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Abstract
Distance metric learning (DML) has been demon-
strated to be successful and essential in diverse ap-
plications. Transfer metric learning (TML) can
help DML in the target domain with limited la-
bel information by utilizing information from some
related source domains. The heterogeneous TM-
L (HTML), where the feature representations vary
from the source to the target domain, is general and
challenging. However, current HTML approaches
are usually conducted in a batch manner and can-
not handle sequential data. This motivates the pro-
posed online HTML (OHTML) method. In par-
ticular, the distance metric in the source domain
is pre-trained using some existing DML algorithm-
s. To enable knowledge transfer, we assume there
are large amounts of unlabeled corresponding da-
ta that have representations in both the source and
target domains. By enforcing the distances (be-
tween these unlabeled samples) in the target do-
main to agree with those in the source domain un-
der the manifold regularization theme, we learn an
improved target metric. We formulate the problem
in the online setting so that the optimization is effi-
cient and the model can be adapted to new coming
data. Experiments in diverse applications demon-
strate both effectiveness and efficiency of the pro-
posed method.

1 Introduction
Distance metric learning (DML) aims to learn a proper dis-
tance function to reveal the underlying data relationship [X-
ing et al., 2002]. It has been demonstrated to be successful
in diverse applications, such as nearest-neighbor classifica-
tion [Weinberger et al., 2005], clustering [Xing et al., 2002],
content based image retrieval [Jain et al., 2008] and face ver-
ification [Chopra et al., 2005].

To learn an appropriate distance metric, we often need
large amount of label information, such as class labels or
pair (similar/dissimilar) or triplet (relative comparison) con-
straints. However, in real-world applications, the provided
information is usually scarce due to the high labeling cost
and DML is likely to fail in this scenario. Transfer metric

learning (TML) [Zha et al., 2009] is able to alleviate this
issue by transferring information or knowledge from other
related source domains [Shao et al., 2016; Liu et al., 2017;
Wang et al., 2017], where the distance metric is better. Di-
rectly applying the source metric to the target domain is in-
feasible when samples in the source and target domain lie in
different feature spaces or have semantic gap. Such challeng-
ing heterogeneous TML (HTML) setting is popular in real-
world applications. For example, we can use a large corpus
of labeled English documents to help classify Spanish docu-
ments. The dimensions of the English and Spanish document
representations are different due to the utilized different vo-
cabularies. It is advantageous to use some existing expensive
(high-performing but computational intensive) features (such
as deep CNN [Chatfield et al., 2014]) to help learn a better
metric for cheap features (such as LBP [Ojala et al., 2002]).
We may also use the semantic tags to guide the metric learn-
ing of visual features.

Heterogeneous transfer learning (HTL) [Luo et al., 2017a;
2017b; Li et al., 2017] is able to handle the heterogeneous
features [Xie et al., 2016; 2017], and some HTL approach-
es learn feature transformations to map the source and tar-
get samples into a common subspace [Wang and Mahadevan,
2011]. The learned transformation in the target domain can
be used to derive an improved target distance metric. Howev-
er, most of these approaches conduct the learning process on
the entire training set. Hence, they are not applicable in the
online setting, where training samples are provided sequen-
tially (one by one). In addition, it is exhausted to retrain the
model when new (labeled) training samples are available.

To tackle this issue, we develop a novel online HTML (O-
HTML) method, which updates the target metric using the
source knowledge and only one labeled target sample at each
step. In particular, we first learn the distance metric in the
source domain using some existing DML algorithms. The
source metric learning can be performed offline, and only the
obtained metric is needed in the target metric learning. Al-
ternatively, if the source feature (such as deep CNN) is much
more expressive than target feature, we can directly employ
the simple Euclidean metric (or some other pre-defined met-
rics) in the source domain. To build a connection between
the source and target domains, we assume there are abun-
dant unlabeled training samples that have representations in
both the source and target domains. For each pair of such
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unlabeled samples, if they are close to each other in the
source domain, their distances in the target domain should
also be small. By formulating this as a manifold regular-
ization term [Belkin et al., 2006], and simultaneously mini-
mizing the empirical loss w.r.t. the current labeled training
sample, we learn an improved distance metric for the tar-
get domain. Besides, LogDet divergence [Davis et al., 2007;
Jain et al., 2008] is enforced to minimize the differences be-
tween the new obtained target metric and the previous one.
This ensures that the updated metric parameter automatical-
ly satisfy the positive semi-definite (PSD) constraint. We do
not require the costly PSD projection, and thus the updating
algorithm is quite efficient.

There is a recent work of metric imitation (MI) [Dai et al.,
2015] that aims to utilize the expensive source feature to learn
an improved metric for the cheap target feature. Their formu-
lation is also based on manifold learning, but it discards the
valuable label information, and the target metric (parameter-
ized by a linear transformation) is learned in a batch manner.
Eigenvalue decomposition is involved in the optimization and
thus their training complexity is high. The proposed OHTM-
L is more advantageous than MI in that: 1) the target met-
ric can be updated dynamically and adapt to patterns in the
new coming data; 2) the optimization is much more efficient.
We compare the proposed method with representative online
DML algorithms [Jain et al., 2008; Jin et al., 2009] and com-
petitive HTML approaches [Wang and Mahadevan, 2011;
Dai et al., 2015] in various applications including object cat-
egorization, scene clustering, face verification, as well as im-
age retrieval. The results demonstrate both effectiveness and
efficiency of our method.

2 Online Heterogeneous Transfer Metric
Learning

Problem setting: given a source and target domains with
heterogeneous feature representations. The training set
with side information for the target domain is given by
DLM = {x1

Mk,x
2
Mk, yMk}NM

k=1, where x1
Mk,x

2
Mk ∈ RdM ,

and yMk = ±1 indicates x1
Mk and x2

Mk are similar/dissimilar
to each other. In the target domain, the number of sample
pairsNM is small and the utilized feature is cheap. Hence the
resulting distance metric obtained by applying existing DML
algorithms may perform poorly. To improve the target metric,
we assume there is a relevant source domain with training set
DLS = {x1

Sk,x
2
Sk, yMk}NS

k=1. In the source domain, either the
samples with side information are abundant (i.e.,NS is large),
or the feature is more expressive or interpretable than that in
the target domain. Therefore, a better distance metric can
be obtained. To help the target metric learning use the source
domain knowledge, we assume there are large amounts of un-
labeled data that have representations in both the source and
target domains, i.e., DU = {(xUSn,xUMn)}NU

n=1. Such data are
usually easy to collect in practice.

2.1 Problem Formulation
Our ultimate goal is to learn an appropriate Mahalanobis dis-
tance metric for the target domain by transferring knowledge

from the source domain. The Mahalanobis distance is often
defined as

dA(x1
k,x

2
k) = (x1

k − x2
k)TA(x1

k − x2
k), (1)

where A is the metric (parameter of the distance function),
which is an positive semi-definite (PSD) matrix. To facilitate
knowledge transfer [Du et al., 2013; Shao et al., 2014], we
learn distance metric in the source domain beforehand using
some existing DML algorithms, such as LMNN [Weinberger
et al., 2005] and ITML [Davis et al., 2007]. This can be con-
ducted offline and does not have impact on the computational
complexity of target metric learning. In the target domain, the
labeled training pairs are provided sequentially, i.e., only one
labeled pair is available at each step. Suppose the pre-trained
source metric is AS , then we have the following general for-
mulation for updating the target metric AM :

Ak+1
M = arg min

AM�0
F (AM ) =Ψ(AM ) + γADiv(AM , A

k
M )

+ γIRI(dAM
, dAS

;DU ),
(2)

where Ψ(AM ) = V (AM ;x1
Mk,x

2
Mk, yMk) is the empiri-

cal loss w.r.t. AM on the current training pair. We choose
V (AM ;x1

Mk,x
2
Mk, yMk) = g(yMk[1 − dAM

(x1
Mk,x

2
Mk)]),

where g(z) = max{0, b − z} is the hinge loss, and we
set b = 0 in this paper. For notational simplicity, we set
δk = x1

k − x2
k so that dA(x1

k,x
2
k) = δTk Aδk. The regu-

larization term Div(AM , A
k
M ) measures the difference be-

tween the new and previously obtained metric parameters. In
this paper, we choose Div(·, ·) to be the LogDet divergence
[Davis et al., 2007], which is desirable in DML since it is
scale-invariant and can make AM automatically satisfy the
PSD constraint AM � 0.

For any two unlabeled samples (xUi ,x
U
j ) in DU , we cal-

culate their distances dAM
(xUMi,x

U
Mj) and dAS

(xUSi,x
U
Sj) in

the target and source domain respectively. Since the two dis-
tances correspond to the same unlabeled sample pair, they
should agree with each other (dAM

should be small if dAS
is

small). This intuition is formulated in the regularization term
RI , which enables the source metric to guide the metric learn-
ing in the target domain. Different types of regularization can
be employed for RI , such as the absolute difference between
the distances if the source and target features have been prop-
erly normalized. In this paper, we design a manifold based
regularizer since it can take the geometry of the data distri-
bution into consideration. Because the matrix AM is positive
semi-definite, we decompose it as AM = UMU

T
M . Hence the

distance dAM
(xMi,xMj) = (xMi − xMj)

TUMU
T
M (xMi −

xMj) = ‖UTMxMi − UTMxMj‖22. Then we define a regular-
izer so that the transformation UM is smooth over the source
manifold, i.e.,

RI(·) =
1

(NU )2

∑NU

i,j=1
WSij‖UTMxUMi − UTMxUMj‖22

=
1

(NU )2
tr
(
XU
MLS(XU

M )TAM
)
,

(3)

where the source manifold is approximated by the data ad-
jacency graph WS calculated based on the distances dAS
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in the source domain, LS is the graph Laplacian given by
LS = DS−WS , WS is constructed using k nearest-neighbor
(kNN) method, and DS is a diagonal matrix with the element
DSii =

∑NU

j=1WSij . In this paper, we choose WSij to be a
binary weight, i.e., WSij = 1 if the j-th unlabeled sample is
the neighbor of the i-th sample, and 0 otherwise. By substitut-
ing (3) into (2), we obtain the following specific optimization
problem:

arg min
AM�0

F (AM )

= ξMk + γAtr((AkM )−1AM )− γAlogdet(AM )

+
γI

(NU )2
tr(XU

MLS(XU
M )TAM ),

s.t. yMt[δ
T
MkAMδMk − 1] ≤ ξMk,

(4)

where we initialize A0
M as an identity matrix.

2.2 Solution
The solution of the optimization problem (4) is given as in the
following theorem.
Theorem 1. The optimal solution of problem (4) is given by:

At+1
M =

BMk, τM ≤ 0;

BMk − (sMk−1)BMkδMkδ
T
MkBMk

s2Mk
, 0 < τM < 1;

BMk − yMkBMkδMkδ
T
MkBMk

γA+yMksMk
, τM ≥ 1.

(5)

where τM = γA
yMk

(1− 1
sMk

), BMk = ((AkM )−1 + γI
γA
HS)−1

with HS = 1
(NU )2

XU
MLS(XU

M )T and sMk = δTMkBMkδMk.

Proof. For notational simplicity, we omit the subscript M in
the following derivation. By introducing the Lagrangian mul-
tipliers τ ≥ 0, and λ ≥ 0, we obtain the following Lagrangian
of (4):

L(A, ξk, λ, τ)

=ξk + γAtr((Ak)−1A)− γAlogdet(A)

+γItr(HSA)− λξk + τ(yk[δTk Aδk − 1]− ξk).

(6)

where HS = XULS(XU )T . By taking the derivative of L
with respect to A, and setting it to be zero, we have

A−1 = B−1k + τ
1

γA
Zk. (7)

Here Bk = ((Ak)−1 + γI
γA
HS)−1 and Zk = ykδkδ

T
k .

By using the Sherman-Morrison inverse formula, i.e., (B +

uvT )−1 = B−1 − (B−1uvTB−1)
1+vTB−1u

, we obtain:

A = Bk −
τykBkδkδ

T
k Bk

γA + τyksk
, (8)

where sk = δTk Bkδk, and γA + τyksk 6= 0. By setting
∂L(A,ξk,λ,τ)

∂ξk
= 0, we have

1− λ− τ = 0. (9)

Algorithm 1 The proposed online heterogeneous transfer
metric learning (OHTML) algorithm.

Input: Labeled training pairs in the source and target do-
mains, i.e., {x1

Sk,x
2
Sk, ySk} and {x1

Mk,x
2
Mk, yMk};

unlabeled corresponding data in both domains, i.e.,
{(xUSn,xUMn)}.

Pre-calculation: Learn AS in using the labeled data in the
source domain, and calculateHS using the unlabeled cor-
responding data based on the learned AS .

Hyper-parameters: γA and γI .
Output: Ak+1

M .
1: Initialize A0

M = I .
2: for k = 0, 1, 2, · · · do
3: Receive a labeled training pair: (x1

Mk,x
2
Mk, yMk).

4: Calculate the empirical loss Ψ(AM ) based on AkM .
5: If the loss is greater than zero:
6: Pre-compute BMk and sMk;
7: Update Ak+1

M using (5).
8: Else Ak+1

M ← AkM .
9: end for

Since λ ≥ 0, we have τ ≤ 1. By substituting (8) and (9)
into (6), we obtain a sub-problem L(τ) w.r.t. τ . By setting
∂L(τ)
∂τ = 0 and considering Bk = ((Ak)−1 + γI

γA
HS)−1, we

have

τ =
γA
yk

(1− 1

sk
). (10)

Considering that 0 ≤ τ ≤ 1, we obtain

τ = median{γA
yk

(1− 1

sk
), 0, 1}. (11)

By substituting (11) into (8), we have

A =
Bk,

γA
yk

(1− 1
sk

) ≤ 0;

Bk − (sk−1)Bkδkδ
T
k Bk

s2k
, 0 < γA

yk
(1− 1

sk
) < 1;

Bk − ykBkδkδ
T
k Bk

γA+yksk
, γA

yk
(1− 1

sk
) ≥ 1.

(12)

This completes the proof.

In practice, we can calculate BMk using the Sherman-
Morrison inverse formula, i.e., (A + UV )−1 = A−1 −
A−1U(I + V A−1U)−1V A−1, and obtain

BMk = AkM −
γI
γA
AkMHS(I +

γI
γA
AkMHS)−1AkM . (13)

We summarize the main procedure of the proposed OHTML
algorithm in Algorithm 1. The following theorem guarantees
that the obtained resulting matrix Ak+1

M calculated using Al-
gorithm 1 is positive definite.

Theorem 2. The resulting matrix Ak+1
M in (5) is positive def-

inite.

Proof. For notational simplicity, we omit the subscript M in
the following derivation. We use Sd+ and Sd++ to denote the
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sets of positive semi-definite and positive definite matrices
respectively. We have that the matrix HS ∈ Sd+, since the
integrated Laplacian matrix LS ∈ Sd+. Because the inverse of
a positive definite matrix is also positive definite, we conclude
that Bk ∈ Sd++ and sk = δTk Bkδk > 0 for any non-zero
vector δk.
If γA(1− 1

sk
) ≤ 0, it is obvious that xTAk+1x = xTBkx >

0. This indicates that Ak+1 ∈ Sd++.
If 0 < γA(1− 1

sk
) < 1,

xTAk+1x = xTBkx−
(sk − 1)xTBkδkδ

T
k Bkx

s2k

=
(xTBkx)(δTk Bkδk)− (xTBkδk)2

sk
+

xTBkδkδ
T
k Bkx

s2k
.

(14)

It is easy to verify that (xTBkx)(δTk Bkδk) − (xTBkδk)2 ≥
0 according to the Cauchy-Schwarz inequalities. Therefore,
xTAk+1x > 0 for any non-zero vector x, and Ak+1 ∈ Sd++.
If γA(1− 1

sk
) ≥ 1, when yk = 1, for any vector x ∈ Rd, we

have

xTAk+1x = xTBkx−
xTBkδkδ

T
k Bkx

γA + sk

=
γA(xTBkx) + (xTBkx)(δTk Bkδk)− (xTBkδk)2

γA + Sk
> 0.

(15)

Hence Ak+1 ∈ Sd++. When yk = −1, we have γA > sk
since γA( 1

sk
− 1) ≥ 1. Therefore, for any vector x ∈ Rd, we

also have

xTAk+1x = xTBkx +
xTBkδkδ

T
k Bkx

γA − sk

= xTBkx +
(xTBkδk)2

γA − sk
> 0.

(16)

This completes the proof.

The complexity of the proposed algorithm mainly depends
on calculation of the matrix BMk, which involves multiplica-
tion and inversion of dM ×dM matrices. Therefore, the com-
plexity of the proposed algorithm is O(NMd

c
M ), where NM

and dM are the number of labeled training pairs and feature
dimension in the target domain respectively. The constant
c ≤ 3 is determined by the utilized multiplication and inver-
sion algorithms. It should be noted that the matrix HS can
be pre-computed and hence the complexity is independent on
the source domain, as well as the number of unlabeled corre-
spondences. Therefore, the proposed method is quite efficient
as long as dM is not very large.

3 Experiments
In this section, we evaluate the proposed OHTML algorith-
m in four different applications: object categorization, scene
clustering, face verification and image retrieval. In the first
three applications, we investigate how much the source do-
main with powerful but computationally expensive feature

could help DML in the target domain with cheap feature. In
the last application, we utilize the interpretable text feature
to help DML with visual feature, which is often hard to be
interpreted.

3.1 Experimental Setup
Specifically, we compare with the following methods:

• EU: calculating the distance between samples in the tar-
get domain by applying the simple Euclidean metric,
which is served as the baseline.

• LEGO [Jain et al., 2008]: a competitive online DML
algorithm based on LogDet regularization.

• RDML [Jin et al., 2009]: an efficient online DML algo-
rithm that is robust for high dimensional data.

• DAMA [Wang and Mahadevan, 2011]: a competitive
heterogeneous transfer learning (HTL) approach based
on manifold alignment. It utilizes class labels to align
the heterogeneous domains.

• MI [Dai et al., 2015]: a recently proposed metric imita-
tion approach that utilizes the expensive feature to help
learn a good metric for cheap feature. Large amounts
of unlabeled correspondences are used for knowledge
transfer via manifold approximation.

• OHTML: the proposed online HTML method. OHTM-
L(EU) means that we set AS as an identity matrix in
term (3), i.e., do not learn the source metric and directly
employ Euclidean metric in the source domain.

For the single DML algorithms (LEGO and RDML), only
the limited labeled training pairs in the target domain are uti-
lized, and no additional information from the source domain
is leveraged. For DAMA and MI, a linear transformation UM
is learned for the target domain and we derive the metric pa-
rameter as AM = UMU

T
M . The candidate set for choos-

ing the trade-off hyper-parameters is {10i|i = −5, · · · , 4}
if unspecified in the original papers. The hyper-parameters
γA and γI are tuned on the set {10i|i = −5, · · · , 4} and
{10i|i = −2, · · · , 7} respectively. Hyper-parameter determi-
nation is still an open issue in HTL due to the limited labeled
data. To this end, best performance over the candidate sets
are reported for all compared methods.

For all the different methods, kernel principal componen-
t analysis (KPCA) is adopted to explore some nonlinearity
in the data, and also reduce the dimensionality. We run the
experiments ten times by randomly choosing the labeled set.
The algorithms are implemented using Matlab and the exper-
iments are conducted on a 3.4 GHz Intel Xeon E5-2687W (8
cores) computer.

3.2 Object Categorization
This set of experiments is conducted on the popular Caltech-
101 [Fei-Fei et al., 2004] dataset, which contains 8, 677 im-
ages that belong to 101 object categories. The expensive deep
CNN [Chatfield et al., 2014] and cheap PHOG [Bosch et al.,
2007] are adopted as the feature representations in the source
and target domains respectively. The features are provided
by [Dai et al., 2015], where the original feature dimensions
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Figure 1: Classification accuracy and training cost w.r.t. the number
of labeled training samples for each category on the Caltech dataset.

are 4096 and 40 respectively. The resulting dimensions after
KPCA are 512 and 40. Half of the dataset is used for training
and the remaining is for test. In both the source and target do-
mains, we randomly select {10, 15, 20, 25, 30} labeled train-
ing samples for each category. The labeled training pairs are
constructed according to the strategy in [Weinberger et al.,
2005], and kNN is adopted as the classifier.

Performance w.r.t. Different Number of Labeled Samples
The classification accuracies and training costs w.r.t. a varied
number of labeled training samples are shown in Fig. 1. We
do not show the curve of OHTML(EU) in the time cost figure
since the source metric AS is pre-calculated and the train-
ing costs of OHTML and OHTML(EU) are the same. From
the results, we observe that: 1) the accuracies of all differ-
ent methods improve with an increasing number of labeled
samples. The single domain DML algorithms (LEGO and
RDML) are only slightly better than the EU baseline, while
the HTL approaches (DAMA, MI and OHTML) outperfor-
m them significantly. This demonstrates that knowledge of
the source domain can help the target metric learning and be
successfully transferred to the target domain by the differ-
ent HTL approaches; 2) MI is better than DAMA when the
number of labeled data is small (such as 10), but DAMA is
better when more labeled data are provided. This is because
MI only utilizes the unlabeled corresponding data to facili-
tate knowledge transfer, while DAMA relies on labeled data;
3) the proposed OHTML outperforms MI consistently since
we can leverage the label information in the target domain. O-
HTML(EU) is a bit worse than OHTML since we do not learn
the source metric in OHTML(EU). The accuracy decrease is
not significant since the utilized source feature is much more
expressive than the target feature and the estimated data ad-
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Figure 2: Classification accuracy and training cost w.r.t. the number
of unlabeled corresponding samples (percentage of training data) in
both domains on the Caltech dataset.

Methods Purity CPU time (s)
EU 0.368±0.000 NA

LEGO 0.373±0.014 0.184±0.036
RDML 0.376±0.010 0.068±0.022
DAMA 0.486±0.042 0.709±0.013

MI 0.560±0.000 6.198±0.043
OHTML(EU) 0.563±0.011

0.433±0.086
OHTML 0.576±0.022

Table 1: Clustering purity and training cost on the Scene-15 dataset.
The number of labeled samples for each category is 10.

jacency graph WS in the source domain can be used to guide
the target metric learning even without learning the source
metric; 4) OHTML is also superior to DAMA given limited
labeled data since we use the unlabeled correspondences to
build domain connection; 5) the training time of DAMA in-
creases sharply when more labeled instances are given, while
the proposed OHTML is much steady and the costs are only
slightly higher than the single domain DML algorithms, and
much lower than MI and DAMA. This demonstrate efficiency
of our method.

Performance w.r.t. Different Number of Unlabeled
Correspondences
A certain percentage of training data is used as the unlabeled
corresponding data. The classification accuracies and train-
ing costs w.r.t. a varied percentage are shown in Fig. 2. We
only report the performance of MI and OHTML since oth-
er approaches do not use such data. It can be seen from the
results that: 1) accuracies of both MI and OHTML increase
when more unlabeled correspondences are provided, and the
proposed method outperforms MI consistently; 2) the train-
ing cost of MI increases dramatically while OHTML is much
steady.
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Methods Accuracy CPU time (s)
EU 0.831±0.009 NA

LEGO 0.843±0.012 3.283±0.224
RDML 0.853±0.008 1.533±0.216
DAMA 0.906±0.023 409.702±17.555

MI 0.885±0.014 945.203±1.780
OHTML(EU) 0.918±0.011

106.375±0.874
OHTML 0.924±0.010

Table 2: Verification accuracy and training cost on the LFW dataset.

3.3 Scene Clustering
We conduct scene clustering on the Scene-15 [Lazebnik et
al., 2006] dataset. It consists of 4, 585 images from 15 natural
scene categories. CNN [Chatfield et al., 2014] and LBP [O-
jala et al., 2002] are used as the feature representations of the
source and target domains respectively. The resulting dimen-
sions after KPCA are 512 and 50 respectively. We random-
ly split the dataset into equal size for training and test. The
number of labeled samples is 10 for each category. Following
[Dai et al., 2015], spectral clustering is applied to group the
data and the evaluation criterion is the purity of clustering.
we report the performance in Table 1.

We can see from the results that the HTL approaches are
much better than the single domain DML algorithms, which
are only comparable to the EU baseline. MI and OHTML
outperforms DAMA significantly and the computational cost
of DAMA is low. This is because the total number of labeled
samples (15×10) is quite small in this set of experiments. The
standard deviation of MI is zero since: 1) it is an unlabeled
approach and the learned target metric does not dependent on
the varied labeled sets; 2) the labeled set is not utilized for
test in clustering.

3.4 Face Verification
In this subsection, we employ the well-known labeled face
in the wild (LFW) [Huang et al., 2007] dataset, where there
are 13, 233 face images of 5, 749 individuals. The source and
target features are CNN and LBP [Chen et al., 2013] respec-
tively. The dimension of LBP is reduced to 400 suggested by
[Chen et al., 2013]. We conduct experiments under the unre-
stricted protocol since DAMA needs the class label informa-
tion, and no outside data are utilized. We adopt the standard
10-folds split of the dataset [Huang et al., 2007], and each
fold is used for test in turn. The performance is reported in
Table 2.

From the results we can see that: 1) although the single
domain DML algorithms are very efficient, the improvements
on accuracy are quite limited compared with the EU baseline;
2) DAMA is superior to MI since the provided label informa-
tion in both domains is enough for it to achieve satisfactory
performance. By making use of both the unlabeled corre-
sponding data and label information in the target domain, we
obtain the best accuracy, and is more efficient than MI and
DAMA.

Methods MAP CPU time (s)
EU 0.265±0.000 NA

LEGO 0.274±0.007 0.673±0.030
RDML 0.266±0.001 0.375±0.029
DAMA 0.268±0.002 0.627±0.020

MI 0.291±0.000 4.176±0.067
OHTML(EU) 0.292±0.002

3.314±0.402
OHTML 0.296±0.003

Table 3: Retrieval MAP and training cost on the Corel5K dataset.
The number of labeled instances for each concept is 10.

3.5 Image Retrieval
We further apply the different methods to image retrieval and
the Corel5K [Duygulu et al., 2002] dataset is used for e-
valuation. The dataset contains 5, 000 images belonging to
50 concepts (100 images for each concept). The semantic
tag is used as the source feature and the bag-of-visual word
(BoVW) based on the local SIFT [Lowe, 2004] is adopted
as the target feature. Dimensions of both the tag and BoVW
features are reduced to 100, and half of the data are used for
training. Following [Dai et al., 2015], mean average precision
(MAP) is adopted as the evaluation criterion, and the results
are shown in Table 3.

In this application, DAMA is only comparable to the EU
baseline and single domain DML algorithms. This may be
because there is semantic gap between the textual and visu-
al features. Thus it is harder to build connections between
the source and target domains using the limited label infor-
mation. MI and the proposed OHTML are much better and
our method outperforms MI in terms of both MAP score and
training cost.

4 Conclusion
This paper presents a general online model for heterogeneous
transfer metric learning (HTML). The model is based on the
direct pairwise distance minimization between the source and
target domain. By formulating it under the manifold regular-
ization theme, we obtain an efficient online HTML (OHTML)
algorithm. Both effectiveness and efficiency of the proposed
method are verified in diverse applications. We mainly con-
clude from the results that: 1) it is advantageous to utilize the
expensive or interpretable feature to help learning a relatively
good metric for the cheap feature or the feature that is hard
to interpret; 2) the developed online model can significantly
accelerate HTML with little accuracy sacrifice in most cas-
es, especially when the labeled data are limited in the target
domain.
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