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Abstract
In this work, we contribute a new multi-layer neural
network architecture named ONCF to perform col-
laborative filtering. The idea is to use an outer prod-
uct to explicitly model the pairwise correlations
between the dimensions of the embedding space.
In contrast to existing neural recommender models
that combine user embedding and item embedding
via a simple concatenation or element-wise prod-
uct, our proposal of using outer product above the
embedding layer results in a two-dimensional in-
teraction map that is more expressive and seman-
tically plausible. Above the interaction map ob-
tained by outer product, we propose to employ a
convolutional neural network to learn high-order
correlations among embedding dimensions. Exten-
sive experiments on two public implicit feedback
data demonstrate the effectiveness of our proposed
ONCF framework, in particular, the positive effect
of using outer product to model the correlations be-
tween embedding dimensions in the low level of
multi-layer neural recommender model. 1

1 Introduction
To facilitate the information seeking process for users in the
age of data deluge, various information retrieval (IR) tech-
nologies have been widely deployed [Garcia-Molina et al.,
2011]. As a typical paradigm of information push, recom-
mender systems have become a core service and a major mon-
etization method for many customer-oriented systems [Wang
et al., 2018b]. Collaborative filtering (CF) is a key technique
to build a personalized recommender system, which infers a
user’s preference not only from her behavior data but also
the behavior data of other users. Among the various CF
methods, model-based CF, more specifically, matrix factor-
ization based methods [Rendle et al., 2009; He et al., 2016b;
Zhang et al., 2016] are known to provide superior perfor-
mance over others and have become the mainstream of rec-
ommendation research.

1Our experiment codes are available at: https://github.com/duxy-
me/ConvNCF

The key to design a CF model is in 1) how to represent a
user and an item, and 2) how to model their interaction based
on the representation. As a dominant model in CF, matrix fac-
torization (MF) represents a user (or an item) as a vector of la-
tent factors (also termed as embedding), and models an inter-
action as the inner product between the user embedding and
item embedding. Many extensions have been developed for
MF from both the modeling perspective [Wang et al., 2015;
Yu et al., 2018; Wang et al., 2018a] and learning perspec-
tive [Rendle et al., 2009; Bayer et al., 2017; He et al., 2018].
For example, DeepMF [Xue et al., 2017] extends MF by
learning embeddings with deep neural networks, BPR [Ren-
dle et al., 2009] learns MF from implicit feedback with a pair-
wise ranking objective, and the recently proposed adversarial
personalized ranking (APR) [He et al., 2018] employs an ad-
versarial training procedure to learn MF.

Despite its effectiveness and many subsequent develop-
ments, we point out that MF has an inherent limitation in
its model design. Specifically, it uses a fixed and data-
independent function — i.e., the inner product — as the in-
teraction function [He et al., 2017]. As a result, it essen-
tially assumes that the embedding dimensions (i.e., dimen-
sions of the embedding space) are independent with each
other and contribute equally for the prediction of all data
points. This assumption is impractical, since the embed-
ding dimensions could be interpreted as certain properties
of items [Zhang et al., 2014], which are not necessarily to
be independent. Moreover, this assumption has shown to
be sub-optimal for learning from real-world feedback data
that has rich yet complicated patterns, since several recent
efforts on neural recommender models [Tay et al., 2018;
Bai et al., 2017] have demonstrated that better recommenda-
tion performance can be obtained by learning the interaction
function from data.

Among the neural network models for CF, neural matrix
factorization (NeuMF) [He et al., 2017] provides state-of-the-
art performance by complementing the inner product with an
adaptable multiple-layer perceptron (MLP) in learning the in-
teraction function. Later on, using multiple nonlinear layers
above the embedding layer has become a prevalent choice to
learn the interaction function. Specifically, two common de-
signs are placing a MLP above the concatenation [He et al.,
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2017; Bai et al., 2017] and the element-wise product [Zhang
et al., 2017; Wang et al., 2017] of user embedding and item
embedding. We argue that a potential limitation of such two
designs is that there are few correlations between embedding
dimensions being modeled. Although the following MLP
is theoretically capable of learning any continuous function
according to the universal approximation theorem [Hornik,
1991], there is no practical guarantee that the dimension cor-
relations can be effectively captured with current optimiza-
tion techniques.

In this work, we propose a new architecture for neural col-
laborative filtering (NCF) by integrating the correlations be-
tween embedding dimensions into modeling. Specifically, we
propose to use an outer product operation above the embed-
ding layer, explicitly capturing the pairwise correlations be-
tween embedding dimensions. We term the correlation matrix
obtained by outer product as the interaction map, which is a
K × K matrix where K denotes the embedding size. The
interaction map is rather suitable for the CF task, since it not
only subsumes the interaction signal used in MF (its diagonal
elements correspond to the intermediate results of inner prod-
uct), but also includes all other pairwise correlations. Such
rich semantics in the interaction map facilitate the following
non-linear layers to learn possible high-order dimension cor-
relations. Moreover, the matrix form of the interaction map
makes it feasible to learn the interaction function with the ef-
fective convolutional neural network (CNN), which is known
to generalize better and is more easily to go deep than the
fully connected MLP.

The contributions of this paper are as follows.

• We propose a new neural network framework ONCF,
which supercharges NCF modeling with an outer product
operation to model pairwise correlations between embed-
ding dimensions.

• We propose a novel model named ConvNCF under the
ONCF framework, which leverages CNN to learn high-
order correlations among embedding dimensions from lo-
cally to globally in a hierarchical way.

• We conduct extensive experiments on two public implicit
feedback data, which demonstrate the effectiveness and ra-
tionality of ONCF methods.

• This is the first work that uses CNN to learn the interaction
function between user embedding and item embedding.
It opens new doors of exploring the advanced and fastly
evovling CNN methods for recommendation research.

2 Proposed Methods
We first present the Outer product based Neural Collaborative
Filtering (ONCF) framework. We then elaborate our pro-
posed Convolutional NCF (ConvNCF) model, an instantia-
tion of ONCF that uses CNN to learn the interaction function
based on the interaction map. Before delving into the techni-
cal details, we first introduce some basic notations.

Throughout the paper, we use bold uppercase letter (e.g.,
P) to denote a matrix, bold lowercase letter to denote a vector
(e.g., pu), and calligraphic uppercase letter to denote a tensor
(e.g., S). Moreover, scalar pu,k denotes the (u, k)-th element
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Figure 1: Outer Product-based NCF framework

of matrix P, and vector pu denotes the u-th row vector in P.
Let S be 3D tensor, then scalar sa,b,c denotes the (a, b, c)-th
element of tensor S , and vector sa,b denotes the slice of S at
the element (a, b).

2.1 ONCF framework
Figure 1 illustrates the ONCF framework. The target of mod-
eling is to estimate the matching score between user u and
item i, i.e., ŷui; and then we can generate a personalized rec-
ommendation list of items for a user based on the scores.

Input and Embedding Layer. Given a user u and an item
i and their features (e.g., ID, user gender, item category etc.),
we first employ one-hot encoding on their features. Let vU

u
and vIi be the feature vector for user u and item i, respectively,
we can obtain their embeddings pu and qi via

pu = PT vU
u , qi = QT vI

i , (1)

where P ∈ RM×K and Q ∈ RN×K are the embedding matrix
for user features and item features, respectively; K,M, and
N denote the embedding size, number of user features, and
number of item features, respectively. Note that in the pure
CF case, only the ID feature will be used to describe a user
and an item [He et al., 2017], and thus M and N are the
number of users and number of items, respectively.

Interaction Map. Above the embedding layer, we propose
to use an outer product operation on pu and qi to obtain the
interaction map:

E = pu ⊗ qi = puqT
i , (2)

where E is a K ×K matrix, in which each element is evalu-
ated as: ek1,k2

= pu,k1
qi,k2

.
This is the core design of our ONCF framework to en-

sure the effectiveness of ONCF for the recommendation task.
Compared to existing recommender systems [He et al., 2017;
Zhang et al., 2017], we argue that using outer product is
more advantageous in threefold: 1) it subsumes matrix fac-
torization (MF) — the dominant method for CF — which
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Figure 2: An example of the architecture of our ConvNCF model that has 6 convolution layers with embedding size 64.

considers only diagonal elements in our interaction map; 2)
it encodes more signal than MF by accounting for the cor-
relations between different embedding dimensions; and 3)
it is more meaningful than the simple concatenation opera-
tion, which only retains the original information in embed-
dings without modeling any correlation. Moreover, it has
been recently shown that, modeling the interaction of fea-
ture embeddings explicitly is particularly useful for a deep
learning model to generalize well on sparse data, whereas
using concatenation is sub-optimal [He and Chua, 2017;
Beutel et al., 2018].

Lastly, another potential benefit of the interaction map lies
in its 2D matrix format — which is the same as an image. In
this respect, the pairwise correlations encoded in the interac-
tion map can be seen as the local features of an “image”. As
we all know, deep learning methods achieve the most success
in computer vision domain, and many powerful deep mod-
els especially the ones based on CNN (e.g., ResNet [He et
al., 2016a] and DenseNet [Huang et al., 2017]) have been de-
veloped for learning from 2D image data. Building a 2D in-
teraction map allows these powerful CNN models to be also
applied to learn the interaction function for the recommenda-
tion task.

Hidden Layers. Above the interaction map is a stack of
hidden layers, which targets at extracting useful signal from
the interaction map. It is subjected to design and can be ab-
stracted as g = fΘ(E), where fΘ denotes the model of hidden
layers that has parameters Θ, and g is the output vector to be
used for the final prediction. Technically speaking, fΘ can
be designed as any function that takes a matrix as input and
outputs a vector. In Section 2.2, we elaborate how CNN can
be employed to extract signal from the interaction map.

Prediction Layer. The prediction layer takes in vector g
and outputs the prediction score as: ŷui = wT g, where
vector w re-weights the interaction signal in g. To sum-
marize, the model parameters of our ONCF framework are
∆ = {P,Q,Θ,w}.

Learning ONCF for Personalized Ranking
Recommendation is a personalized ranking task. To this end,
we consider learning parameters of ONCF with a ranking-
aware objective. In the NCF paper [He et al., 2017], the au-
thors advocate the use of a pointwise classification loss to
learn models from implicit feedback. However, another more

reasonable assumption is that observed interactions should be
ranked higher than the unobserved ones. To implement this
idea, [Rendle et al., 2009] proposed a Bayesian Personalized
Ranking (BPR) objective function as follows:

L(∆) =
∑

(u,i,j)∈D

− lnσ(ŷui − ŷuj) + λ∆||∆||2, (3)

where λ∆ are parameter specific regularization hyperparam-
eters to prevent overfitting, and D denotes the set of training
instances: D := {(u, i, j)|i ∈ Y+

u ∧ j /∈ Y+
u }, where Y+

u de-
notes the set of items that has been consumed by user u. By
minimizing the BPR loss, we tailor the ONCF framework for
correctly predicting the relative orders between interactions,
rather than their absolute scores as optimized in pointwise
loss [He et al., 2017; 2016b]. This can be more beneficial for
addressing the personalized ranking task.

It is worth pointing out that in our ONCF framework, the
weight vector w can control the magnitude of the value of ŷui
for all predictions. As a result, scaling up w can increase the
margin ŷui − ŷuj for all training instances and thus decrease
the training loss. To avoid such trivial solution in optimizing
ONCF, it is crucial to enforce L2 regularization or the max-
norm constraint on w. Moreover, we are aware of other pair-
wise objectives have also been widely used for personalized
ranking, such as the L2 square loss [Wang et al., 2017]. We
leave this exploration for ONCF as future work, as our ini-
tial experiments show that optimizing ONCF with the BPR
objective leads to good top-k recommendation performance.

2.2 Convolutional NCF
Motivation: Drawback of MLP. In ONCF, the choice of
hidden layers has a large impact on its performance. A
straightforward solution is to use the MLP network as pro-
posed in NCF [He et al., 2017]; note that to apply MLP on the
2D interaction matrix E ∈ RK×K , we can flat E to a vector of
sizeK2. Despite that MLP is theoretically guaranteed to have
a strong representation ability [Hornik, 1991], its main draw-
back of having a large number of parameters can not be ig-
nored. As an example, assuming we set the embedding size of
a ONCF model as 64 (i.e., K = 64) and follow the common
practice of the half-size tower structure. In this case, even a 1-
layer MLP has 8, 388, 608 (i.e., 4, 096 × 2, 048) parameters,
not to mention the use of more layers. We argue that such
a large number of parameters makes MLP prohibitive to be
used in ONCF because of three reasons: 1) It requires power-
ful machines with large memories to store the model; and 2) It

Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)

2229



needs a large number of training data to learn the model well;
and 3) It needs to be carefully tuned on the regularization of
each layer to ensure good generalization performance2.

The ConvNCF Model. To address the drawback of MLP,
we propose to employ CNN above the interaction map to ex-
tract signals. As CNN stacks layers in a locally connected
manner, it utilizes much fewer parameters than MLP. This
allows us to build deeper models than MLP easily, and bene-
fits the learning of high-order correlations among embedding
dimensions. Figure 2 shows an illustrative example of our
ConvNCF model. Note that due to the complicated concepts
behind CNN (e.g., stride, padding etc.), we are not ambi-
tious to give a systematic formulation of our ConvNCF model
here. Instead, without loss of generality, we explain Con-
vNCF of this specific setting, since it has empirically shown
good performance in our experiments. Technically speaking,
any structure of CNN and parameter setting can be employed
in our ConvNCF model. First, in Figure 2, the size of input
interaction map is 64×64, and the model has 6 hidden layers,
where each hidden layer has 32 feature maps. A feature map
c in hidden layer l is represented as a 2D matrix Elc; since we
set the stride to 2, the size of Elc is half of its previous layer
l−1, e.g. E1c ∈ R32×32 and E2c ∈ R16×16. All feature maps
of Layer l can be represented as a 3D tensor E l.

Given the input interaction map E, we can first get the fea-
ture maps of Layer 1 as follows:

E1 = [e1
i,j,c]32×32×32, where

e1
i,j,c = ReLU(b1 +

1∑
a=0

1∑
b=0

e2i+a,2j+b · t11−a,1−b,c︸ ︷︷ ︸
convolution filter

),
(4)

where b1 denotes the bias term for Layer 1, and T 1 =
[t1a,b,c]2×2×32 is a 3D tensor denoting the convolution filter
for generating feature maps of Layer 1. We use the rectifer
unit as activation function, a common choice in CNN to build
deep models. Following the similar convolution operation,
we can get the feature maps for the following layers. The
only difference is that from Layer 1 on, the input to the next
layer l + 1 becomes a 3D tensor E l:

E l+1 = [el+1
i,j,c]s×s×32, where 1 ≤ l ≤ 5, s =

64

2l+1
,

el+1
i,j,c = ReLU(bl+1 +

1∑
a=0

1∑
b=0

el2i+a,2j+b · tl+1
1−a,1−b,c),

(5)

where bl+1 denotes the bias term for Layer l+1, and T l+1 =
[tl+1
a,b,c,d]2×2×32×32 denote the 4D convolution filter for Layer
l + 1. The output of the last layer is a tensor of dimension
1× 1× 32, which can be seen as a vector and is projected to
the final prediction score with a weight vector w.

Note that convolution filter can be seen as the “locally con-
nected weight matrix” for a layer, since it is shared in gener-
ating all entries of the feature maps of the layer. This signif-
icantly reduces the number of parameters of a convolutional

2In fact, another empirical evidence is that most papers used
MLP with at most 3 hidden layers, and the performance only im-
proves slightly (or even degrades) with more layers [He et al., 2017;
Covington et al., 2016; He and Chua, 2017]

layer compared to that of a fully connected layer. Specifically,
in contrast to the 1-layer MLP that has over 8 millions param-
eters, the above 6-layer CNN has only about 20 thousands pa-
rameters, which are several magnitudes smaller. This makes
our ConvNCF more stable and generalizable than MLP.

Rationality of ConvNCF. Here we give some intuitions on
how ConvNCF can capture high-order correlations among
embedding dimensions. In the interaction map E, each entry
eij encodes the second-order correlation between the dimen-
sion i and j. Next, each hidden layer l captures the correla-
tions of a 2 × 2 local area3 of its previous layer l − 1. As an
example, the entry e1

x,y,c in Layer 1 is dependent on four el-
ements [e2x,2y; e2x,2y+1; e2x+1,2y; e2x+1,2y+1], which means
that it captures the 4-order correlations among the embedding
dimensions [2x; 2x+ 1; 2y; 2y+ 1]. Following the same rea-
soning process, each entry in hidden layer l can be seen as
capturing the correlations in a local area of size 2l in the in-
teraction map E. As such, an entry in the last hidden layer
encodes the correlations among all dimensions. Through this
way of stacking multiple convolutional layers, we allow Con-
vNCF to learn high-order correlations among embedding di-
mensions from locally to globally, based on the 2D interac-
tion map.

Training Details
We optimize ConvNCF with the BPR objective with mini-
batch Adagrad [Duchi et al., 2011]. Specifically, in each
epoch, we first shuffle all observed interactions, and then get
a mini-batch in a sequential way; given the mini-batch of ob-
served interactions, we then generate negative examples on
the fly to get the training triplets. The negative examples are
randomly sampled from a uniform distribution; while recent
efforts show that a better negative sampler can further im-
prove the performance [Ding et al., 2018], we leave this ex-
ploration as future work. We pre-train the embedding layer
with MF. After pre-training, considering that other param-
eters of ConvNCF are randomly initialized and the overall
model is in a underfitting state, we train ConvNCF for 1 epoch
first without any regularization. For the following epochs,
we enforce regularization on ConvNCF, including L2 reg-
ularization on the embedding layer, convolution layers, and
the output layer, respectively. Note that the regularization co-
efficients (especially for the output layer) have a very large
impact on model performance.

3 Experiments
To comprehensively evaluate our proposed method, we con-
duct experiments to answer the following research questions:
RQ1 Can our proposed ConvNCF outperform the state-of-

the-art recommendation methods?
RQ2 Are the proposed outer product operation and the CNN

layer helpful for learning from user-item interaction data
and improving the recommendation performance?

RQ3 How do the key hyperparameter in CNN (i.e., number
of feature maps) affect ConvNCF’s performance?

3The size of the local area is determined by our setting of the
filter size, which is subjected to change with different settings.
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Gowalla Yelp
HR@k NDCG@k HR@k NDCG@k RI

k = 5 k = 10 k = 20 k = 5 k = 10 k = 20 k = 5 k = 10 k = 20 k = 5 k = 10 k = 20

ItemPop 0.2003 0.2785 0.3739 0.1099 0.1350 0.1591 0.0710 0.1147 0.1732 0.0365 0.0505 0.0652 +227.6%
MF-BPR 0.6284 0.7480 0.8422 0.4825 0.5214 0.5454 0.1752 0.2817 0.4203 0.1104 0.1447 0.1796 +9.5%
MLP 0.6359 0.7590 0.8535 0.4802 0.5202 0.5443 0.1766 0.2831 0.4203 0.1103 0.1446 0.1792 +9.2%
JRL 0.6685 0.7747 0.8561 0.5270 0.5615 0.5821 0.1858 0.2922 0.4343 0.1177 0.1519 0.1877 +3.9%
NeuMF 0.6744 0.7793 0.8602 0.5319 0.5660 0.5865 0.1881 0.2958 0.4385 0.1189 0.1536 0.1895 +3.0%
ConvNCF 0.6914∗ 0.7936∗ 0.8695∗ 0.5494∗ 0.5826∗ 0.6019∗ 0.1978∗ 0.3086∗ 0.4430∗ 0.1243∗ 0.1600∗ 0.1939∗ -

Table 1: Top-k recommendation performance where k ∈ {5, 10, 20}. RI indicates the average improvement of ConvNCF over the baseline.
∗ indicates that the improvements over all other methods are statistically significant for p < 0.05.

3.1 Experimental Settings
Data Descriptions. We conduct experiments on two pub-
licly accessible datasets: Yelp4 and Gowalla5.
Yelp This is the Yelp Challenge data for user ratings on

businesses. We filter the dataset following by [He et al.,
2016b]. Moreover, we merge the repetitive ratings at dif-
ferent timestamps to the earliest one, so as to study the per-
formance of recommending novel items to a user. The fi-
nal dataset obtains 25,815 users, 25,677 items, and 730,791
ratings.

Gowalla This is the check-in dataset from Gowalla, a
location-based social network, constructed by [Liang et al.,
2016] for item recommendation. To ensure the quality of
the dataset, we perform a modest filtering on the data, re-
taining users with at least two interactions and items with
at least ten interactions. The final dataset contains 54,156
users, 52,400 items, and 1,249,703 interactions.

Evaluation Protocols. For each user in the dataset, we
holdout the latest one interaction as the testing positive sam-
ple, and then pair it with 999 items that the user did not rate
before as the negative samples. Each method then generates
predictions for these 1, 000 user-item interactions. To eval-
uate the results, we adopt two metrics Hit Ratio (HR) and
Normalized Discounted Cumulative Gain (NDCG), same as
[He et al., 2017]. HR@k is a recall-based metric, measur-
ing whether the testing item is in the top-k position (1 for yes
and 0 otherwise). NDCG@k assigns the higher scores to the
items within the top k positions of the ranking list. To elim-
inate the effect of random oscillation, we report the average
scores of the last ten epochs after convergence.

Baselines. To justify the effectiveness of our proposed Con-
vNCF, we study the performance of the following methods:
ItemPop ranks the items based on their popularity, which is

calculated by the number of interactions. It is always taken
as a benchmark for recommender algorithms.

MF-BPR [Rendle et al., 2009] optimizes the standard MF
model with the pairwise BPR ranking loss.

MLP [He et al., 2017] is a NCF method that concatenates
user embedding and item embedding to feed to the stan-
dard MLP for learning the interaction function.

JRL [Zhang et al., 2017] is a NCF method that places a
MLP above the element-wise product of user embedding
4https://github.com/hexiangnan/sigir16-eals
5http://dawenl.github.io/data/gowalla pro.zip

and item embedding. Its difference with GMF [He et al.,
2017] is that JRL uses multiple hidden layers above the
element-wise product, while GMF directly outputs the pre-
diction score.

NeuMF [He et al., 2017] is the state-of-the-art method for
item recommendation, which combines hidden layer of
GMF and MLP to learn the user-item interaction function.

Parameter Settings. We implement our methods with
Tensorflow, which is available at: https://github.com/duxy-
me/ConvNCF. We randomly holdout 1 training interaction
for each user as the validation set to tune hyperparameters.
We evaluate ConvNCF of the specific setting as illustrated in
Figure 2. The regularization coefficients are separately tuned
for the embedding layer, convolution layers, and output layer
in the range of [10−3, 10−2, ..., 102]. For a fair comparison,
we set the embedding size as 64 for all models and optimize
them with the same BPR loss using mini-batch Adagrad (the
learning rate is 0.05). For MLP, JRL and NeuMF that have
multiple fully connected layers, we tuned the number of lay-
ers from 1 to 3 following the tower structure of [He et al.,
2017]. For all models besides MF-BPR, we pre-train their
embedding layers using the MF-BPR, and the L2 regulariza-
tion for each method has been fairly tuned.

3.2 Performance Comparison (RQ1)
Table 1 shows the Top-k recommendation performance on
both datasets where k is set to 5, 10, and 20. We have the
following key observations:
• ConvNCF achieves the best performance in general, and

obtains high improvements over the state-of-the-art meth-
ods. This justifies the utility of ONCF framework that uses
outer product to obtain the 2D interaction map, and the ef-
ficacy of CNN in learning high-order correlations among
embedding dimensions.

• JRL consistently outperforms MLP by a large margin on
both datasets. This indicates that, explicitly modeling the
correlations of embedding dimensions is rather helpful for
the learning of the following hidden layers, even for sim-
ple correlations that assume dimensions are independent of
each other. Meanwhile, it reveals the practical difficulties
to train MLP well, although it has strong representation
ability in principle [Hornik, 1991].

3.3 Efficacy of Outer Product and CNN (RQ2)
Due to space limitation, for the blow two studies, we only
show the results of NDCG, and the results of HR admit the
same trend thus they are omitted.
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Figure 3: NDCG@10 of applying different operations above the em-
bedding layer in each epoch (GMF and JRL use element-wise prod-
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Figure 4: NDCG@10 of using different hidden layers for ONCF
(ConvNCF uses a 6-layer CNN and ONCF-mlp uses a 3-layer MLP
above the interaction map).

Efficacy of Outer Product. To show the effect of outer
product, we replace it with the two common choices in exist-
ing solutions — concatenation (i.e., MLP) and element-wise
product (i.e., GMF and JRL). We compare their performance
with ConvNCF in each epoch in Figure 3. We observe that
ConvNCF outperforms other methods by a large margin on
both datasets, verifying the positive effect of using outer prod-
uct above the embedding layer. Specifically, the improve-
ments over GMF and JRL demonstrate that explicitly model-
ing the correlations between different embedding dimensions
are useful. Lastly, the rather weak and unstable performance
of MLP imply the difficulties to train MLP well, especially
when the low-level has fewer semantics about the feature in-
teractions. This is consistent with the recent finding of [He
and Chua, 2017] in using MLP for sparse data prediction. .

Efficacy of CNN. To make a fair comparison between CNN
and MLP under our ONCF framework, we use MLP to learn
from the same interaction map generated by outer product.
Specifically, we first flatten the interaction as a K2 dimen-
sional vector, and then place a 3-layer MLP above it. We
term this method as ONCF-mlp. Figure 4 compares its perfor-
mance with ConvNCF in each epoch. We can see that ONCF-
mlp performs much worse than ConvNCF, in spite of the fact
that it uses much more parameters (3 magnitudes) than Con-
vNCF. Another drawback of using such many parameters in
ONCF-mlp is that it makes the model rather unstable, which
is evidenced by its large variance in epoch. In contrast, our
ConvNCF achieves much better and stable performance by
using the locally connected CNN. These empirical evidence
provide support for our motivation of designing ConvNCF
and our discussion of MLP’s drawbacks in Section 2.2.
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Figure 5: Performance of ConvNCF w.r.t. different numbers of fea-
ture maps per convolutional layer (denoted by C) in each epoch on
Yelp.

3.4 Hyperparameter Study (RQ3)
Impact of Feature Map Number. The number of feature
maps in each CNN layer affects the representation ability of
our ConvNCF. Figure 5 shows the performance of ConvNCF
with respect to different numbers of feature maps. We can see
that all the curves increase steadily and finally achieve similar
performance, though there are some slight differences on the
convergence curve. This reflects the strong expressiveness
and generalization of using CNN under the ONCF framework
since dramatically increasing the number of parameters of a
neural network does not lead to overfitting. Consequently,
our model is very suitable for practical use.

4 Conclusion
We presented a new neural network framework for collabo-
rative filtering, named ONCF. The special design of ONCF
is the use of an outer product operation above the embed-
ding layer, which results in a semantic-rich interaction map
that encodes pairwise correlations between embedding di-
mensions. This facilitates the following deep layers learn-
ing high-order correlations among embedding dimensions.
To demonstrate this utility, we proposed a new model under
the ONCF framework, named ConvNCF, which uses multi-
ple convolution layers above the interaction map. Extensive
experiments on two real-world datasets show that ConvNCF
outperforms state-of-the-art methods in top-k recommenda-
tion. In future, we will explore more advanced CNN models
such as ResNet [He et al., 2016a] and DenseNet [Huang et al.,
2017] to further explore the potentials of our ONCF frame-
work. Moreover, we will extend ONCF to content-based rec-
ommendation scenarios [Chen et al., 2017; Yu et al., 2018],
where the item features have richer semantics than just an ID.
Particularly, we are interested in building recommender sys-
tems for multimedia items like images and videos, and textual
items like news.
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