
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Figure 4: Impact of user demands on knowledge tradeoffs. Accept-
able Prediction Error (APE) in Solves function is the user demand
in regression. Benefit increases with increase in APE. The top row
shows this trend in a well defined setting (noise 2%) and the bottom
row shows the same trend in a relatively ill defined setting (noise
5%).

6 Discussion
The idea of footprint set has been used extensively in the con-
text of case base maintenance. In our work, we have brought
out its connection to all knowledge containers through the
Solves definition (Figure 1). Competence of a CBR sys-
tem arises jointly from the vocabulary, case base, similar-
ity and adaptation knowledge. Hence, maintenance of case-
based reasoners needs to take into account the interaction be-
tween knowledge containers. Current research in CBR main-
tenance is skewed towards case base maintenance [Igleza-
kis and Roth-Berghofer, 2000]. Though case base is a cen-
tral source of knowledge in a CBR system, maintenance of
other knowledge containers is also equally important from
the point of view of other performance objectives. [Porti-
nale et al., 1999] discusses the tradeoffs between performance
goals in multi-modal diagnostic systems that combine case-
based reasoning and model-based reasoning. [Leake and Wil-
son, 2000] highlights the importance of considering adapta-
tion cost in case base maintenance and propose quantification
metrics for the same. Mathew and Chakraborti [2017] pro-
pose a modification of Smyth’s footprint algorithm [Smyth
and McKenna, 1999] called footprintCA which accounts for
single-case as well as compositional adaptation. We intend
to use footprintCA for analysing knowledge tradeoffs in our
future work.

Footprint size reduction is a unified measure that allows
a maintenance engineer to compare design choices that are
roughly equivalent in terms of competence. The idea can
further be extended to compare design choices in terms of
response time. It is well known that while knowledge rich
systems like model-based or rule-based reasoners are rela-
tively less suited for ill-defined domains, they can have faster
response times compared to a case-based reasoner that oper-
ates over a large number of cases and a complex similarity
measure. Since incorporating richer domain knowledge con-
tainers like adaptation and vocabulary knowledge can lead to
a reduction in the effective case base size, the proposed mea-
sure can aid a maintenance engineer to explore options for
trading off between generalization and (time) efficiency. We
can also position model-based systems as an extremely spe-
cial case of CBR systems where domain knowledge is so rich
that we can entirely do away with cases. This idea of using
the proposed measure to guide design choices demands more
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elaboration. But, this paper restricts its scope to systematiz-
ing the analysis of cross-container knowledge shifts.

With respect to general Artificial Intelligence (AI) au-
dience, our work reinforces the potential of using domain
knowledge to effectively prune hypotheses spaces induced
by inductive learners [Aamodt and Plaza, 2017]. Levesque
[2014] argues that despite remarkable successes in data
driven tasks, it is an illusion to believe that a silver bullet can
solve all problems in AI. On similar lines, we envisage that
in the near future, we would increasingly witness the need for
top-down (knowledge based) approaches to complement bot-
tom up (data-driven) approaches in solving real world prob-
lems. In this context, it is interesting in principle to quantify
the impact of knowledge and this paper is a modest effort to-
wards that initiative in a restricted (CBR) setting.

7 Conclusion
The central contribution of this paper is in proposing an ap-
proach that analyses the knowledge tradeoffs between con-
tainers in CBR. It uses the pivotal idea of reduction in foot-
print set size that is effected by each knowledge container.
It also throws light on a way of empirically positioning do-
mains in a spectrum ranging from ill-defined domains to well-
defined ones. To the best of our knowledge, such a quanti-
tative characterization has not been attempted before in the
CBR community. We also studied the influence of user de-
mands on such tradeoffs. We expect that our interpretation of
footprint cases and knowledge transfers will streamline and
motivate new avenues of cross-container maintenance activ-
ities in CBR. We also envisage that this line of thinking can
be extended to closely examine the nature of data-knowledge
tradeoffs in domains outside CBR as well.
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