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Abstract
In this work, we consider the task of classifying
binary positive-unlabeled (PU) data. Existing dis-
criminative learning based PU models attempt to
seek an optimal reweighting strategy for unlabeled
(U) data, so that a decent decision boundary can
be found. However, given limited positive (P) da-
ta, the conventional PU models tend to suffer from
overfitting when adapted to very flexible deep neu-
ral networks. In contrast, we are the first to inno-
vate a totally new paradigm to attack the binary PU
task, from the perspective of generative learning by
leveraging the powerful generative adversarial net-
works (GAN). Our generative positive-unlabeled
(GenPU) framework incorporates an array of dis-
criminators and generators that are endowed with
different roles in simultaneously producing posi-
tive and negative realistic samples. We also pro-
vide theoretical analysis to justify that, at equilibri-
um, GenPU is capable of recovering both positive
and negative data distributions. Moreover, we show
GenPU is generalizable and closely related to the
semi-supervised classification. Given rather limit-
ed P data, experiments on both synthetic and real-
world dataset demonstrate the effectiveness of our
proposed framework. With infinite realistic and di-
verse samples generated from GenPU, a very flexi-
ble classifier can then be trained using deep neural
networks.

1 Introduction
Positive-unlabeled (PU) classification [Denis et al., 2005] has
gained great popularity in dealing with limited partially la-
beled data and succeeded in a broad range of applications
such as automatic label identification. Yet, PU can be used for
the detection of outliers in an unlabeled dataset with knowl-
edge only from a collection of inlier data [Hido et al., 2008].
PU also finds its usefulness in ‘one-vs-rest’ classification task
such as land-cover classification (urban vs non-urban) where

∗The corresponding author

non-urban data are too diverse to be labeled than urban data
[Li et al., 2011].

The most commonly used PU approaches for binary clas-
sification can typically be categorized, in terms of the way of
handling U data, into two types [Kiryo et al., 2017]. One type
such as [Liu et al., 2002; Li and Liu, 2003] attempts to rec-
ognize negative samples in the U data and then feed them to
classical positive-negative (PN) models. However, these ap-
proaches depend heavily on the heuristic strategies and often
yield a poor solution. The other type, including [Liu et al.,
2003; Lee and Liu, 2003], offers a better solution by treat-
ing U data to be N data with a decayed weight. Nevertheless,
finding an optimal weight turns out to be quite costly. Most
importantly, the classifiers trained based on above approach-
es suffer from a systematic estimation bias [Du Plessis et al.,
2015; Kiryo et al., 2017].

Seeking for unbiased PU classifier, [Du Plessis et al., 2014]
investigated the strategy of viewing U data as a weighted mix-
ture of P and N data [Elkan and Noto, 2008], and introduced
an unbiased risk estimator by exploiting some non-convex
symmetric losses, i.e., the ramp loss. Although cancelling the
bias, the non-convex loss is undesirable for PU due to the dif-
ficulty of non-convex optimization. To this end, [Du Plessis et
al., 2015] proposed a more general risk estimator which is al-
ways unbiased and convex if the convex loss satisfies a linear-
odd condition [Patrini et al., 2016]. Theoretically, these au-
thors argue that the estimator yields globally optimal solution,
with more appealing learning properties than the non-convex
counterpart. More recently, [Kiryo et al., 2017] observed that
the aforementioned unbiased risk estimators can go negative
without bounding from the below, leading to serious overfit-
ting when the classifier becomes too flexible. To fix this, they
presented a non-negative biased risk estimator yet with fa-
vorable theoretical guarantees in terms of consistency, mean-
squared-error reduction and estimation error. The proposed
estimator is shown to be more robust against overfitting than
previous unbiased ones. However, given limited P data, the
overfitting issue still exists especially when very flexible deep
neural network is applied.

Generative models, on the other hand, have the advantage
in expressing complex data distribution. Apart from distribu-
tion density estimation, generative models are often applied
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to learn a function that is able to create more samples from
the approximate distribution. Lately, a large body of success-
ful deep generative models have emerged, especially gener-
ative adversarial networks (GAN) [Goodfellow et al., 2014;
Salimans et al., 2016]. GAN intends to solve the task of gen-
erative modeling by making two agents play a game against
each other. One agent named generator synthesizes fake data
from random noise; the other agent, termed as discriminator,
examines both real and fake data and determines whether it is
real or not. Both agents keep evolving over time and get better
and better at their jobs. Eventually, the generator is forced to
create synthetic data which is as realistic as possible to those
from the training dataset.

Inspired by the tremendous success and expressive power
of GAN, we tackle the binary PU classification task by re-
sorting to generative modeling, and propose our generative
positive-unlabeled (GenPU) learning framework. Building
upon GAN, our GenPU model includes an array of genera-
tors and discriminators as agents in the game. These agents
are devised to play different parts in simultaneously generat-
ing positive and negative real-like samples, and thereafter a
standard PN classifier can be trained on those synthetic sam-
ples. Given a small portion of labeled P data as seeds, GenPU
is able to capture the underlying P and N data distributions,
with the capability to create infinite diverse P and N samples.
In this way, the overfitting problem of conventional PU can be
greatly mitigated. Furthermore, our GenPU is generalizable
in the sense that it can be established by switching to dif-
ferent underlying GAN variants with distance measurements
(i.e., Wasserstein GAN [Arjovsky et al., 2017]) other than
Jensen-Shannon divergence (JSD). As long as those variants
are sophisticated to produce high-quality diverse samples, the
optimal accuracy could be achieved by training a very deep
neural networks.

Our main contribution (i) we are the first (to our knowl-
edge) to invent a totally new paradigm to effectively solve
the PU task through deep generative models; (ii) we provide
theoretical analysis to prove that, at equilibrium, our model
is capable of learning both positive and negative data distri-
butions; (iii) we experimentally show the effectiveness of the
proposed model given limited P data on both synthetic and
real-world dataset; (iv) our method can be easily extended
to solve the semi-supervised classification, and also opens a
door to new solutions of many other weakly supervised learn-
ing tasks from the aspect of generative learning.

2 Preliminaries
2.1 Positive-Unlabeled (PU) Classification
Given as input d-dimensional random variable x ∈ Rd and s-
calar random variable y ∈ {±1} as class label, and let p(x, y)
be the joint density, the class-conditional densities are :

pp(x) = p(x|y = 1) pn(x) = p(x|y = −1),

while p(x) refers to as the unlabeled marginal density. The
standard PU classification task [Ward et al., 2009] consists of
a positive dataset Xp and an unlabeled dataset Xu with i.i.d
samples drawn from pp(x) and p(x), respectively :

Xp = {xip}
np

i=1 ∼ pp(x) Xu = {xi
u}nu

i=1 ∼ p(x).

Due to the fact that the unlabeled data can be regarded as
a mixture of both positive and negative samples, the marginal
density turns out to be

p(x) = πpp(x|y = 1) + πnp(x|y = −1), (1)

where πp = p(y = 1) and πn = 1− πp are denoted as class-
prior probability, which is usually unknown in advance and
can be estimated from the given data [Jain et al., 2016]. The
objective of PU task is to train a classifier on Xp and Xu so as
to classify the new unseen pattern xnew.

In contrast to PU classification, positive-negative (PN)
classification assumes all negative samples,

Xn = {xi
n}nn

i=1 ∼ pn(x),

are labeled, so that the classifier can be trained in an ordinary
supervised learning fashion.

2.2 Generative Adversarial Networks (GAN)
GAN, originated in [Goodfellow et al., 2014], is one of the
most recent successful generative models that is equipped
with the power of producing distributional outputs. GAN ob-
tains this capability through an adversarial competition be-
tween a generator G and a discriminator D that involves op-
timizing the following minimax objective function :

min
G

max
D
V(G,D) = min

G
max
D

Ex∼px(x) log(D(x))

+ Ez∼pz(z) log(1−D(G(z))), (2)

where px(x) represents true data distribution; pz(z) is typical-
ly a simple prior distribution (e.g.,N (0, 1)) for latent code z,
while a generator distribution pg(x) associated with G is in-
duced by the transformation G(z) : z→ x.

To find the optimal solution, [Goodfellow et al., 2014] em-
ployed simultaneous stochastic gradient descent (SGD) for
alternately updating D and G. The authors argued that, giv-
en the optimal D, minimizing G is equivalent to minimizing
the distribution distance between px(x) and pg(x). At con-
vergence, GAN has px(x) = pg(x).

3 Generative PU Classification
3.1 Notations
Throughout the paper, {pp(x), pn(x), p(x)} denote the pos-
itive data distribution, the negative data distribution and the
entire data distribution, respectively. {Dp, Du, Dn} are re-
ferred to as the positive, unlabeled and negative discrimina-
tors, while {Gp, Gn} stand for positive and negative genera-
tors, targeting to produce real-like positive and negative sam-
ples. Correspondingly, {pgp(x), pgn(x)} describe the positive
and negative distributions induced by the generator functions
Gp(z) and Gn(z).

3.2 Proposed GenPU Model
We build our GenPU model upon GAN by leveraging its po-
tentiality in producing realistic data, with the goal of iden-
tification of both positive and negative distributions from P
and U data. Then, a decision boundary can be made by train-
ing standard PN classifier on the generated samples. Figure 1
illustrates the architecture of the proposed framework.
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Figure 1: Our GenPU framework. Dp receives as inputs the real
positive examples fromXp and the synthetic positive examples from
Gp; Dn receives as inputs the real positive examples from Xp and
the synthetic negative examples from Gn; Du receives as inputs real
unlabeled examples from Xu, synthetic positive examples from Gp

as well as synthetic negative examples from Gn at the same time.
Associated with different loss functions, Gp and Gn are designated
to generate positive and negative examples, respectively.

In brief, GenPU framework is an analogy to a minimax
game comprising of two generators {Gp, Gn} and three dis-
criminators {Dp, Du, Dn}. Guided by the adversarial super-
vision of {Dp, Du, Dn}, {Gp, Gn} are tasked with synthe-
sizing positive and negative samples that are indistinguish-
able with the real ones drawn from {pp(x), pn(x)}, respec-
tively. As being their competitive opponents, {Dp, Du, Dn}
are devised to play distinct roles in instructing the learning
process of {Gp, Gn}.

More formally, the overall GenPU objective function can
be decomposed, in views of Gp and Gn, as follows :

Ψ(Gp, Gn, Dp, Du, Dn) = πpΦGp,Dp,Du

+ πnΦGn,Du,Dn , (3)

where πp and πn corresponding to Gp and Gn are the priors
for positive class and negative class, satisfying πp + πn = 1.
Here, we assume πp and πn are predetermined and fixed.

The first term linked withGp in (3) can be further split into
two standard GAN componentsGANGp,Dp andGANGp,Du :

ΦGp,Dp,Du
= λp min

Gp

max
Dp

VGp,Dp
(G,D)

+ λu min
Gp

max
Du

VGp,Du(G,D), (4)

where λp and λu are the weights balancing the relative impor-
tance of effects between Dp and Du. In particular, the value
functions of GANGp,Dp and GANGp,Du are

VGp,Dp
(G,D) = Ex∼pp(x) log(Dp(x))

+ Ez∼pz(z) log(1−Dp(Gp(z))) (5)

and

VGp,Du
(G,D) = Ex∼pu(x) log(Du(x))

+ Ez∼pz(z) log(1−Du(Gp(z))). (6)

On the other hand, the second term linked with Gn in (3)
can also be split into GAN components, namely GANGn,Du

and GANGn,Dn :

ΦGn,Du,Dn
= λu min

Gn

max
Du

VGn,Du
(G,D)

+ λn max
Gn

max
Dn

VGn,Dn(G,D), (7)

whose weights λu and λn control the trade-off between Du

andDn. GANGn,Du
also takes the form of the standard GAN

with the value function

VGn,Du(G,D) = Ex∼pu(x) log(Du(x))

+ Ez∼pz(z) log(1−Du(Gn(z))). (8)

The value function of GANGn,Dn is given by

VGn,Dn
(G,D) = Ex∼pp(x) log(Dn(x))

+ Ez∼pz(z) log(1−Dn(Gn(z))). (9)

In contrast to the ‘zero-sum’ loss applied elsewhere, the op-
timization of GANGn,Dn

is given by first maximizing (9) to
obtain the optimal D?

n as

D?
n = arg max

Dn

Ex∼pp(x) log(Dn(x))

+ Ez∼pz(z) log(1−Dn(Gn(z))), (10)

then pluggingD?
n into the value function (9), and finally min-

imizing −VGn,D?
n
(G,D?

n) instead of VGn,D?
n
(G,D?

n) to get
the optimal G?

n as

G?
n = arg min

Gn

−VGn,D?
n
(G,D?

n). (11)

Such modification makes GANGn,Dn
different from the s-

tandard GAN, and this is reflected by the second term of (7).
Intuitively, (5)-(6) indicate Gp, co-supervised under both

Dp and Du, endeavours to minimize the distance between
the induced distribution pgp(x) and positive data distribution
pp(x), while striving to stay around within the whole data
distribution p(x). In fact, Gp tries to deceive both discrimi-
nators by simultaneously maximizing Dp’s and Du’s outputs
on fake positive samples. As a result, the loss terms in (5) and
(6) jointly guide pgp(x) gradually moves towards and finally
settles to pp(x) of p(x).

Equations (8)-(11) suggest Gn, when facing both Du and
Dn, struggles to make the induced pgn(x) stay away from
pp(x), and also makes its effort to force pgn(x) to lie with-
in p(x). To achieve this, the objective in (11) favors Gn to
produce negative examples; this in turn helps Dn to maxi-
mize the objective in (10) to separate positive training sam-
ples from fake negative samples rather than confusing Dn.
Notice that, in the value function (11), Gn is designed to
minimize Dn’s output instead of maximizing it when feed-
ing Dn with fake negative samples. Consequently, Dn will
send uniformly negative feedback toGn. In this way, the gra-
dient information derived from negative feedback decreases
pgn(x) where the positive data region pp(x) is large. In the
meantime, the gradient signals from Du increase pgn(x) out-
side the positive region but still restricting pgn(x) in the true
data distribution p(x). This crucial effect will eventually push
pgn(x) away from pp(x) but towards pn(x).

Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)

2257



3.3 Theoretical Analysis
Theoretically, suppose all the {Gp, Gn} and {Dp, Du, Dn}
have enough capacity. Then the following results show that,
at Nash equilibrium point of (3), the minimal JSD between
the distributions induced by {Gp, Gn} and the data distribu-
tions {pp(x), pn(x)} are achieved, respectively, i.e., pgp(x) =
pp(x) and pgn(x) = pn(x). Meanwhile, the JSD between
the distribution induced by Gn and data distribution pp(x) is
maximized, i.e., pgn(x) almost never overlaps with pp(x).
Proposition 1. Given fixed generators Gp, Gn and known
class prior πp, the optimal discriminators Dp, Du and Dn

for the objective in equation (3) have the following forms :

D?
p(x) =

pp(x)

pp(x) + pgp(x)
,

D?
u(x) =

p(x)

p(x) + πppgp(x) + πnpgn(x)

and

D?
n(x) =

pp(x)

pp(x) + pgn(x)
.

Proof. Assume that all the discriminators Dp, Du and Dn

can be optimized in functional space. Differentiating the ob-
jective V(G,D) in (3) w.r.t. Dp,Du andDn and equating the
functional derivatives to zero, we can obtain the optimal D?

p ,
D?

u and D?
n as described above.

Theorem 2. Suppose the data distribution p(x) in the stan-
dard PU learning setting takes form of p(x) = πppp(x) +
πnpn(x), where pp(x) and pn(x) are well-separated. Giv-
en the optimal D?

p , D?
u and D?

n, the minimax optimization
problem with the objective function in (3) obtains its optimal
solution if

pgp(x) = pp(x) and pgn(x) = pn(x), (12)
with the objective value of −(πpλp + λu) log(4).

Proof. Substituting the optimal D?
p , D?

u and D?
n into (3), the

objective can be rewritten as follows :

V(G,D?) = πp · {λp · [Ex∼pp(x) log(
pp(x)

pp(x) + pgp(x)
)

+ Ex∼pgp(x) log(
pgp(x)

pp(x) + pgp(x)
)]

+ λu · [Ex∼pu(x) log(
p(x)

p(x) + πppgp(x) + πnpgn(x)
)

+ Ex∼pgp(x) log(
πppgp(x) + πnpgn(x)

p(x) + πppgp(x) + πnpgn(x)
)]}

+ πn · {λu · [Ex∼pu(x) log(
p(x)

p(x) + πppgp(x) + πnpgn(x)
)

+ Ex∼pgn(x) log(
πppgp(x) + πnpgn(x)

p(x) + πppgp(x) + πnpgn(x)
)]

− λn · [Ex∼pp(x) log(
pp(x)

pp(x) + pgn(x)
)

+ Ex∼pgn(x) log(
pgn(x)

pp(x) + pgn(x)
)]}. (13)

Combining the intermediate terms associated with λu using
the fact πp + πn = 1, we reorganize (13) and arrive at

G? = arg min
G
V(G,D?)

= arg min
G

πp · λp · [2 · JSD(pp ‖ pgp)− log(4)]

+ λu · [2 · JSD(p ‖πppgp + πnpgn)− log(4)]

− πn · λn · [2 · JSD(pp ‖ pgn)− log(4)], (14)

which peaks its minimum if

pgp(x) = pp(x), (15)

πppgp(x) + πnpgn(x) = p(x) (16)

and for almost every x except for those in a zero measure set

pp(x) > 0⇒ pgn(x) = 0, pgn(x) > 0⇒ pp(x) = 0. (17)

The solution toG = {Gp, Gn}must jointly satisfy the condi-
tions described in (15)-(17), which implies (12) and leads to
the minimum objective value of −(πpλp + λu) log(4).

The theorem reveals that approaching to Nash equilibrium
is equivalent to jointly minimizing JSD(p ‖πppgp + πnpgn)
and JSD(pp ‖ pgp) and maximizing JSD(pp ‖ pgn) at the same
time, thus exactly capturing pp and pn.

3.4 Connection to Semi-Supervised Classification
The goal of semi-supervised classification is to learn a classi-
fier from positive, negative and unlabeled data. In such con-
text, besides training sets Xp and Xu, a partially labeled neg-
ative set Xn is also available, with samples drawn from nega-
tive data distribution pn(x).

In fact, the very same architecture of GenPU can be applied
to the semi-supervised classification task by just adapting the
standard GAN value function toGn, then the total value func-
tion turns out to be

V(G,D) =

πp{λp[Ex∼pp(x) log(Dp(x)) +Ez∼pz(z) log(1−Dp(Gp(z)))]

+λu[Ex∼pu(x) log(Du(x))+Ez∼pz(z) log(1−Du(Gp(z)))]}
+

πn{λu[Ex∼pu(x) log(Du(x))+Ez∼pz(z) log(1−Du(Gn(z)))]

+λn[Ex∼pn(x) log(Dn(x))+Ez∼pz(z) log(1−Dn(Gn(z)))]}.
With above formulation, Dn discriminates the negative train-
ing samples from the synthetic negative samples produced by
Gn. Now Gn intends to fool Dn and Du simultaneously by
outputting realistic examples, just like Gp does for Dp and
Du. Being attracted by both p(x) and pn(x), the induced
distribution pgn(x) gradually approaches to pn(x) and finally
recovers the true distribution pn(x) of p(x). Theoretically, it
is not hard to show the optimal Gp and Gn, at convergence,
give rise to pgp(x) = pp(x) and pgn(x) = pn(x).

4 Experimental Results
We show the efficacy of our framework by conducting exper-
iments on synthetic and real-world images datasets. For real
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Figure 2: Evolution of the positive samples (in green) and negative
samples (in blue) produced by GenPU. The true positive samples (in
orange) and true negative samples (in red) are also illustrated.

data, the approaches including oracle PN, unbiased PU (UP-
U) [Du Plessis et al., 2015], non-negative PU (NNPU) [Kiryo
et al., 2017] 1 are selected for comparison. Specifically, the
Oracle PN means all the training labels are available for all
the P and N data, whose performance is just used as a refer-
ence for other approaches. For all the methods, the true class-
prior πp is assumed to be known in advance. Regarding the
weights of GenPU, for simplicity, we set λu = 1 and freely
tune λp and λn on the validation set via grid search over the
range like [... 0.01, 0.02, ... 0.1, 0.2, ..., 1, 2, ....].

4.1 Synthetic Simulation
We begin our test with a toy example to visualize the learn-
ing behaviors of our GenPU. The training samples are syn-
thesized using concentric circles, Gaussian mixtures and half
moons functions with Gaussian noises added to the data (stan-
dard deviation is 0.1414). The training set contains 5000 pos-
itive and 5000 negative samples, which are then partitioned
into 500 positively labelled and 9500 unlabeled samples. We
establish the generators with two fully connected hidden lay-
ers and the discriminators with one hidden layer. There are
128 ReLU units contained in all hidden layers. The dimen-
sionality of the input latent code is set to 256. Figure 2 depict-
s the evolution of positive and negative samples produced by
GenPU through time. As expected, in all the scenarios, the
induced generator distributions successfully converge to the
respective true data distributions given limited P data. Notice
that the Gaussian mixtures cases demonstrate the capability
of our GenPU to learn a distribution with multiple submodes.

4.2 MNIST and USPS Dataset
Next, the evaluation is carried out on MNIST [LeCun et al.,
1998] and USPS [LeCun et al., 1990] datasets. For MNIST,
we each time select a pair of digits to construct the P and N

1The software codes for UPU and NNPU are downloaded from
https://github.com/kiryor/nnPUlearning

Operation Feature Maps Nonlinearity

Gp(z), Gn(z) : z ∼ N (0, I) 100
fully connected 256 leaky relu
fully connected 256 leaky relu
fully connected 256/784 tanh
Dp(x), Dn(x) 256/784
fully connected 1 sigmoid

Du(x) 256/784
fully connected 256 leaky relu
fully connected 256 leaky relu
fully connected 1 sigmoid
leaky relu slope 0.2

mini-batch size for Xp, Xu 50, 100
learning rate 0.0003

optimizer Adam(0.9, 0.999)
weight, bias initialization 0, 0

Table 1: Specifications of network architecture and hyperparameters
for USPS/MNIST dataset.

sets, each of which consists of 5, 000 training points. The
specifics for architecture and hyperparameters are described
in Table 1. To be challenging, the results of the most visu-
ally similar digit pairs, such as ‘3’ vs ‘5’ and ‘8’ vs ‘3’, are
recorded in Table 1. The best accuracies are shown with the
number of labeled positive examples Nl ranging from 100 to
1. Obviously, our method outperforms UPU in all the cases.
We also observe our GenPU achieves better than or compara-
ble accuracy to NNPU when the number of labeled samples is
relatively large (i.e., Nl = 100). However, when the labeled
samples are insufficient, for instance Nl = 5 of the ‘3’ vs
‘5’ scenario, the accuracy of GenPU slightly decreases from
0.983 to 0.979, which is in contrast to that of NNPU drops
significantly from 0.969 to 0.843. Spectacularly, GenPU stil-
l remains highly accurate even if only one labeled sample is
provided whereas NNPU fails in this situation.

Figure 3 reports the training and test errors of the classi-
fiers for distinct settings of Nl. When Nl is 100, UPU suf-
fers from a serious overfitting to training data, whilst both
NNPU and GenPU perform fairly well. As Nl goes smal-
l (i.e., 5), NNPU also starts to overfit. It should be men-
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Figure 3: Training error and test error of deep PN classifiers on
MINST for the pair ‘3’ vs ‘5’ with distinct Nl. Top : (a) and (b)
for Nl = 100. Bottom : (c) and (d) for Nl = 5.
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MNIST ‘3’ vs. ‘5’ ‘8’ vs. ‘3’
Np : Nu Oracle PN UPU NNPU GenPU Oracle PN UPU NNPU GenPU
100 : 9900 0.993 0.914 0.969 0.983 0.994 0.932 0.974 0.982
50 : 9950 0.993 0.854 0.966 0.982 0.994 0.873 0.965 0.979
10 : 9990 0.993 0.711 0.866 0.980 0.994 0.733 0.907 0.978
5 : 9995 0.993 0.660 0.843 0.979 0.994 0.684 0.840 0.976
1 : 9999 0.993 0.557 0.563 0.976 0.994 0.550 0.573 0.972

Table 2: The accuracy comparison on MNIST for Nl ∈ {100, 50, 10, 5, 1}.

USPS ‘3’ vs ‘5’ ‘8’ vs ‘3’
Nl : Nu UPU NNPU GenPU UPU NNPU GenPU
50 : 1950 0.890 0.965 0.965 0.900 0.965 0.945
10 : 1990 0.735 0.880 0.955 0.725 0.920 0.935
5 : 1995 0.670 0.830 0.950 0.630 0.865 0.925
1 : 1999 0.540 0.610 0.940 0.555 0.635 0.920

Table 3: The accuracy comparison on USPS for Nl ∈ {50, 10, 5, 1}.
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Figure 4: Top : visualization of positive (left) and negative (right)
digits generated using one positive ‘3’ label. Bottom : projected dis-
tributions of ‘3’ vs ‘5’, with ground truth (left) and generated (right).

tioned that the negative training curve of UPU (in blue) is
because the unbiased risk estimators [Du Plessis et al., 2014;
2015] contain negative loss term which is unbounded from
the below. When the classifier becomes very flexible, the risk
can be arbitrarily negative [Kiryo et al., 2017]. Additionally,
the rather limited Nl cause training processes of both UPU
and NNPU behave unstable. In contrast, GenPU avoids over-
fitting to small training P data by restricting the models of
Dp and Dn from being too complex when Nl becomes small
(see Table 1). For visualization, Figure 4 demonstrates the
generated digits with only one labeled ‘3’, together with the
projected distributions induced by Gp and Gn. In Table 3,
similar results can be obtained on USPS data.

4.3 Celeb-A Dataset
We are also interested in how GenPU performs on the real-life
image set. In this set, the data is taken from CelebA dataset
[Liu et al., 2015] and resized to 64×64. We aim at classifying
female from male using partially labeled male face images.

Figure 5: Visualization of male (left) and female (right) faces gener-
ated by GenPU on CelebA 64× 64 data.

To this end, the first 20, 000 male and 20, 000 female faces in
CelebA are chosen as training set and the last 1, 000 faces are
used as test set. Then, 2, 000 out of 20, 000 male faces are are
randomly selected as positively labeled data. The architec-
tures for generators and discriminators follow the design of
the improved WGAN [Gulrajani et al., 2017]. Figure 5 illus-
trates the generated male and female faces, indicating GenPU
is capable of producing visually appealing and diverse images
that belong to the correct categories. A deep PN classifier is
then trained on the synthetic images and achieves the accu-
racy of 87.9 which is better than 86.8 of NNPU and 62.5 of
UPU.

5 Discussion
One key factor to the success of GenPU relies on the capa-
bility of underlying GAN in generating diverse samples with
high quality standard. Only in this way, the ideal performance
could be achieved by training a flexible classifier on those
samples. However, it is widely known that the perfect train-
ing of the original GAN is quite challenging. GAN suffers
from issues of mode collapse and mode oscillation, especial-
ly when high-dimensional data distribution has a large num-
ber of output modes. For this reason, the similar issue of
the original GAN may happen to our GenPU when a lot of
output submodes exist. Since it has empirically been shown
that the original GAN equipped with JSD inclines to mimic
the mode-seeking process towards convergence. Fortunately,
our framework is very flexible in the sense that it can be es-
tablished by switching to different underlying GAN variants
with more effective distance metrics (i.e., integral probabili-
ty metric (IPG)) other than JSD (or f-divergence). By doing
so, the possible issue of the missing modes can be greatly
reduced. Another possible solution is to extend single gener-
ator Gp (Gn) to multiple generators {Gi

p}Ii=1 ({Gj
n}Ji=1) for

the positive (negative) class, also by utilizing the parameter
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sharing scheme to leverage common information and reduce
the computational load. Regarding other application domain-
s, one direction of future work is to use GenPU for text clas-
sification. However, applying GAN to generating sequential
semantically meaningful text is challenging, since GAN has
difficulty in directly generating sequences of discrete token-
s [Goodfellow et al., 2016]. More sophisticated underlying
GANs need to be developed for this purpose.
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