Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)

Computing Approximate Query Answers over Inconsistent Knowledge Bases

Sergio Greco, Cristian Molinaro, Irina Trubitsyna
University of Calabria, Italy
{ greco,cmolinaro,trubitsyna } @dimes.unical.it

Abstract

Consistent query answering is a principled ap-
proach for querying inconsistent knowledge bases.
It relies on the notion of a repair, that is, a maxi-
mal consistent subset of the facts in the knowledge
base. One drawback of this approach is that entire
facts are deleted to resolve inconsistency, even if
they may still contain useful “reliable” information.
To overcome this limitation, we propose a new no-
tion of repair allowing values within facts to be
updated for restoring consistency. This more fine-
grained repair primitive allows us to preserve more
information in the knowledge base. We also in-
troduce the notion of a universal repair, which is
a compact representation of all repairs. Then, we
show that consistent query answering in our frame-
work is intractable (coNP-complete). In light of this
result, we develop a polynomial time approxima-
tion algorithm for computing a sound (but possibly
incomplete) set of consistent query answers.

1 Introduction

Reasoning in the presence of inconsistent information is a
problem that has attracted much interest in the last decades.
Many inconsistency-tolerant semantics for query answering
have been proposed, and most of them rely on the notions
of consistent query answer and repair. A consistent answer
to a query is a query answer that is entailed by every repair,
where a repair is a “maximal” consistent subset of the facts of
the knowledge base. Different maximality criteria have been
investigated, but all the resulting notions of repair share the
same drawback: a fact is either kept or deleted altogether, and
deleting entire facts can cause loss of “reliable” information.

Example 1. Consider the knowledge base (D, Y.) where D
contains the following facts:

works
john cs nyc
john | math | rome
mary | math | sydney

and ¥ is an ontology consisting of the following equality-
generating dependency (EGD) o

works(Eq, D, Cq) Aworks(Ep, D, Cy) - Cy = Cs.

1838

As an example, the fact works(john,cs,nyc) states that
john is an employee working in the cs department located
in nyc. The dependency o says that every department must be
located in a single city. Clearly, the last two facts violate o,
so every repair would discard either of them.

If we pose a query asking for the employees’ name, the
only consistent answer is john. However, intuitively, we
might consider reliable the information on mary being an em-
ployee, as the only uncertainty concerns the math department
and its city—roughly speaking, the information in the first
column of the works table can be considered “clean”. Drop-
ping entire facts causes loss of information.

To overcome the drawback illustrated above, we propose
a notion of repair based on updating values within facts.
Update-based repairing allows for rectifying errors in facts
without deleting them altogether, thereby preserving consis-
tent values.

Example 2. Consider again the knowledge base of Exam-
ple 1. Using value updates as the primitive to restore consis-
tency, and assuming that the only uncertain values are math’s
cities, we get the following two repairs:

john cs nyc john cs nyc
john | math | rome john | math | sydney
mary | math | rome mary | math | sydney

If we ask again for the employees’ name, both mary and
john are consistent answers.

We consider knowledge bases where ontologies are ex-
pressed through (a particular class of) EGDs. Equality-
generating dependencies are one of the two major types of
data dependencies—the other major type consists of tuple-
generating dependencies (TGDs)—and can model several
kinds of constraints commonly arising in practice, such as
functional dependencies and thus also key dependencies.

We show that consistent query answering in this setting is
coNP-complete. Then, we show how to compute a “univer-
sal” repair, which compactly represents all repairs and can be
computed in polynomial time. A universal repair is a valuable
tool to compute approximate query answers. We propose a
polynomial time approximation to compute a sound (but pos-
sibly incomplete) set of consistent query answers. The basic
idea is illustrated in the following example.



Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)

Example 3. A universal repair for the two repairs of Exam-
ple 2 is reported below:

john cs | nyc
john | math | 13
mary | math | 1
11 =romeV 1; = sydney

where 1, is a labeled null, and the “global” condition at the
bottom restricts the admissible values for 11, which are rome
and sydney. We exploit such a representation for query ans-
wering, by combining the condition of the universal repair
with provenance information during query evaluation. For in-
stance, if we ask for the departments that are not located in
nyc, we get math with condition 1; # nyc, which combined
with the global condition allows us to conclude that math is
a consistent answer (as its city is either rome or sydney, and
thus cannot be nyc for sure).

As shown in the following, leveraging universal repairs,
our approximation schema yields strictly better results than
well-known approximation approaches such as the intersec-
tion of repairs and the intersection of closed repairs seman-
tics [Lembo et al., 2010; Bienvenu et al., 2014].

Below we provide a further example showing that even
when knowledge bases are expressed by unary/binary facts
only, our approach can preserve more information than the
classic notion of repair.

Example 4. Consider the knowledge base (D, ) where

D = {emp(john, sydney), stud(john, nyc) } and
> ={emp(N,C) astud(N,C") - C=C'}.

Here emp(john, sydney) means that john is an employee liv-
ing in sydney, and stud(john, nyc) means that john is a stu-
dent living in nyc.

The EGD says that every person must be associated with
the same city in emp and stud. Clearly, the knowledge base
is inconsistent.

Consider now the query asking for the people who are both
an employee and a student. Assuming that the only uncertain
values are john’s cities, we can still say that john is certainly
an employee and a student, even if we are not sure where
he lives. This information is preserved by our framework, as
john is a consistent answer, but it is completely lost using
the classic notion of repair, as there are no consistent an-
swers. In fact, in our framework, there are two repairs ob-
tained from D by changing either sydney into nyc or nyc into
sydney—in both of them john is an employee and a student.
According to the classical notion of repair, there are two re-
pairs obtained from D by deleting either emp(john, sydney)
or stud(john, nyc)—in the former john is a student but not
an employee while in the latter he is an employee but not a
student.

Contributions.

We consider the problem of querying possibly inconsistent
knowledge bases in the presence of acyclic sets of EGDs.
In this setting, we propose a new notion of repair based on
a more fine-grained repair primitive, which updates values
within facts rather than deleting them altogether, enabling us

1839

to preserve more information of the knowledge base. For such
a repair strategy, we introduce the notion of a universal re-
pair, which is a compact representation of all repairs, can be
computed in polynomial time, and can be leveraged to com-
pute consistent query answers.

We then develop a chase-like procedure to compute a
universal repair, introducing a formalism that augments in-
stances with provenance information. We show that consis-
tent query answering in our framework is coNP-complete
(data complexity). In light of this, we leverage universal re-
pairs and provenance information to develop an approxima-
tion algorithm that provides a sound (but possibly incom-
plete) set of consistent query answers in polynomial time.

Organization.

Section 2 discusses related work. Preliminaries are reported
in Section 3. Our inconsistency-tolerant semantics and its
complexity are investigated in Section 4. A compact repre-
sentation of all repairs and its computation are proposed in
Section 5. Query evaluation is addressed in Section 6. Our
approximation algorithm is introduced in Section 7. Conclu-
sions and directions for future work are reported in Section 8.

2 Related Work

Reasoning in the presence of inconsistent information is a
problem that has attracted a great deal of interest in the Al
and database communities. Consistent query answering was
first proposed in [Arenas ef al., 1999]. Query answering un-
der various inconsistency-tolerant semantics for ontologies
expressed in DL languages has been studied in [Lembo et
al., 2010; 2011; 2015; Bienvenu, 2011; 2012; Rosati, 2011;
Bienvenu and Rosati, 2013], and in [Lukasiewicz et al.,
2012b; 2015; 2012a] for ontologies expressed by fragments
of Datalog+/—. Several notions of maximality for a repair have
been considered in [Bienvenu et al., 2014]. Bienvenu and
Rosati (2013) have proposed an approach for the approxima-
tion of consistent query answers from above and from below.
Furfaro et al. (2007) proposed an approach based on three-
valued logic to compute a sound but possibly incomplete set
of consistent query answers.

Different from our proposal, all the approaches above
adopt the most common notion of repair, where whole facts
are removed. This can cause loss of information, as illustrated
in the toy scenario of Example 1—in real-life scenarios, it
might well be the case that facts have much more attributes
and only a few of them are involved in inconsistencies, lead-
ing to significant loss of useful data.

There have also been different proposals adopting a notion
of repair that allows values to be updated [Bohannon er al.,
2005; Bertossi et al., 2008; Greco and Molinaro, 2008; 2012;
Flesca et al., 2010]. Our repair strategy behaves similar to the
one of [Bohannon et al., 2005; Greco and Molinaro, 2008;
2012] in that values on the right-hand side of functional de-
pendencies (FDs) are updated. However, those works focus
on FDs only. [Bertossi et al., 2008] allow only numerical
attributes to be updated, one primary key per relation is al-
lowed, but keys are assumed to be satisfied by the original
database: thus, no repairing is possible w.r.t. keys, while we
allow it, and we allow much more general constraints. Our



Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)

repair strategy can be seen as an instantiation of the value-
based family of policies proposed in [Martinez et al., 20141,
even though the two approaches differ in how multiple de-
pendencies are handled, and they focus on FDs only. Flesca et
al. (2010) consider numerical databases and a different class
of (aggregate) constraints.

The main difference between this paper and the aforemen-
tioned ones is that none of them has investigated the approx-
imate computation of consistent query answers—notice that
[Bertossi et al., 2008; Bohannon et al., 2005] have proposed
approximation algorithms for computing a repair with min-
imum distance from the original database, and [Greco and
Molinaro, 2008] consider approximate probabilistic query an-
swers. Also, we introduce the notion of a universal repair,
which compactly represents all repairs and can be used for
exact/approximate query answering.

Approximation algorithms for computing sound but pos-
sibly incomplete sets of query answers in the presence of
nulls have been proposed in [Guagliardo and Libkin, 2016;
Libkin, 2015; 2016; Greco et al., 2017; Fiorentino et al.,
2018], but no dependencies are considered therein, and thus
the database is assumed to be consistent.

3 Preliminaries

We assume the existence of the following pairwise disjoint
(countably infinite) sets: a set Const of constants, a set Var
of variables, and a set Null of labeled nulls. Nulls are de-
noted by the symbol 1 subscripted. A term is a constant, vari-
able, or null. We also assume a set of predicates, disjoint from
the aforementioned sets, with each predicate being associated
with an arity, which is a non-negative integer.

An atom A is of the form p(t4,...,t,), where p is an n-
ary predicate and the ¢;’s are terms. We write an atom also
as p(t), where t is a sequence of terms. An atom without
variables is also called a fact. An instance is a finite set of
facts. A database is an instance containing constants only.

A homomorphism is a mapping h : Const u Var u Null —
Const U Var u Null that is the identity on Const. Homomor-
phisms are also applied to atoms and set of atoms in the nat-
ural fashion, that is, A(p(t1,...,tn)) = p(h(t1),...,h(tn)),
and h(S) = {h(A) | A € S} for any set S of atoms. A val-
uation is a homomorphism v whose image is Const, that is,
v(t) € Const for every ¢t € Const U Var u Null.

Conditional instances.

Conditional instances (also known as ‘“conditional ta-
bles” [Imielinski and Lipski, 1984; Grahne, 1991]) are in-
stances augmented with conditions restricting the set of ad-
missible values for nulls. Let £ be the set of all expressions,
called conditions, that can be built using the standard log-
ical connectives A, Vv, -, = and expressions of the form
t; = t;, true, and false, where ¢;,¢; € Const U Null. We will
also use t; # t; as a shorthand for —(¢; = t;). We say that
a valuation v satisfies a condition ¢, denoted v = ¢, if its
assignment of constants to nulls makes ¢ true. Formally, a
conditional instance (CI) is a pair (I, ®), where I is an in-
stance and ® € £. The semantics of C' = (I, ®) is given by
the set of its possible worlds, that is, the set of databases
pw(C) ={v(I)|visavaluation and v £ ®}.

1840

Equality generating dependencies.
An equality generating dependency (EGD) o is a first-order
formula of the form Vx¢(x) — x; = z;, where p(x) is a
conjunction of atoms (without labeled nulls) whose variables
are exactly x, and x; and x; are variables from x. We call
¢(x) the body of o, and call z; = x; the head of o. We will
omit the universal quantification in front of dependencies and
assume that all variables are universally quantified. With a
slight abuse of notation, we sometimes treat a conjunction as
the set of its atoms. An instance [ satisfies o, denoted [ = o,
if whenever there exists a homomorphism % s.t. h(p(x)) € I,
then h(x;) = h(x;). A instance I satisfies a set ¥ of EGDs,
denoted [ = X, if I = o for every o € 3.

A knowledge base (KB) is a pair (D,X), where D is a
database and ¥ is a finite set of EGDs. It is consistent if D &
Y2, otherwise it is inconsistent.

Query language.

The query language we consider is non-recursive safe Data-
log with negation. This choice will ease presentation of our
approximation algorithm.

A (positive) rule is of the form p(x) « ¢(x,y),v(z),
where there are no nulls, p(x) is an atom (whose variables are
x), ¢(x,y) is a conjunction of atoms (whose variables are x
and y), v(z) is a conjunction of expressions (whose variables
are z) of the form ¢ = ¢’ or t # t' with ¢, ¢’ € Const U Var, and
z C xUy. Wlo.g. we assume that there cannot be multiple
occurrences of the same variable in ¢(x,y)—so equalities
must be made explicit in v(z).

A (negative) rule is of the form p(x) <« p'(x),-p"(x),
where p(x), p'(x), and p”'(x) are atoms without nulls.
W.lLo.g. we assume that there cannot be multiple occurrences
of the same variable in p’(x).

In the rules above, p(x) is called the head of the rule, and
d(x,y),v(z) (resp. p'(x), -p" (x)) is called the body.

A program P is a finite set of rules. The predicate graph
of P is a directed graph whose vertices are the predicates ap-
pearing in P, and there is a directed edge from a predicate p’
to a predicate p if there is a rule in P where p’ appears in the
body and p appears in the head. As we consider non-recursive
Datalog, the predicates of P can be ordered into a sequence
(p1,.-.,pn) according to a topological sorting of the predi-
cate graph. Given a predicate p appearing in P, we use P[p]
to denote the set of all rules in P having p in the head.

The immediate consequence operator Tp of a program P
is defined as follows. For every database D,

Tp(D) =D u{v(p(x)) | there exist a valuation v and

arule p(x) < ¢(x,y),v(z) of Ps.t.

v(¢p(x,y)) S Dandv Ev(z)} U
{v(p(x)) | there exist a valuation v and

arule p(x) < p'(x),-p"(x) of Ps.t.
v(p'(x)) e Dand v(p"”(x)) ¢ D}.
Given a database D and a program P, we define:
Tp(D) =D, _
Tlg(D) = TP[;Dl](TIID_l(D))v
CN(P,D) =T} (D).
A query @ is a pair (P,p), where P is a program and p
is a predicate. The result of evaluating () on a database D is
Q(D) ={p(t) [ p(t) e CN(P, D)}.

for1<i<n,



Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)

4 Repairing and Querying Inconsistent KBs

In this section, we present our notion of repair and analyze
the computational complexity of two central problems: repair
checking and consistent query answering.

We start by defining the EGDs we consider. Let 3 be a set
of EGDs. An argument of 3 is an expression of the form p[i],
where p is an n-ary predicate appearing in X and 1 < i < n.

Definition 1 (Argument and dependency graphs). The argu-
ment graph of a set > of EGDs is a directed graph Gy, =
(V,E), where V is the set of all arguments of %, and E con-
tains a directed edge from p[i] to q[j] labeled o iff there is
an EGD o € 3 such that:

e the body of o contains an atom p(ty,...,t,) such that
either t; is a constant or t; is a variable occurring more
than once in the body of o, and

* the body of o contains an atom q(uy, ..., uy,) such that
u; is a variable also appearing in the head of o.

The dependency graph of ¥ is a directed graph T's; = (X,),
where $Q is the following set:

{(01,02) | Gz = (V, E) A(p([i],q[j],01), (qls] r[k], 02) € E}.
We say that 3. is acyclic if its dependency graph is acyclic.

In the following, we write o; < o; if (05,0;) € Q or there is
oy, such that o; < o} and oy, < 0.

Example 5. Consider the following set of EGDs X::

oq1: works(X, Yl, Zl) A WOI’kS(X,Yz, 22) - Yl = Y2
oo works(Xy,Y,Z1) Aworks(Xz,Y,Zy) = Z1 = Z5

G, has two edges: one from works[1] to works[2] labeled
o1, and another one from works[2] to works[3] labeled o.
Then, I's; has only the edge (o1, 02). Thus, X is acyclic.

In the rest of the paper we consider acyclic sets of EGDs—
so, from now on, ¥ is understood to be acyclic. Even if the
tools developed in the paper can be generalized to arbitrary
EGDs, we focus on acyclic sets because for them we can eas-
ily compute a compact representation of all repairs in poly-
nomial time. This is particularly important for our purpose of
developing polynomial time approximation algorithms.

Before introducing our notion of repair, we provide some
intuitions. As already mentioned, it is based on updating val-
ues within facts. Specifically, we adopt a chase-like procedure
that acts as follows: whenever an EGD ¢(x) — z; = x; is not
satisfied by a set of facts v((x)) (for some valuation v), and
thus v(z;) # v(x;), then either v(x;) replaces v(x;) or vice
versa. A repair is obtained through an exhaustive application
of this repair step guaranteeing that the set of changes is min-
imal. Note that there is a non-deterministic choice to be made
when updating values, and this may lead to multiple repairs.

Example 6. Consider the database below and the set of EGDs
of Example 5.

john cs rome
john | math | rome
mary | math | sydney

By enforcing o into the first two facts, either cs or math
can be chosen as john’s department. If the latter is chosen,
then the database D’ below is obtained.

1841

Suppose now that o5 is enforced into the last two facts of
D'. Then, either rome or sydney can be chosen as math’s
city. If the former is chosen, then the database D" below is
obtained.

john |math|rome
john |math |rome
mary |math |rome

john |math| rome
john [math| rome
mary |math |sydney

DI — DII —

No further dependency enforcement is applicable at this point
and thus D" is a repair.

Notice that it might be possible to restore consistency in
other different ways. For instance, in the first step of the ex-
ample above, one may modify the employee names. How-
ever, we do not consider this option because it is unclear
which (different) values should be assigned (any constant in
Const is a candidate value). For instance, john in the first fact
might be replaced with rome, but this is somewhat arbitrary
and indeed does not make much sense. In contrast, our re-
pair strategy chooses candidate values that are in sense “jus-
tified” by the content of the database (e.g., in the example
above, john works for either the cs or the math department).
Moreover, when EGDs are key dependencies, the aforemen-
tioned way of restoring consistency may lead to the introduc-
tion of entities that are not meaningful. Indeed, our choice has
been made by different approaches relying on value updates
(e.g., [Bohannon et al., 2005]).

The computation of repairs as informally described above
is quite involved in that, when applying a repair step, we have
to check that the current database has not been previously
obtained (to avoid infinite repair steps) and check minimality
of the changes performed. In the following, we show how to
deal with such issues and compute repairs efficiently.

When repairing inconsistent databases, conditional in-
stances can be used to keep track of which values must be
equal and which constants can be assigned to nulls. For in-
stance, in Example 6 above, after the last dependency en-
forcement, we have to make sure that the last column contains
the same city (which can be either rome or sydney).

Below we introduce the technical definitions, starting with

the notion of a repair step.
Definition 2 (Repair step). Ler (I, ®) be a CI, ¥ a set of
EGDs, and 0 an EGD p(x) — x; = xj € . Let h be a
homomorphism s.t. h(p(x)) € h(I), h & ®, and h(z;) *
h(l’ j )

Moreover; let L, be a fresh null and (I',®') the CI ob-
tained from (I, ®) as follows:

1. foreachfactp(us,...,u,) in I, if p(X) contains an atom
Pty -tn) st h(p(ti, . tn)) = h(p(ug,...,upn)),
then for every 1 <k <, ifty € {x;, x;},

o replace ug, in p(uy, ..., Up ) With Ly,;
e if up € Null, replace every occurrence of uy, else-
where with 1,,;
2. Either ®' = ®A(Ly, = h(x;)) or &' = PA(Ly, = h(z;)).

o,h . .
We say that (I, ®) — (I', @'} is a repair step.

Intuitively, a repair step enforces an EGD that is not satis-
fied by the knowledge base.



Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)

A repair sequence of a knowledge base (D, X)) is a (pos-

is/lg

sibly empty) finite sequence of repair steps C; 7ty Cis1
(0 < i < m) such that Cy = (D, true) and o; € ¥ for every
i. We also say that the repair sequence is from Cy to C,,. We
call C,, the result of the repair sequence. Also, we say that
the repair sequence is maximal if there does not exist a repair

mwh’ﬁl
step of the form C,, T Cms1-

It is easy to see that for each repair step (I, @) ol (I', @),
if b’ is a homomorphism s.t. A" = ®’, then it assigns constants
to nulls as dictated by @’ (see item 2 of Definition 2). Thus, all
h' satisfying ®' yield the same database h'(I"). For a condi-
tional instance (I, ®) obtained by means of a repair sequence,
we use the notation ® () to denote the database derived from
I by iteratively replacing nulls with constants or other nulls
as dictated by .

For ease of presentation, we assume that one can keep of a
given fact f in the database during the repair process despite
the value changes. Thus, we use D[ f,¢] to denote the i-th
term of a fact f in a database D. Given a repair sequence S
from Cy = (D,true) to Cy, = (I, ), we define the set
of changes made by S as update(S) = {(f,7) | D[f,i] #
®,,(I,)[f,i]}, where f is a fact of the database.

Example 7. Consider the database of Example 6 and the set
of EGDs of Example 5. By enforcing first o; using the first
two facts, then o using the last two facts, and finally o5 using
the first two facts, we get, respectively, the CIs C, Cs and C3
reported below:

Cy Cs OS
john| 11 |rome john| 11 [rome john| 11 |[la
john| 11 | rome john| 11 | L3 john| 11 |la
mary |math |sydney mary |[math| 13 mary |[math | 14
11 = math 11 =mathA 11 = mathA
13 = sydney 13 = sydney A
L4 = rome

No further repair steps are applicable at this point. Notice that
13 = sydney can be deleted from the condition of C'5 because
it does not play a role anymore. A repair is obtained from
Cs5 by replacing every occurrence of 11 with math, and every
occurrence of 14 with rome.

Definition 3 (Repair). A repair for a knowledge base K =
(D,X) is a database ®(J) such that there exists a maxi-
mal repair sequence S of K from (D, true) to (J,®) and
update(S) is minimal w.r.t. C.

We use repair(D, X)) to denote the set of all repairs of a

knowledge base (D,X.). The following simple proposition
states that every repair is indeed consistent.

Proposition 1. Let (D,Y) be a knowledge base. For every
D’ € repair(D, %), D' = X.

The consistent answers to a query are defined in the stan-
dard way as follows.

Definition 4 (Consistent Query Answers). Let (D,X) be a
knowledge base and Q) a query. The consistent answers o )
over (D,X) are

Q(D,2) =({Q(D") | D" € repair(D,X)}.

1842

In the context of managing inconsistent knowledge bases,
two fundamental problems are repair checking and consistent
query answering, which are defined as follows. Let (D, X)) be
a knowledge base, D' a database, Q a query, and f a fact of
constants. Then, the following two problems are defined:

* repair checking: decide whether D’ € repair(D,X);
* consistent query answering: decide whether f € Q(D, ).

Below we show that the first problem is in PTIME and the
second one is coNP-complete All the complexity results in

this paper are in the data complexity, that is, the query and
the EGDs are fixed.

Theorem 2. Repair checking is in PTIME.

Proof. (Sketch) Let (D, X)) be a knowledge base and D' a
database. As stated in Theorems 4 and 5 reported in the next
section, it is possible to compute in polynomial time a CI
C = (I,®) such that pw(C) = repair(D,X). After C is
computed, for each null 1; in I, replace every occurrence
of 1; in I and ® with the corresponding constant in D'—if
there are different constants corresponding to (different oc-
currences of) 1;, then answer ‘no’. After that, if the updated
instance I is equal to D’ and the updated condition @ is true,
then answer ‘yes’, otherwise answer ‘no’. Clearly, the entire
process can be carried out in polynomial time. [

Theorem 3. Consistent query answering is coNP-complete.

Proof. (Sketch) Membership. Let (D,Y) be a knowledge
base, () a query, and f a fact of constants. The complemen-
tary problem is in NP. In fact, we can guess a database D’
and verify that (i) D’ € repair (D, ) and (ii) f ¢ Q(D'). By
the definition of repair, the size of D’ is linear in the size of
D. By Theorem 2, condition (i) can be verified in polynomial
time, and obviously condition (ii) too.

Hardness. We reduce 3DNF TAUTOLOGY to our prob-
lem. Let ¢ be a 3DNF formula d; v ... v d,, over vari-
ables X = {xy,...,z,}. For every literal £ in ¢, we define
var(£) = x; if £ = x; or £ = —x;, tval(£) = tif £ = x;, and
tval(€) = f if £ = ~x;, where t, f, and the x;’s are constants.

We define D, as follows. For each disjunct d; = (£1 A £a A
l3),1<i<m, D, contains the following facts:

disj(i, var(£1),t, var(£2),t, var(€3),t),
disj(i, var(41),f, var(62),f, var(43),f),
disjsat(i, var (1), tval(¢1), var(£2), tval (€2), var(€3), tval (£3)).

Then, Y contains the following EGDs:

disj(1,V, A1, Va, A2, V3, A3) A
diSj(V,V, A£7V§7A£7Vé7A13) g Al = A;,
disj(1,V, A1, Vo, Az, V3, A3) A
disj(l', V1, A1, V, A3, V3, A3) - A = Ay
disj(1,V, A1, Va, A2, V3, A3) A
dISJ(|/7V;7AI,17Vé7A/27V7A13) g Al = Ag
diSj(|,V1,A1,V,A27V3,A3) N
dIS.J(l,uVLA;?V?A§7Vé7Ag) - A2 = Aé
disj(|7V17A17V7A23V37A3) A
dISJ(|/7V;7AI,17Vé7A/27V7A13) g A2 = Ag
diSj(|,V17A1,V2,A2,V,A3) A
dIS.J(V’Vi?A;?VévA’27V7Ag) - A3 = Ag

It can be easily verified that X is acyclic.



Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)

Finally, Q = (P, sat), where P contains the following rule:

sat() < disjsat(l, V1, A1, Va2, Az, V3, A3),
diSj(|,V17A1,V2,A27V3,A3).

It can be shown that ¢ is a tautology iff sat() € Q(Dgy,X).
O

Indeed, coNP-hardness holds even for Boolean conjunctive
queries. In the next section we introduce the notion of a uni-
versal repair, which is a compact representation of all repairs
for a given knowledge base, and can be computed in polyno-
mial time.

S Universal Repair

In this section, we show how to compute a conditional in-
stance U, called universal repair, that represents all repairs of
a knowledge base, that is, the possible worlds of U are exactly
the repairs. As shown in the following, such a representation
will prove to be a valuable tool for query answering.

Roughly speaking, we generalize the repair step introduced
in the previous section in order to keep track of all possible
choices, and when each choice should be applied.

Any conjunction of atoms ¢(x) in the body of an EGD can
be rewritten as follows:

* every occurrence of a constant ¢ in ¢(x) is replaced with
a fresh variable z and (z = ¢) is added to the conjunc-
tion;

« for every variable occurring n > 1 times in ¢(x), replace
n—1 occurrences with n—1 fresh variables x, ..., z,, and
add (z = x2) A ... A (x = z,) to the conjunction.

As an example, 7(x,y, x) A s(x,a,a), where a is a constant,
can be rewritten into r(x, y, z2) A $(23, 24, 25) A (T = 22) A
(z = 23) A (24 = a) A (2], = a). In the following definition,
we assume that the body of every EGD has been rewritten as
above, and thus it is of the form p(x) A eq(x’), where p(x)
is a conjunction of atoms (with no constants and no multiple
occurrences of the same variable) and eq(x’) is a conjunction
of equalities over variables x’ C x.

Definition 5 (Universal repair step). Let C' = (I, ®) be a CI
and o an EGD p(x)Aeq(x") - x; = xj. Let h be a homomor-
phism s.t. h(¢o(x)) € I and for which there exists a valuation
vs.t.viEh(eq(x")), vie® and v(h(z;)) # v(h(x;)).

Moreover, let 14 and 1., be two fresh nulls, and (I', @'} be
the CI obtained from (I, ®) as follows:

1. for each fact p(uy, ..., u,) in I, if o(X) contains an atom
p(tla 5tn) s.L. V(h(p(tly 7tn))) = V(p(ula ...,Un)),
then for every 1 < k < n, if ty, = z; or (tx = x;) appears
in eq(x') (resp. ty, = x; or (tx, = x;) appears in eq(x')),
then replace uy, in p(uy, ..., u, ) with 1 (resp. Ly,);

2. ®' =d A, where ¢ is defined as follows:

(h(eq(x)) = ((Lm=1Le) A (Le=h(z:) v Lm =h(z;)))) A
(=(h(eq(x))) = (Le = h(zi) A L =h(z;)));

3. for each uy, of Item 1 above, if ui € Null, replace every
occurrence of ui with Ly (resp. 1,,) in both the current
instance and condition ®'.

1843

We say that (I, D) Ndad (I',®') is a universal repair step.

In the previous definition, A is a homomorphism used to
map ¢(x) into I, while v is a valuation used to check if
h(p(x)) may violate o, that is, v(h(¢(x))) are admissible
facts (cf. v = ®) that satisfy the join conditions in the body
of o (cf. v E h(eq(x"))) but do not satisfy the head condition
(cf. v(h(z:)) # v(h(x;))).

A universal repair sequence of a knowledge base (D, X)
is a (possibly empty) finite sequence of universal repair steps

C; ol Ci+1 (0 < ¢ < m) such that Cy = (D,true) and
o; € X for every ¢. We call C),, the result of the universal re-
pair sequence. Also, we say that the repair sequence is maxi-
mal if there does not exist a universal repair step of the form
Chm Tplim Cpns1. A universal repair sequence is said to be
ordered if for each C; 01—>hj Ci+1 there is no C} U]—7h>1 Cjn
such that j > ¢ and o; < o; (intuitively, EGDs in ¥ must be
considered according to a topological sorting of I'y). If C' is
the result of an ordered maximal universal repair sequence,
then C'is called a universal repair.

Example 8. Consider the database of Example 6 and the set
of EGDs of Example 5. After the application of o to the first
two facts we get the following conditional instance:

john 11 rome

john 1o rome

mary | math | sydney
¢,

where ®, is as follows:

((john = john) = ((L1 = 1) A (11 =csV Lp =math))) A
((john # john) = (11 = cs A 15 = math))

By applying o to the first and third facts, we get:

john 11 13

john 1o | rome

mary | math 14
(bl A ‘bg

where @, is as follows:

(L1 =math = ((L3 = 14) A (L3 =romeV Ly = sydney))) A
(L1 # math = (L3 = rome A 14 = sydney))

By applying o5 to the first two facts, we get:

john 11 1s
john 1o le
mary | math | 14

@1/\@2/\@3

where @5 is as follows:

((J_l = J_2) = ((J_5 = J_6) A (J_5 =13V lg= rome))) A
((L1 # 12) = (L5 = L3 A L = rome))

Then, 13 is replaced with 15 everywhere, that is, in both ®2
and @3, yielding new conditions @/, and ®%. The result of
this step is the CI consisting of the instance above and the
condition ®; A ®} A Y.

As no further universal repair step can be applied, the con-
ditional instance above is a universal repair.



Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)

The following theorems say that all the universal repairs of
a knowledge base are equivalent in that they “represent” its
repairs and computing one of them can be done in polynomial
time.

Theorem 4. Let U be a universal repair of a knowledge base
(D, X). Then, pw(U) = repair(D,X).

Theorem 5. Computing a universal repair is in PTIME.

The main idea behind the proof of the previous theorem
is to apply universal repair steps according to a topological
sorting of the dependency graph of X..

6 Query Evaluation

In this section, we show how to evaluate queries over uni-
versal repairs and keep track of provenance information. This
will be used later on to develop an approximation algorithm.
In order to do that, we need to extend conditional instances to
allow individual conditions for facts too.

A conditional fact is a pair (p(t), ¢), where p(t) is a fact
and ¢ is a condition, also called local condition.

An extended conditional instance (ECI) is a pair (E, ®),
where E is a finite set of conditional facts and ® is a condi-
tion, which we also call global condition. Given a valuation
v, we define v(F) = {v(p(t)) | (p(t),¢) € Fand v E ¢}.
Thus, v(F) is the database obtained from F by applying v
to every fact and keeping only the facts whose condition is
satisfied by v. The possible worlds of an ECI G = (E, ®) are
pw(G) = {v(E) | visavaluation s.t. v = ®}.

We now define how to evaluate queries over ECIs. To this
end, we generalize the immediate consequence operator 1'p
(cf. Section 3) so as to perform a “conditional” evaluation
of a query in the presence of conditional facts. We point
out that our conditional evaluation is a slight variant of the
one for conditional tables [Grahne, 1991]. Below we use
(t1, ..oy tn) = (U1, ..., uy) as a shorthand for A7 (t; = u;).

With a slight abuse of notation, given a program P we over-
load T'p so that when its input is a set E of conditional facts,
then Tp(FE) = E U E’, where E’ is the following set of con-
ditional facts:

{{h(p(x)), ) | there exist a homomorphism h and
arule p(x) < ALy pi(xi, 1), 7(2) of Pand

¢1,..4 ,(bn S.t.
(h(pi(xi,y:)),®:) € E forevery 1 <4 <n and

¢ =h(v(2)) ANy i} U
{{h(p(x)), ) | there exist a homomorphism h and
arule p(x) < p'(x),-p"(x) of P and ¢’ s.t.
(h(p'(x)),¢') € E and
¢=¢" A ~(¢" AR(x) =t)}.
(p”(t),0")eE

Then, CN(P, E) = TA(E), where T is defined in exactly

the same way as in Section 3.

It can be easily verified that the conditional evaluation
above can be carried out in polynomial time. The main reason
is that the immediate consequence operator 1’p above extends
the classical one by just adding conditions of polynomial size
to facts, so the time complexity remains polynomial.

Proposition 6. Given a program P and a finite set E of con-
ditional facts, computing CN(P, E) is in PTIME.

Given two conditions ¢, ¢, we write ¢ £ ¢ if for every
valuation v, if v E ¢, then v E ¢'. Below we define the certain
answers to a query over an extended conditional instance.

Definition 6. Ler G = (E,®) be an ECI and Q = (P,p)
be a query. The certain answers fo QQ over G are defined as
follows:

cert(Q,G) = {p(t) | (p(t),¢) € CN(P, E) and
® E ¢ and t has constants only}.

Thus, to compute the certain answers to () over G we need
to compute CN(P, F') and check for which conditional facts
® = ¢ holds true. The last entailment checking can be carried
out by rewriting the formula as a propositional formula and
using SAT solvers [Gomes et al., 2008]. Satisfiability solvers
are becoming increasingly efficient and effective in solving
large satisfiability problems and, despite the worst-case ex-
ponential run time of all known algorithms, they are very ef-
ficient in solving hard problems with millions of variables and
tens of millions of constraints.

The tools developed thus far will be exploited in the next
section to devise an approximation algorithm.

7 Approximation Algorithm

In light of Theorem 3, we develop a polynomial time approx-
imation algorithm to compute a sound (but possibly incom-
plete) set of consistent query answers.

The basic idea of our approximation algorithm is as fol-
lows. Given a knowledge base and a query, we first compute
a universal repair U of the knowledge base, and then trans-
form U into an ECI Uy, where each fact is associated with
the trivial condition true. After that, the query is “condition-
ally” evaluated over Uyye (i.e., as described in the previous
section). The result is a set of conditional facts, whose con-
ditions are evaluated together with the condition of Uyye in
order to determine a sound (but possibly incomplete) set of
consistent query answers (we will illustrate the entire process
in Example 9). For positive queries, a simple approximation
can be obtained by deleting facts containing nulls from Uy,
and ignoring its global condition.

First, we need some auxiliary definitions. Given a condi-
tion ® and two nulls 1;,1; € Null, we write 1; ~gp Lj if
L; = 1j (or Lj = 1;) appears in ®. Then, ~ is the reflexive
and transitive closure of ~4. Given a term ¢ € Const U Null
and a condition @, we denote by domg (¢) the domain of t
w.rt. ®, defined as follows: domg(c) = {c} if ¢ € Const,
whereas domg (L;) = {c| L; »} Ly and 1 = c appears in ®}
if 1; € Null. Intuitively, domg (L;) is a set of possible values
that 1; might assume in some repair.

We assume the strict ordering false < unknown < true,
and —true = false, —false = true, and —unknown = unknown.
Given two conditions ¢ and ®, we define evalg () as fol-
lows:

true ift; =5,

* evale((t; =t;)) = { false if domg (t;)ndome (t;) =2,
unknown otherwise.

. evalq>((t1- * tj)) = ﬂeva|q>((ti = tj))

* evale ((p1 A ¢2)) = min{evals (1), evale (p2)}.

1844



Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)

* evala((p1V 2)) = max{evale(p1), evale (2)}.
. evalq)((—.(p)) = —.eva|q>(<p)

* evalg(v) = v for v € {true, unknown, false}.

The following definition introduces the approximate eval-
uation of a query over an extended conditional instance.

Definition 7. Let G = (E,®) be an ECI and Q = (P,p) be a
query. The approximate answers fo Q) over G are:

appron(Q, G) = {p(8) | (p(t), 0)<CN(P, ) and
evalg () = true and
t has constants only}.

A conditional instance C' = (I, ®) can be “lifted to”” an ECI
by setting all local conditions to true. We denote by Ciye the
ECL ({(p(t), true) | p(t) € C}, B).

The evaluation technique of Definition 7 indeed provides
a way to compute a sound (but possibly incomplete) set of
consistent query answers, in polynomial time.

Definition 8. Let (D, X) be a knowledge base and Q) a query.
The approximate consistent answers fo Q over (D,X) are

Q(D,X) = approz(Q, Uge ), where U is a universal repair
of (D,X).

Example 9. Consider the knowledge base of Example 1 and
the query Q = (P, diffCity), asking for the pairs of depart-
ments located in different cities, where P consists of the rule:

diffCity(D, D) < works(E, D, C),works(E’, D', C"),C = C'.

A universal repair, say U, is shown in Example 3. The first
step of our approach consists of converting U into an ECI
Utrue by setting all local conditions to true. Thus, Uy, is as
follows:

john cs nyc || true
john | math | 11 || true
mary | math | 11 || true

11 =romeV L1 = sydney

The conditional evaluation of ) over Uy gives the fol-
lowing set of conditional facts:

cs cs true A true A nyc # nyc

cs math || true Atrue Anyc# L3
math cs true A true A 11 # nyc
math | math true Atrue A L1 # 11

As domg(L1) = {rome, sydney}, the approximate consistent
answers are diffCity(cs, math) and diffCity(math, cs), which
are indeed consistent query answers.

The following theorems state soundness of our approach
and its complexity, which is in PTIME (data complexity).
Theorem 7. Let (D, X) be a knowledge base and Q a query.
Then, Q(D,Y) € Q(D,Y).

Theorem 8. Let (D, ) be a knowledge base and Q) a query.
Computing Q(D,X) is in PTIME.

Proof. (Sketch) It follows from Theorem 5, Proposition 6,
and because evalg () can be evaluated in PTIME. O

1845

We conclude by comparing our approach with two well-
known approximation schemes that have been developed in
the query answering inconsistency-tolerant area, namely the
intersection of repairs (IAR) and the intersection of closed
repairs (ICR) semantics [Lembo er al., 2010; Bienvenu ef al.,
2014]. The former semantics consists of querying the inter-
section of all repairs, while the second one consists of query-
ing the intersection of the closure of all repairs. In our setting,
since we do not consider tuple-generating dependencies, the
two semantics coincide.

As stated in the following theorem, for every positive query
(i.e., only positive rules and equalities are allowed), our ap-
proximation algorithm provides at least as many answers as
TIAR (and ICR).

Theorem 9. Let (D, X)) be a knowledge base and Q a pos-
itive query. Then, Q(D*) ¢ Q(D,X), where D* = N{D’ |
D’ € repair(D,X)}.

To show a simple case where our approximation algorithm
yields strictly more consistent query answers, consider the
knowledge base of Example 1, whose repairs are reported in
Example 2. Consider also the query asking for the employ-
ees’ names. Under the IAR semantics, the intersection keeps
only the first fact of the original knowledge base, and thus the
other two facts are lost altogether. So the only query answer
is john. On the other hand, the universal repair (cf. Exam-
ple 3) is much more informative: we still have the first fact of
the original knowledge base, but we also have the other two
facts, where consistent values are unchanged and thus pre-
served. Our approximation algorithm returns both john and
mary.

As a further example, consider Example 6. The intersection
of all repairs is empty. On the other hand, the universal repair
(cf. Example 8) has valuable information, which again can be
profitably exploited for (approximate) query answering.

8 Conclusion

We proposed a framework for query answering over incon-
sistent KBs based on (i) a notion of repair allowing values
within facts to be updated, (ii) a compact representation of all
repairs, (iii) an approximation algorithm to compute under-
approximations of consistent query answers.

As a direction for future work, we plan to investigate fur-
ther approximation algorithms based on different conditions’
evaluations. Another issue to be investigated is the generaliza-
tion of our framework to more general classes of dependen-
cies, such as TGDs or arbitrary EGDs. One way of dealing
with TGDs is by inserting new facts. Interestingly, by insert-
ing facts with nulls (in a Chase-like manner) into a univer-
sal repair we can get a compact representation of all possible
insertions. This also poses the issues of combining different
repair primitives, such as fact updates and fact insertions (fact
deletions might be considered as well).

References

[Arenas et al., 1999] Marcelo Arenas, Leopoldo E. Bertossi,
and Jan Chomicki. Consistent query answers in inconsis-

tent databases. In Symposium on Principles of Database
Systems (PODS), pages 6879, 1999.



Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)

[Bertossi et al., 2008] Leopoldo E. Bertossi, Loreto Bravo,
Enrico Franconi, and Andrei Lopatenko. The complex-
ity and approximation of fixing numerical attributes in
databases under integrity constraints. [Information Sys-
tems, 33(4-5):407-434, 2008.

[Bienvenu and Rosati, 2013] Meghyn Bienvenu and Ric-
cardo Rosati. Tractable approximations of consistent
query answering for robust ontology-based data access.
In International Joint Conference on Artificial Intelligence
(IJCAI), pages 775-781, 2013.

[Bienvenu et al., 2014] Meghyn Bienvenu, Camille Bour-
gaux, and Francois Goasdoué. Querying inconsistent de-
scription logic knowledge bases under preferred repair se-
mantics. In AAAI Conference on Artificial Intelligence
(AAAI), pages 996-1002, 2014.

[Bienvenu, 2011] Meghyn Bienvenu. First-order expressibil-
ity results for queries over inconsistent DL-Lite knowledge
bases. In International Workshop on Description Logics
(DL), 2011.

[Bienvenu, 2012] Meghyn Bienvenu. On the complexity of
consistent query answering in the presence of simple on-
tologies. In AAAI Conference on Artificial Intelligence
(AAAI), 2012.

[Bohannon er al., 2005] Philip Bohannon, Michael Flaster,
Wenfei Fan, and Rajeev Rastogi. A cost-based model and
effective heuristic for repairing constraints by value mod-
ification. In International Conference on Management of
Data (SIGMOD), pages 143-154, 2005.

[Fiorentino et al., 2018] Nicola Fiorentino, Sergio Greco,
Cristian Molinaro, and Irina Trubitsyna. ACID: A system
for computing approximate certain query answers over in-
complete databases. In International Conference on Man-
agement of Data (SIGMOD), 2018. To appear.

[Flesca er al., 2010] Sergio Flesca, Filippo Furfaro, and
Francesco Parisi. Querying and repairing inconsistent nu-
merical databases. ACM Transactions on Database Sys-
tems, 35(2):14:1-14:50, 2010.

[Furfaro et al., 2007] Filippo Furfaro, Sergio Greco, and
Cristian Molinaro. A three-valued semantics for querying
and repairing inconsistent databases. Annals of Mathemat-
ics and Artificial Intelligence, 51(2-4):167-193, 2007.

[Gomes er al., 2008] Carla P. Gomes, Henry A. Kautz,
Ashish Sabharwal, and Bart Selman. Satisfiability solvers.
In Handbook of Knowledge Representation, pages 89—134.
2008.

[Grahne, 1991] Gosta Grahne. The Problem of Incomplete
Information in Relational Databases, volume 554 of Lec-
ture Notes in Computer Science. Springer, 1991.

[Greco and Molinaro, 2008] Sergio Greco and Cristian
Molinaro. Approximate probabilistic query answering
over inconsistent databases. In International Conference
on Conceptual Modeling (ER), pages 311-325, 2008.

[Greco and Molinaro, 2012] Sergio Greco and Cristian
Molinaro.  Probabilistic query answering over incon-

1846

sistent databases. Annals of Mathematics and Artificial
Intelligence, 64(2-3):185-207, 2012.

[Greco er al., 2017] Sergio Greco, Cristian Molinaro, and
Irina Trubitsyna. Computing approximate certain answers
over incomplete databases. In Alberto Mendelzon Interna-
tional Workshop (AMW), 2017.

[Guagliardo and Libkin, 2016] Paolo Guagliardo and Leonid
Libkin. Making SQL queries correct on incomplete
databases: A feasibility study. In Symposium on Princi-
ples of Database Systems (PODS), pages 211-223, 2016.

[Imielinski and Lipski, 1984] Tomasz Imielinski and Witold
Lipski. Incomplete information in relational databases.
Journal of the ACM, 31(4):761-791, 1984.

[Lembo et al., 2010] Domenico Lembo, Maurizio Lenzerini,
Riccardo Rosati, Marco Ruzzi, and Domenico Fabio Savo.
Inconsistency-tolerant semantics for description logics. In
International Conference on Web Reasoning and Rule Sys-
tems (RR), pages 103117, 2010.

[Lembo et al., 2011] Domenico Lembo, Maurizio Lenzerini,
Riccardo Rosati, Marco Ruzzi, and Domenico Fabio Savo.
Query rewriting for inconsistent DL-Lite ontologies. In
International Conference on Web Reasoning and Rule Sys-
tems (RR), pages 155-169, 2011.

[Lembo et al., 2015] Domenico Lembo, Maurizio Lenzerini,
Riccardo Rosati, Marco Ruzzi, and Domenico Fabio Savo.
Inconsistency-tolerant query answering in ontology-based
data access. Journal of Web Semantics, 33:3-29, 2015.

[Libkin, 2015] Leonid Libkin. How to define certain an-
swers. In International Joint Conference on Artificial In-
telligence (IJCAI), pages 4282-4288, 2015.

[Libkin, 2016] Leonid Libkin. Certain answers as objects
and knowledge. Artificial Intelligence, 232:1-19, 2016.

[Lukasiewicz et al., 2012a] Thomas Lukasiewicz,
Maria Vanina Martinez, and Gerardo I. Simari. In-
consistency handling in Datalog+/— ontologies. In
European Conference on Artificial Intelligence (ECAI),
pages 558-563, 2012.

[Lukasiewicz et al., 2012b] Thomas Lukasiewicz,
Maria Vanina Martinez, and Gerardo 1. Simari.
Inconsistency-tolerant query rewriting for linear
Datalog+/—. In Datalog 2.0, pages 123—134, 2012.

[Lukasiewicz et al., 2015] Thomas Lukasiewicz, Maria Van-
ina Martinez, Andreas Pieris, and Gerardo I. Simari. From
classical to consistent query answering under existen-
tial rules. In AAAI Conference on Artificial Intelligence
(AAAI), pages 1546-1552, 2015.

[Martinez et al., 2014] Maria Vanina Martinez, Francesco
Parisi, Andrea Pugliese, Gerardo I. Simari, and V. S. Sub-
rahmanian. Policy-based inconsistency management in re-
lational databases. International Journal of Approximate
Reasoning, 55(2):501-528, 2014.

[Rosati, 2011] Riccardo Rosati. On the complexity of deal-
ing with inconsistency in description logic ontologies. In
International Joint Conference on Artificial Intelligence
(IJCAI), pages 1057-1062, 2011.



