
Possibilistic ASP Base Revision by Certain Input

Laurent Garcia1, Claire Lefèvre1, Odile Papini2, Igor Stéphan1 and Éric Würbel2
1 LERIA, Université d’Angers, France

2 Aix Marseille Univ, Université de Toulon, CNRS, LIS, Marseille, France
{laurent.garcia,claire.lefevre,igor.stephan}@univ-angers.fr, {odile.papini,eric.wurbel}@univ-amu.fr

Abstract
Belief base revision has been studied within the an-
swer set programming framework. We go a step
further by introducing uncertainty and studying be-
lief base revision when beliefs are represented by
possibilistic logic programs under possibilistic an-
swer set semantics and revised by certain input.
The paper proposes two approaches of rule-based
revision operators and presents their semantic char-
acterization in terms of possibilistic distribution.
This semantic characterization allows for equiva-
lently considering the evolution of syntactic logic
programs and the evolution of their semantic con-
tent. It then studies the logical properties of the
proposed operators and gives complexity results.

1 Introduction
The paper deals with belief revision within the context of in-
complete and uncertain information. Our main motivation
comes from reasoning with data from the Web which are
commonly represented by means of ontologies and descrip-
tion logics (DL). Such data are often incomplete, imprecise
and, supplied by several sources, have different confidence
levels. A non-monotonic logic framework able to handle un-
certainty is then suitable to address knowledge change in this
context.

Belief revision consists in incorporating new information,
changing as little as possible an agent’s initial beliefs while
preserving consistency. After the seminal work of AGM
[Alchourrón and Makinson, 1985], belief revision has been
extensively studied within a classical setting according to
model-based [Katsuno and Mendelzon, 1991] and formula-
based (or base) [Hansson, 1999] standpoints.

Little research investigated belief revision when the under-
lying logic is non-monotonic. Most approaches were pro-
posed for Answer Set Programming (ASP) [Gelfond and Lif-
schitz, 1988; Schaub, 2008] which is an efficient unified for-
malism for both knowledge representation and reasoning in
Artificial Intelligence. The two main approaches are model-
based revision for logic programs [Delgrande et al., 2013;
Slota and Leite, 2014], stemming from SE-models [Turner,
2003], and rule-based revision from two standpoints: “re-
mainder sets” [Krümpelmann and Kern-Isberner, 2012] and

“removed sets” [Hué et al., 2013] approaches. Rule-based re-
vision relies on the removal of some rules in order to restore
consistency, while new strategies stemming from the addition
and/or removal of some rules have been proposed [Zhuang et
al., 2016; Garcia et al., 2017].

In order to deal with uncertainty in a non-monotonic for-
malism, ASP was extended by integrating a theory that copes
with uncertainty. Probabilities are the widely used one and
their applications to ASP has been proposed [Baral et al.,
2009; Wang and Lee, 2015; de Morais and Finger, 2013].
Nevertheless, when dealing with knowledge where uncer-
tainty is expressed by subjective levels, a qualitative setting
is more suitable and we choose to use possibilities where the
values represent a level in a scale [Dubois and Prade, 2001].

ASP was extended to possibilistic ASP [Nicolas et al.,
2006; Bauters et al., 2015] with a possibilistic answer set se-
mantics stemming from possibility theory [Dubois and Prade,
1998; 1988]. The initial work [Nicolas et al., 2005] is di-
rectly inspired from the classical setting and the answer sets
of a possibilistic ASP program match with the (classical) an-
swer sets of the corresponding program without weights. On
the other hand, in [Bauters et al., 2010], the strength of the
negative body of a rule is taken into account but it requires
an additional guess to determine the weights of the answers,
thus the resulting answer sets do not match with the classical
ones. In the present work, we use the framework proposed in
[Nicolas et al., 2006].

Within the context of reasoning with Web applications,
there is an increasing interest in bridging ontologies lan-
guages and logic programming [Eiter et al., 2008; Motik and
Rosati, 2010; Lopes et al., 2017]. In particular, ASP has been
extended with existential variables in order to represent DL
knowledge bases (KB) [Baget et al., 2018]. Moreover, in a
dynamic setting, ASP has been used to repair DL ontologies
[Baget et al., 2016]. Besides, uncertain pieces of information
can be represented in possibilistic DL-Lite [Benferhat and
Bouraoui, 2017]. A step further is to study the dynamics of
possibilistic ASP in order to provide a computational frame-
work for the dynamics of possibilistic DL KB. The contribu-
tion of this paper is a study of belief base revision within the
framework of possibilistic ASP when the input is certain. The
certainty of input corresponds to one of the revision principles
which specifies that new information has to be accepted.

The paper is organized as follows. After a refresher on

Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)

1824

possibilistic ASP, two approaches of possibilistic ASP base
revision are proposed. The first one, called “standard possi-
bilistic ASP base revision” stems from the strategy of keeping
the most certain possibilistic rules beyond the inconsistency
degree. However, if the goal is to change as little as possible
the original beliefs, it suffers from the “drowning problem”
(unnecessary removal of rules not involved in inconsistency).
In order to overcome this problem we introduce another ap-
proach, called “RSR possibilistic ASP base revision” which is
based on the strategy of removing a minimum number of the
least certain possibilistic rules, keeping the possibilistic rules
not involved in inconsistency. A semantic characterization of
these revision operators in terms of possibilistic distribution
is then provided. Logical properties of the proposed operators
are presented as well as a computational complexity study.

2 Background
2.1 Possibilistic Answer Set Programming
In this subsection, we recall the definitions about possibilistic
answer set programming that can be found in [Nicolas et al.,
2006].

Language of possibilistic ASP We consider given a finite
set of atoms X and a finite, totally ordered set of necessity
values N ⊆]0, 1]. Let us first recall, that, as in possibilistic
logic, these values are evaluated by a necessity measure and
are not probabilities. Thus, they are not an absolute evalu-
ation (like it is done in probability theory) but induce a cer-
tainty (or confidence) scale allowing to order beliefs. When
the level of the belief is 1, it is considered as certain. Let us
note that a piece of information with a necessity degree equal
to 0 is not taken into account because it means that this piece
is impossible.

A possibilistic atom is a pair p = (x, α) ∈ X ×N . The set
of atom sets is denoted by 2X and the set of possibilistic atom
sets, in which every atom occurs at most once, is denoted by
A. We denote by p∗ = x the classical projection of p and
by n(p) = α its necessity degree. Projection is extended to
possibilistic atom sets in the usual way. A possibilistic ASP
program is a finite set of rules r such that:

r = (c← a1, . . . , an, not b1, . . . , not bm, α)

where n ≥ 0,m ≥ 0, c, a1, . . . , an, b1, . . . , bm ∈
X and α ∈ N . We denote by r∗ = (c ←
a1, . . . , an, not b1, . . . , not bm) the classical projection
of the rule r and n(r) = α its necessity degree representing
the certainty level of the information described by the rule.
The set of possibilistic ASP programs, in which every (clas-
sical) rule occurs at most once, is denoted by P . The weight
of P ∈ P is defined by w(P) = max{α | (r, α) ∈ P}.

A rule of the form r = (c ← a1, . . . , an, α) is called
a possibilistic definite rule. When a program contains only
possibilistic definite rules, it is called a possibilistic definite
logic program. The set of possibilistic definite logic programs
is denoted by Pd.

We recall some operations over possibilistic ASP programs
useful in the following. Let P,Q ∈ P
P ∗ = {r | (r, α) ∈ P}.

P t Q = {(r, α) | (r, α) ∈ P, r 6∈ Q∗} ∪ {(r, β) | r 6∈
P ∗, (r, β) ∈ Q, } ∪ {(r,max{α, β}) | (r, α) ∈ P, (r, β) ∈
Q}.
P \p Q = {(r, α) | (r, α) ∈ P, (r 6∈ Q∗) or (∃β | (r, β) ∈
Q and β < α)}
For a classical (without weight) rule r, we use the following
notations: body+(r) = {a1, . . . , an} is the positive body,
body−(r) = {b1, . . . , bm} is the negative body, head(r) =
c is the head and r+ = head(r) ← body+(r) is the positive
projection of the rule. These functions, defined for rules, are
extended to rule sets as usual.

Possibilistic answer sets As in the classical case without
necessity value, the definition of the answer sets is given by
using the reduct of a program.
Definition 1. Let P ∈ P and A ∈ 2X . The possibilistic
reduct of P w.r.t. A is the possibilistic definite logic program
PA = {(r∗+, n(r)) | r ∈ P, body−(r∗) ∩A = ∅}.
Definition 2. Let r = (c ← a1, . . . , an, α) be a def-
inite possibilistic rule (body−(r∗) = ∅) and A ∈ A, r
is β-applicable in A if {(a1, α1), . . . , (an, αn)} ⊆ A and
β = min {α, α1, . . . , αn}.

For a given P ∈ Pd and A ∈ 2X , App(P,A) = {r ∈ P ∗ |
body+(r) ⊆ A}.
Definition 3. Let P ∈ Pd and A ∈ A. The immediate
possibilistic consequence operator ΠTP is a function from A
to A such that:
ΠTP (A) = {(x,N(x,A, P)) | x ∈ head(App(P,A∗))}
with
N(x,A, P) =

max
r∈P
{ν | r is ν-applicable in A and x = head(r∗)}

then the iterated operator ΠT kP is defined by
ΠT 0

P = ∅ and ΠTn+1
P = ΠTP (ΠTnP), ∀n ≥ 0.

Proposition 1 ([Nicolas et al., 2006]). Let P ∈ Pd, then
ΠTP has a least fix-point tn≥0ΠTnP that we called the set of
possibilistic consequences of P and we denote it by ΠCn(P).

By this way, the definition of a possibilistic answer set is
natural.
Definition 4. Let P ∈ P and S ∈ A. S is a possibilistic
answer set of P if S = ΠCn(P (S∗)).

The set of all possibilistic answer sets of P is denoted by
ΠAS(P). Note that there is a one to one correspondence be-
tween the possibilistic answer sets of a possibilistic program
P and the answer sets of its projection P ∗.

Possibility distribution From a semantic point of view, a
possibility distribution is defined over interpretations w.r.t. a
possibilistic logic program. The possibility degree of each in-
terpretation is induced by the necessity degrees associated to
the falsified rules. This possibility degree reflects the ability
of the interpretation to be an answer set of the program.

Let P ∈ P and A ∈ 2X , then Fal(P,A) = {r ∈ P |
body+(r∗) ⊆ A, body−(r∗) ∩ A = ∅, head(r∗) 6∈ A}
denotes the set of the rules of a possibilistic program P that
are falsified w.r.t. an atom set A.

Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)

1825

A set of classical rulesR is grounded if there exists an enu-
meration 〈r1 . . . rn〉 of the rules of R such that ∀i ∈ [1..n],
body+(ri) ⊆ head{rj | j < i}.
Definition 5. Let P ∈ Pd, the least possibility distribution
πP : 2X → [0, 1] is defined by: for each A ∈ 2X

• if A 6⊆ head(App(P,A)) then πP (A) = 0,

• if App(P,A) is not grounded then πP (A) = 0,

• if A is an answer set of P ∗ then πP (A) = 1,

• otherwise πP (A) = 1− w(Fal(P,A)).

The distribution defined on definite programs can be used
to define a distribution on ASP programs:
Definition 6. Let P ∈ P , the possibility distribution
π̃P : 2X → [0, 1] is defined by: for each A ∈ 2X

π̃P (A) = πPA(A).

The following proposition shows that the interpretations
with a value of 1 match with the answer sets of the possi-
bilistic program without weights.
Proposition 2 ([Nicolas et al., 2006]). Let P ∈ P and A ∈
2X . π̃P (A) = 1 if and only if A ∈ ΠAS(P)∗.

Consistency in possibilistic ASP We say that P ∈ P is
consistent if ΠAS(P) 6= ∅ or, equivalently, if ∃A ∈ 2X such
that π̃P (A) = 1. Otherwise P is said inconsistent.

We can also consider monotonic consistency. Let P ∈ P
and A ∈ 2X , A is a (classical) model of P if Fal(P,A) = ∅.
The set of models of P is denoted by Mod(P). P ∈ P
is m-consistent if Mod(P) 6= ∅. Otherwise P is said m-
inconsistent.

2.2 Notations
We review some notations useful in subsequent sections. A
preorder on a setA is a reflexive and transitive binary relation.
A total preorder, denoted by≤, is a preorder such that ∀x, y ∈
A either x ≤ y or y ≤ x holds. Equivalence is defined by
x ' y if x ≤ y and y ≤ x. The corresponding strict total
preorder, denoted by <, is the relation defined by x < y if
x ≤ y holds but x ' y does not hold. Let M be a subset
of A, the set of minimal elements of M with respect to ≤,
denoted by Min(M,≤), is defined as: Min(M,≤) = {x ∈
M | @y ∈M,y < x}.

Let X and Y be two sets, |X| (resp. |Y |) denotes the car-
dinality of X (resp. of Y) and X ≤Card Y if |X| ≤ |Y |.

Let A be a finite set, a selection function denoted by f is
a function from 2A \ ∅ to A which for any non empty set
X ∈ 2A returns an element f(X) such that f(X) ∈ X .

3 Possibilistic ASP Base Revision
The belief revision principles state that new information has
to be accepted, the revised agent’s beliefs have to be con-
sistent and the initial agent’s beliefs have to be changed as
little as possible. This section studies belief revision when
agent’s beliefs and new information are represented by pos-
sibilistic ASP programs. In the following, according to the
revision principles, we assume that the rules of the program
to be revised P are not certain, i.e. w(P) < 1. The input is

a possibilistic ASP program Q which is assumed to be cer-
tain, i.e. ∀r ∈ Q,n(r) = 1. Moreover, we suppose that Q is
m-consistent otherwise revising by Q is impossible.

We present two different rule-based revision strategies.
The first one, focuses on keeping the most certain possibilis-
tic rules of P beyond the consistency degree, while the sec-
ond one focuses on removing a minimum number of the least
certain rules of P , keeping the rules of P not involved in in-
consistency.

3.1 Standard Possibilistic ASP Base Revision
The revision presented here follows the approach of [Nicolas
et al., 2006] to restore consistency of a possibilistic normal
logic program by deleting less certain rules. In this view, if
a rule (r, α) must be removed in order to restore consistency,
then all the rules with a degree less or equal to α have to be
removed too. Indeed, questioning a belief is questioning all
beliefs with lower necessity.

We first recall some additional notions from [Nicolas et
al., 2006]. Let P ∈ P the α-cut of P , denoted by P>α,
is such that P>α = {(ri, αi) ∈ P | αi > α}. The in-
consistency degree of P , denoted by Inc(P), is such that
Inc(P) = min{α | α ∈ N ∪ {0}, P>α is consistent}. The
inconsistency degree of P defines the minimum level of cer-
tainty for which a cut of P is consistent. But, it is not neces-
sarily the greatest (in number of rules) consistent subprogram
of P .

The standard possibilistic ASP revision operator, denoted
by ~Π, is a function from P × P to P defined as follows.
Definition 7. Let P,Q ∈ P with w(P) < 1, ∀r ∈ Q, n(r) =
1 and Q is m-consistent.

P ~Π Q = (P tQ)>Inc(PtQ)

The following example illustrates the behavior of the ~Π

revision operator.
Example 1. Let P = {r1 : (b ← not c, 0.9), r2 :
(d ← , 0.8), r3 : (c ← not a, 0.8), r4 : (e ←, 0.7)}
and Q = {r0 : (a← not b, 1)}. The inconsistency of P tQ
comes from the rules {r0, r1, r3}. We have ΠAS(P tQ) = ∅
and Inc(PtQ) = 0.8, the revised possibilistic logic program
is P ~ΠQ = {r0, r1}. Note that the rules r2 and r4 which do
not contribute to the inconsistency of P tQ do not appear in
the revised logic program because they are less certain than
the “guilty” rule r3.

Note that if P tQ is consistent then Inc(P tQ) = 0 there-
fore P ~ΠQ = P tQ. If Inc(P tQ) = 1 then P ~ΠQ = ∅
and ΠAS(P ~ΠQ) = {∅}. That means thatQ is inconsistent
and that nothing can be done (with the present strategy) to re-
store the consistency as illustrated in the following example.
Example 2. Let P = {(b←, 0.8)} andQ = {(← nota, 1)},
we have Inc(P tQ) = 1 thus P ~Π Q = ∅.

When dealing with possibility theory where necessity de-
grees represent levels of certainty, it is natural to remove all
the rules that are less certain that the rules responsible for in-
consistency. However, if the weights represent priorities and
if the goal is to remove the smallest number of rules w.r.t.
priorities, it is necessary to define a less drastic revision strat-
egy.

Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)

1826

3.2 RSR Possibilistic ASP Base Revision
We extend Removed Sets Revision (RSR) [Hué et al., 2013]
to possibilistic ASP. This strategy focuses on the minimal
number of possibilistic rules of least degree of necessity to
remove in order to restore consistency. Here, only the rules
involved in inconsistency are removed. We first introduce the
notion of possibilistic potential removed set.
Definition 8 (possibilistic potential removed set). Let P,Q ∈
P , a possibilistic potential removed set X is such that: (i)
X ⊆ P . (ii) (P \ X) t Q is consistent. (iii) For each
X ′ ⊂ X , (P \X ′) tQ is inconsistent.
PR(P,Q) denotes the set of possibilistic potential re-

moved sets for P andQ. According to the definition, if P tQ
is consistent then PR(P,Q) = {∅}. Since only rules from P
can be removed in order to restore consistency of P t Q, it
may be possible that the set of potential removed sets for an
inconsistent program Q is empty which is the case consider-
ing P and Q from Example 2.

In order to keep the rules with the highest degrees of ne-
cessity we define a total pre-order on possibilistic potential
removed sets, denoted by ≤w, based on the weight of a set
of possibilistic rules: for all X , Y possibilistic potential re-
moved sets, X ≤w Y if and only if w(X) ≤ w(Y). More-
over, we use the cardinality minimality criterion on possibilis-
tic potential removed sets of minimal weight.
Definition 9 (possibilistic removed set). Let P,Q ∈ P , a
possibilistic removed set X is such that: (i) X ∈ PR(P,Q).
(ii) @Y ∈ PR(P,Q) such that Y <w X . (iii) @Y ∈
PR(P,Q) such that Y 'w X and Y <Card X .
R(P,Q) denotes the set of possibilistic removed sets

for P and Q. According to the definition R(P,Q) =
Min(Min(PR(P,Q),≤w),≤Card) and if P tQ is consis-
tent thenR(P,Q) = {∅}.
Example 3. (Example 1 continued) PR(P,Q) = {X1 =
{r1 : (b ← not c, 0.9)}, X2 = {r3 : (c ← not a, 0.8)}},
w(X2) < w(X1) thereforeR(P,Q) = {X2}.

Let f be a selection function which chooses one removed
set among the possible ones, the Possibilistic Removed Set
Revision operator denoted by ~RSR(f) is a function fromP×
P to P defined as follows.
Definition 10. Let P,Q ∈ P with w(P) < 1, ∀r ∈ Q,
n(r) = 1 and Q is m-consistent.

P~RSR(f)Q = (P \ f(R(P,Q))) t Q.

Note that if R(P,Q) = ∅ then ~RSR(f) is not defined. If
P tQ is consistent thenR(P,Q) = {∅} thus P~RSR(f)Q =
P tQ.
Example 4. (Example 1 continued) R(P,Q) = {{r3 :
(c ← not a, 0.8)}} and P~RSR(f)Q = {r0 : (a ←
not b, 1), r1 : (b ← not c, 0.9), r2 : (d ←, 0.8), r4 :
(e←, 0.7)}. Note that there is no unnecessary removal.

The following example illustrates several results of revi-
sion according to the chosen selection function.
Example 5. Let P and Q such that P = {r1 : (a ←
not b, 0.9), r2 : (b ← not c, 0.9)} and Q = {r0 :
(c ← not a, 1)}. We have ΠAS(P) = {{b}}, ΠAS(Q) =

{{c}}, ΠAS(P t Q) = ∅ and P ~Π Q = Q. However
R(P,Q) = {{r1}, {r2}}. Let f1(R(P,Q)) = {r1} and
f2(R(P,Q)) = {r2}, we have P~RSR(f1)Q = {r0, r2} and
P~RSR(f2)Q = {r0, r1}.

4 Semantic Characterization
4.1 Standard Possibilistic ASP Base Revision
We first recall the semantic approach of possibilistic ASP
[Nicolas et al., 2006] to deal with inconsistent programs. An
inconsistency degree is defined in a semantic way, by using a
possibilistic distribution.
Definition 11. Let P ∈ P , the inconsistency degree of P is

SemInc(P) = 1− max
A∈2X

{π̃P (A)}.

This inconsistency degree is used to define a cut that com-
putes the greatest (w.r.t. the certainty level of rules) consistent
subprogram of P .
Definition 12. Let cut be the function defined from P to
P by:
• cut(P) = P if SemInc(P) = 0

• cut(P) = cut(P>SemInc(P)) otherwise.
The following proposition gives the semantic counterpart

of the ASP base revision operator ~Π.
Proposition 3. Let P,Q ∈ P such that w(P) < 1, ∀r ∈ Q,
n(r) = 1 and Q is m-consistent.

P ~Π Q = cut(P tQ).

This proposition directly follows from Definition 7 (P ~Π

Q = (P t Q)>Inc(PtQ)) and from the result of [Nicolas et
al., 2006]: let P ∈ P , cut(P) = P>Inc(P).

The following example illustrates the computation of the
revised program by the cut function.
Example 6. (Example 1 continued) We recall that Q = {r0 :
(a ← not b, 1)} et P = {r1 : (b ← not c, 0.9), r2 :
(d← , 0.8), r3 : (c← not a, 0.8), r4 : (e←, 0.7)}.

In the least specific possibility distribution, the greatest
possibility degree is 0.2 and corresponds to four interpreta-
tions:
• A1 = {b}. Fal(P tQ,A1) = {r2, r3, r4}, w(Fal(P t
Q,A1)) = 0.8 and π̃({b}) = 1− 0.8 = 0.2.
• A2 = {b, d}. Fal(P t Q,A2) = {r3, r4}, w(Fal(P t
Q,A2)) = 0.8 and π̃({b, d}) = 0.2.
• A3 = {b, e}. Fal(P t Q,A3) = {r2, r3}, w(Fal(P t
Q,A3)) = 0.8 and π̃({b, e}) = 0.2.
• A4 = {b, d, e}. Fal(P t Q,A4) = {r3}, w(Fal(P t
Q,A4)) = 0.8 and π̃({b, d, e}) = 0.2.

The inconsistency degree is
SemInc(P t Q) = 1 − max

A∈2X
{π̃P (A)} = 1 − 0.2 = 0.8.

The first cut removes r2, r3 and r4 and the resulting program
(P t Q)>0.8 = {r0, r1} is consistent. Note that it matches
with the revised syntactic program P ~Π Q.

The cut can be slightly harder to compute. Indeed, in the
next example, two successive cuts are necessary to restore
consistency.

Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)

1827

Example 7. Let Q = {r1 : (a ← not d, 1), r2 : (a ←
not b, 1)} et P = {r3 : (b ← not c, 0.9), r4 :
(c ← not a, 0.8), r5 : (d ← not e, 0.7), r6 : (e ←
not a, 0.6), r7 : (b ←, 0.5)}. The inconsistency of P t Q
comes from the rules {r1, r5, r6}. The inconsistency degree
is 0.6. It corresponds to the interpretation A = {b, c, d} and
Fal(P t Q,A) = {r6}. But the first cut (P t Q)>0.6 is in-
consistent: the rule r6 is removed but also the rule r7 because
its weight is lower (0.5). The removal of r7 creates a new
inconsistency with the cycle {r2, r3, r4} which was initially
“blocked” by r7. The inconsistency degree of (P t Q)>0.6

is 0.7. It corresponds to the interpretation A = {a, b} with
Fal((P t Q)>0.6, A) = {r5}. A second cut removes r5 and
the resulting program (P tQ)>0.7 = {r1, r2, r3, r4} is con-
sistent.

4.2 Possibilistic Removed Sets
We now present the semantic counterpart of the removed sets.
It is based on the notions of preferred models and preferred
falsified rules. In a possibility distribution for P tQ, the pre-
ferred models are those with the greatest possibility degree.
If all interpretations have a degree equal to zero then the set
of preferred models is empty.

Definition 13 (preferred models). Let P,Q ∈ P ,
the set of preferred models PrefMod(P,Q) =
{m ∈ Mod(Q) | π̃PtQ(m) 6= 0 and ∀m′ ∈
Mod(Q), π̃PtQ(m′) ≤ π̃PtQ(m)}.
Example 8. (Example 1 continued) In this example, A1 to
A4 are the models of Q with the greatest possibility degree,
thus PrefMod(P,Q) = {A1, A2, A3, A4}.

Note that interpretations that are not models of Q have a
degree of possibility equal to 0.

These models with the greatest possibility degree match
with those for which the weight of the falsified rules is min-
imal. These sets of falsified rules are the “semantically pre-
ferred” ones (denoted by PrefFal(P,Q)) and the smallest
(w.r.t inclusion and cardinality) of them correspond to the re-
moved sets. The following proposition establishes this corre-
spondence between syntactic and semantic definitions.

Proposition 4. Let P,Q ∈ P such that w(P) < 1, ∀r ∈ Q,
n(r) = 1 and Q is m-consistent. Let PrefFal(P,Q) =
{Fal(P t Q,m) | m ∈ PrefMod(P,Q)} be the sets of
rules falsified by the preferred models,

Min(Min(PrefFal(P,Q),⊆),≤Card) = R(P,Q).

Sketch of proof. Let AllFal(P,Q) = {X | X = Fal(P t
Q,m),m ∈ Mod(Q), π̃PtQ(m) 6= 0}. A first part of the
proof establishes that ΠAS((P \Fal(P,m))tQ)∗ = {m ∈
Mod(Q) | m ⊆ head(App((P tQ)m,m)) and App((P t
Q)m,m) is grounded}. This result allows one to link Def-
inition 8 (of a potential removed set X based on the con-
dition that (P \ X) t Q is consistent), and the semantic
characterization based on the falsified rules in the models
such that π̃PtQ(m) 6= 0 (see conditions in Definitions 5
and 6 of the possibility distribution). It is then established
that PR(P,Q) = Min(AllFal(P,Q),⊆) and finally that
Min(PR(P,Q),≤w) = Min(PrefFal(P,Q),⊆).

The following examples illustrate the semantic characteri-
zation of the removed sets.
Example 9. (Example 1 continued) PrefFal(P,Q) =
{{r2, r3, r4}, {r3, r4}, {r2, r3}, {r3}} and
Min(Min(PrefFal(P,Q),⊆),≤Card) = {{r3}} =
R(P,Q).
Example 10. (Example 7 continued) Here,
PrefMod(P,Q) = {{b, c, d}}, PrefFal(P,Q) = {{r6}}
and Min(Min(PrefFal(P,Q),⊆),≤Card) = {{r6}} =
R(P,Q). Note that the result is direct contrary to the
standard possibilistic revision where two cuts are necessary.

The semantic characterization of ~RSR(f) immediately
follows from the semantic characterization of the removed
sets.

Furthermore if all rules of P have the same weight α ∈
]0, 1[then all the models of Q with a non-zero degree
(π̃PtQ(m) 6= 0) have the same degree 1 − α and the fal-
sified rules corresponding to these models (the AllFal(P,Q)
set from the proof sketch) match with the canonical removed
sets from [Garcia et al., 2017]. Thus the present work is a
generalization of the approach of [Garcia et al., 2017].

5 Logical Properties
In this section we go a step further in the characterization of
Possibilistic ASP base revision by presenting logical prop-
erties of the proposed operators through a set of postulates.
Hansson’s postulates [Hansson, 1999] have been formulated
to characterize belief base revision in a classical (monotonic)
logic setting. We now adapt them within the non-monotonic
possibilistic ASP framework.

Let P , Q, X , R ∈ P , and ? be a revision operator.
Success Q ⊆ P ? Q.
Inclusion P ? Q ⊆ P tQ.
Consistency P ? Q is consistent.
Vacuity If P tQ is consistent then P ? Q =

P tQ.
Relevance If R 6= ∅, R ⊆ P \p (P ? Q) then

(P ? Q) tR is inconsistent.
Uniformity If for all subsets X of P , X tQ

is consistent if and only if X tR
is consistent then P \p (P ? Q) =
P \p (P ? R).

The meaning of the postulates is the following: Success
gives priority to new information. Inclusion states that the
union of the initial logic programs is the upper bound of any
revision operation. Consistency expresses that the result of
revision is consistent. Vacuity establishes that if the input
is consistent with the initial logic program then nothing
is removed from it. Relevance expresses the intuition that
nothing is removed from the original logic program unless
its removal contributes in some way to make the result
consistent. Uniformity determines that if two consistent logic
programs are consistent with the same subsets of the initial
logic program P then the respective erased set of rules of P
should be identical.
Proposition 5. ~Π satisfies Inclusion, Consistency and
Vacuity but it does not satisfy Success, Relevance nor Uni-
formity.

Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)

1828

Proof. By definition ~Π satisfies Inclusion, Consistency and
Vacuity . Success: a counterexample is given in Example 2.
Relevance: a counterexample is given in Example 1. We have
P ~Π Q = {r0, r1}. Let R = {r4}, R ⊆ P \p (P ~Π Q) but
(P ~Π Q)tR = {r0, r1, r4} is consistent. This is due to the
removal of rules that are not involved in inconsistency but for
which the certainty degree is low.
Uniformity: we give a counterexample: P = {(a ←
not b, 0.9), (c ← not a, 0.7), (e, 0.5), (f, 0.5)}, Q =
{(e, 1), (b← not c, 1)}, R = {(f, 1), (b← not c, 1)}. We
have P ~Π Q = {(e, 1), (b← not c, 1), (a← not b, 0.9)}
and P ~Π R = {(f, 1), (b ← not c, 1), (a ← not b, 0.9)}
thus P \p (P ~Π Q) = {(c ← not a, 0.7), (f, 0.5)} and
P \p (P ~Π R) = {(c ← not a, 0.7), (e, 0.5)} therefore
P \p (P ~Π Q) 6= P \p (P ~Π R).

Proposition 6. If ~RSR(f) is defined, for any selection func-
tion f , ~RSR(f) satisfies Success, Inclusion, Consistency,
Vacuity , Relevance, and Uniformity.

Sketch of proof. By definition if ~RSR(f) is defined,
~RSR(f) satisfies Success, Inclusion, Consistency and
Vacuity.
Relevance: For any selection function f , we have
P \p (P~RSR(f)Q) = P \p ((P \ f(R(P,Q))) t Q) =
f(R(P,Q)) by definition of the operators t and \p, by the
hypothesis w(P) < 1 and ∀r ∈ Q, n(r) = 1 and since
f(R(P,Q)) is a removed set. Thus, for any selection func-
tion f , if R ⊆ P \p (P~RSR(f)Q) then R ⊆ f(R(P,Q))
and, by Definition 9, (P~RSR(f)Q) tR is inconsistent.
Uniformity : We can first easily prove that if for all subsets X
of P , X t Q is consistent if and only if X t R is consistent
then PR(P,Q) = PR(P,R). For any selection func-
tion f , we have P \p (P~RSR(f)Q) = f(R(P,Q))
and P \p (P~RSR(f)R) = f(R(P,R)). Since
PR(P,Q) = PR(P,R) the result holds.

6 Complexity
We study the following complexity problem:
Name : ΠASPMODELCHECKING(RS)
Input : P,Q ∈ P , X ∈ A.
Question : ∃R ∈ R(P,Q) such thatX ∈ ΠAS((P\R)tQ) ?

Proposition 7. ΠASPMODELCHECKING(RS) is in DP.

Proof. We recall that a language L is in the class DP if and
only if there are two languages L1 ∈ NP and L2 ∈ coNP
such that L = L1 ∩ L2 [Papadimitriou, 1994]1.

Finding such a set R can be broken down as follows: 1. Is
there a set R ⊆ P such that X ∈ ΠAS((P \ R) t Q):
(a) Guess a set of possibilistic normal rules R; (b) Check that
R ⊆ P ; (c) Check that X ∈ ΠAS((P \ R) t Q). 2. Com-
pute kR = |R|. 3. Check that R ∈ R(P,Q): (a) Guess
a set of possibilistic normal rules R0 and a set of possi-
bilistic atoms X0; (b) Check that R0 ⊆ P ; (c) Check that
R0 <w R or (R0 =w R and |R0| < kR); (d) Check that
X0 ∈ ΠAS((P \R0) tQ).

1The DP class is sometimes also called BH2.

The algorithmic difficulty concentrates in points 1 and 3.
The algorithm described in point 1 can be solved in polyno-
mial time on a non-deterministic Turing machine, and R is a
certificate, because it succinctly proves that X ∈ ΠAS((P \
R) t Q). Thus, this subproblem is in NP. In the algorithm
described in point 3, (R0, X0) is a succinct disqualification,
that is, it proves that X /∈ R(P,Q). This algorithm can run
in polynomial time on a non deterministic Turing machine.
Thus, it is in coNP.

Proposition 8. ΠASPMODELCHECKING(RS) is DP-
complete.

Sketch of proof. The proof is based on a transformation
of the problem EXACTINDEPENDENTSET into two pos-
sibilistic normal logic programs P and Q, with a one
to one correspondence between the possibilistic answer
sets of this program and the maximal independent sets
of size k of a graph G = (V,E). We recall
the definition of the problem EXACTINDEPENDENTSET:
Name : EXACTINDEPENDENTSET
Input : a graph G = (V,E), a positive integer k ≤ |V |.
Question : Does G contain an independent set of size k, i.e.
a subset V ′ ⊆ V such that |V ′| = k and such that no two
vertices in V ′ are joined by an edge in E, such that there is
no other independent set with a size k′ > k.

The program Q contains: (a) rules describing the graph
vertices and edges, and (b) rules defining what an indepen-
dent set is. The program P asserts that all the vertices of the
graph form an independent set. In this context, removed sets
represent sets of vertices which have to be dropped, so the
remaining vertices form an independent set.

7 Conclusion
The paper addresses possibilistic ASP base revision with cer-
tain input. It proposes two revision operators. The first one,
~Π, is fully defined in the spirit of possibility theory while
the second one ~RSR(f) stemming from “removed sets revi-
sion” keeps the rules not involved in inconsistency. For both
revision operators a semantic characterization is provided in
terms of a possibilistic distribution and logical properties
are provided in terms of satisfaction of Hansson’s postulates
rephrased within the possibilistic ASP framework. More-
over the computational complexity of the ~RSR(f) operator
is given.

There are several issues to address as future work. The first
one is to study the complexity of the ~Π operator.

In this paper, all rules of the revising logic program are
certain, thus a natural future work is to extend the proposed
operators to the case where the input is uncertain, leading to
the definition of semi-revision operators. A strategy has to be
defined when the necessity degree of some rules in the revis-
ing program is lower than the one of the same rules appearing
in the initial program.

Another issue is to investigate other revision strategies
stemming from possibilistic revision or ASP base revision.

Finally, possibilistic ASP base revision could be investi-
gated within the framework of other possibilistic ASP exten-
sions.

Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)

1829

References
[Alchourrón and Makinson, 1985] C. E. Alchourrón and

D. Makinson. On the logic of theory change : Safe con-
traction. Studia Logica, 44(4):14–37, 1985.

[Baget et al., 2016] J.-F. Baget, Z. Bouraoui, F. Nouioua,
O. Papini, S. Rocher, and E. Würbel. ∃-ASP for computing
repairs with existential ontologies. In Proc. of SUM’16,
pages 230–245, 2016.

[Baget et al., 2018] J.-F. Baget, L. Garcia, F. Garreau,
C. Lefèvre, S. Rocher, and I. Stéphan. Bringing existen-
tial variables in answer set programming and bringing non-
monotony in existential rules: two sides of the same coin.
Annals of Mathematics and Artificial Intelligence, 82(1–
3):3–42, 2018.

[Baral et al., 2009] C. Baral, M. Gelfond, and J. N. Rush-
ton. Probabilistic reasoning with answer sets. Theory and
Practice of Logic Programming, 9(1):57–144, 2009.

[Bauters et al., 2010] K. Bauters, S. Schockaert, M. De
Cock, and D. Vermeir. Possibilistic answer set program-
ming revisited. In Proc. of UAI’10, pages 48–55, 2010.

[Bauters et al., 2015] K. Bauters, S. Schockaert, M. De
Cock, and D. Vermeir. Characterizing and extending an-
swer set semantics using possibility theory. Theory and
Practice of Logic Programming, 15(1):79–116, 2015.

[Benferhat and Bouraoui, 2017] S. Benferhat and
Z. Bouraoui. Min-based possibilistic DL-Lite. Jour-
nal of Logic and Computation, 27(1):261–297, 2017.

[de Morais and Finger, 2013] E. Menezes de Morais and
M. Finger. Probabilistic answer set programming. In
Proc. of Brazilian Conference on Intelligent Systems,
BRACIS’13, pages 150–156, 2013.

[Delgrande et al., 2013] J. P. Delgrande, P. Peppas, and
S. Woltran. AGM-style belief revision of logic programs
under answer set semantics. In Proc. of LPNMR’13, pages
264–276, 2013.

[Dubois and Prade, 1988] D. Dubois and H. Prade. Possibil-
ity theory. Plenum Press, New-York, 1988.

[Dubois and Prade, 1998] D. Dubois and H. Prade. Possi-
bility theory: Qualitative and quantitative aspects. Hand-
book of Defeasible Reasoning and Uncertainty Manage-
ment Systems, 1:169–226, 1998.

[Dubois and Prade, 2001] D. Dubois and H. Prade. Possibil-
ity theory, probability theory and multiple-valued logics:
A clarification. Annals of Mathematics and Artificial In-
telligence, 32(1-4):35–66, 2001.

[Eiter et al., 2008] T. Eiter, G. Ianni, T. Lukasiewicz,
R. Schindlauer, and H. Tompits. Combining answer set
programming with description logics for the semantic web.
Artificial Intelligence, 172(12-13):1495–1539, 2008.

[Garcia et al., 2017] L. Garcia, C. Lefèvre, O. Papini,
I. Stéphan, and E. Würbel. A semantic characterization for
ASP base revision. In Proc. of SUM’17, pages 334–347,
2017.

[Gelfond and Lifschitz, 1988] M. Gelfond and V. Lifschitz.
The stable model semantics for logic programming. In
Proc. of ICLP’88, pages 1070–1080, 1988.

[Hansson, 1999] S. O. Hansson. A textbook of belief dynam-
ics. Theory change and database updating. Kluwer, 1999.

[Hué et al., 2013] J. Hué, O. Papini, and E. Würbel. Extend-
ing belief base change to logic programs with ASP. In
Trends in Belief Revision and Argumentation Dynamics,
Studies in Logic. 2013.

[Katsuno and Mendelzon, 1991] H. Katsuno and A. O.
Mendelzon. Propositional knowledge base revision and
minimal change. Artificial Intelligence, 52(3):263–294,
1991.

[Krümpelmann and Kern-Isberner, 2012] P. Krümpelmann
and G. Kern-Isberner. Belief base change operations for
answer set programming. In Proc. of JELIA’12, pages
294–306, 2012.

[Lopes et al., 2017] C. Lopes, M. Knorr, and J. Leite. Nohr:
Integrating XSB prolog with the OWL 2 profiles and be-
yond. In Proc. of LPNMR’17, pages 236–249, 2017.

[Motik and Rosati, 2010] B. Motik and R. Rosati. Recon-
ciling description logics and rules. Journal of the ACM,
57(5):30:1–30:62, 2010.

[Nicolas et al., 2005] P. Nicolas, L. Garcia, and I. Stéphan.
Possibilistic stable models. In Proc. of IJCAI’05, pages
248–253, 2005.

[Nicolas et al., 2006] P. Nicolas, L. Garcia, I. Stéphan, and
C. Lefèvre. Possibilistic uncertainty handling for answer
set programming. Annals of Mathematics and Artificial
Intelligence, 47(1–2):139–181, 2006.

[Papadimitriou, 1994] C. H. Papadimitriou. Computational
Complexity, chapter 17, page 412. Addison-Wesley, 1994.

[Schaub, 2008] T. Schaub. Here’s the beef: Answer set pro-
gramming ! In Proc. of ICLP’08, pages 93–98, 2008.

[Slota and Leite, 2014] M. Slota and J. Leite. The rise and
fall of semantic rule updates based on SE-models. The-
ory and Practice of Logic Programming, 14(6):869–907,
2014.

[Turner, 2003] H. Turner. Strong equivalence made easy:
nested expressions and weight constraints. Theory and
Practice of Logic Programming, 3:609–622, 2003.

[Wang and Lee, 2015] Y. Wang and J. Lee. Handling uncer-
tainty in answer set programming. In Proc. of AAAI’15,
pages 4218–4219, 2015.

[Zhuang et al., 2016] Z. Zhuang, J. P. Delgrande, A. C.
Nayak, and A. Sattar. Reconsidering agm-style belief revi-
sion in the context of logic programs. In Proc. of ECAI’16,
pages 671–679, 2016.

Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)

1830

