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Abstract

Generative adversarial networks (GANs) have
shown impressive results, however, the generator
and the discriminator are optimized in finite param-
eter space which means their performance still need
to be improved. In this paper, we propose a novel
approach of adversarial training between one gen-
erator and an exponential number of critics which
are sampled from the original discriminative neu-
ral network via dropout. As discrepancy between
outputs of different sub-networks of a same sam-
ple can measure the consistency of these critics, we
encourage the critics to be consistent to real sam-
ples and inconsistent to generated samples during
training, while the generator is trained to generate
consistent samples for different critics. Experimen-
tal results demonstrate that our method can obtain
state-of-the-art Inception scores of 9.17 and 10.02
on supervised CIFAR-10 and unsupervised STL-
10 image generation tasks, respectively, as well as
achieve competitive semi-supervised classification
results on several benchmarks. Importantly, we
demonstrate that our method can maintain stability
in training and alleviate mode collapse.

1 Introduction
Generative adversarial networks [Goodfellow et al., 2014] are
one of the most prominent approaches of generative models.
They provide an attractive approach to train generative mod-
els that directly map hidden codes to real-life data distribu-
tion, and are widely used in a number of tasks such as high
quality image generation [Berthelot et al., 2017; Grinblat et
al., 2017; Takeru Miyato, 2018] and semi-supervised classifi-
cation [Springenberg, 2015; Dai et al., 2017; LI et al., 2017a].

Despite the success of GANs, training GANs to converge
to an equilibrium point is still a challenge because, theoret-
ically, the generator and the discriminator are required to be
updated directly in function space. However, the generator
and the discriminator are presented with deep nets and are op-
timized in finite parameter space [Goodfellow, 2017]. What’s
more, the notorious gradient vanishing problem of sigmoid
function stops the generator from learning anything when the

discriminator is too strong [Arjovsky et al., 2017], causing
unstable training process and even mode collapse.

Existing GAN variants of controlling discriminator’s per-
formance fall into two branches: revising the objective of
discriminator [Arjovsky et al., 2017; Nowozin et al., 2016;
Mao et al., 2016], or applying multiple discriminators [Arora
et al., 2017; Nguyen et al., 2017; Durugkar et al., 2016].
Many modified objective variants are proven more effective
than the original one in theory, however, there is a lack of
evidence in practical application [Lucic et al., 2017].

Some recent studies have shown that multiple discrimina-
tors (aka critics) can be trained to alleviate the training in-
stability and mode collapse problems. Traditional methods
such as MIX+GAN [Arora et al., 2017], GMAN [Durugkar
et al., 2016] and D2GAN [Nguyen et al., 2017] are assem-
bled models which use several deep neural networks as crit-
ics, while [Liu and Tuzel, 2016] is to enforce a weight-sharing
constraint between a pair of GANs. But the critics in these
methods are limited to a small number, otherwise parameter
explosion will make them impractical for computation.

The motivation of our method is to create nearly infinite
numbers of critics with tolerable expense. Additionally, we
require these critics to coordinately reflect different aspects
of criterions to avoid redundancy. That is, they should be
consistently supportive when judging real samples, but can
perform variously to distinguish different defects of generated
samples, such as “blur”, “incomplete”, or “distortion”.

Under such inspiration, in this paper, we construct an ex-
ponential number of critics by the Dropout technique. Such
a manner has three advantages. First, original adversarial ob-
jective can be optimized in nearly infinite parameter space
thanks to an exponential number of candidate sub-networks
selected via dropout; Second, these critics share parameters
to avoid parameter explosion; The last, it can keep the benefit
of avoiding feature co-adaptation which dropout has shown
[Srivastava et al., 2014].

Furthermore, we take advantage of adversarial consistency
to reduce critics redundancy. The critics are trained to be con-
sistent to the scores of real images, and be inconsistent to the
scores of generated images. As different critics can be seen
as different feature extractors and each critic detects a subset
of features, requiring the critics to be consistent to real im-
ages is equal to asking critics evaluate real image as real with
high certainty even when some features are not detected; and
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requiring the critics to be inconsistent to generated images
is equal to encouraging critics explore different criterions to
evaluate images. For the generator, accordingly, its goal is to
generate images along the manifold that the critics are con-
sistent to. We refer to our approach as Consistent Adversarial
Training Enhanced GANs (CAGAN). Specifically, the main
contributions of this paper are: (1) We construct an expo-
nential number of critics with the dropout technique. (2) We
propose consistent adversarial training constraints and apply
them to enhance GAN models. (3) Experimental results illus-
trate that CAGAN achieves state-of-the-art Inception scores
of 9.17 and 10.02 on CIFAR-10 and STL-10 respectively, as
well as obtains competitive results on semi-supervised bench-
marks. (4) We demonstrate that CAGAN can maintain a sta-
ble training process of WGAN-GP and alleviate the mode
collapse problem of Improved GAN.

2 Related Work
The framework of GANs [Goodfellow et al., 2014] was pro-
posed to estimate generative models via an adversarial pro-
cess. And it has attracted huge attention since DCGAN [Rad-
ford et al., 2015] showed its impressive results on image
generation. However, the well-known delicate and unstable
training process of GANs makes it a persisting challenge to
control the performance of the discriminator [Takeru Miyato,
2018]. Many variants are proposed to solve the problem or
make improvement, and they can be divided into two main
categories: modifying the objective of the discriminator, or
employing additional discriminators to feed back useful gra-
dient information to the generator.

There are several recent works attempting to revise the loss
function of the discriminator. f -GAN [Nowozin et al., 2016]
is proposed to generalize GAN to f -divergence based on the
observation that the Jensen-Shannon divergence is a special
case of f -divergence. WGAN [Arjovsky et al., 2017] is pro-
posed to use Earth-Mover distance as its objective function.
BEGAN [Berthelot et al., 2017] uses an auto-encoder as the
discriminator and optimizes a lower bound of the Wasser-
stein distance between auto-encoder loss distributions on real
and fake data. LSGAN [Mao et al., 2016] proposes a least-
squares loss function for the discriminator and shows that
minimizing the objective is equal to minimizing Pearson χ2

divergence. In spite of their theoretical proof of solving the
instability of GAN, a large-scale study provided by [Lucic et
al., 2017] found that there is no evidence that any of these
methods outperform the original GAN.

An alternative direction is to train multiple discriminators.
GMAN [Durugkar et al., 2016] trains many discriminators to
boost the learning of generator. [Warde-Farley and Bengio,
2017] propose DFM to assist the generator to generate images
that match the statistics of real samples with a Denoising Au-
toEncoder. MIX+GAN [Arora et al., 2017] proves that there
exists an equilibrium in infinite mixture deep nets, and shows
that training a mixture of generator and discriminators can
stabilize training as well as improve the performance in some
cases. AdaGAN [Tolstikhin et al., 2017] proposes an iterative
procedure to add a new component into a mixture model by
running a GAN on a re-weighted sample. D2GAN [Nguyen

et al., 2017] employs two discriminators, one of which re-
wards high scores for real samples and the other one favorites
generated samples.

Apart from above mentioned methods, there have been
other efforts in improving GANs. [Springenberg, 2015] pro-
poses CatGAN to replace the binary discriminator in origi-
nal GAN with a multi-class classifier. ALI [Dumoulin et al.,
2016] adds an inference model to GANs and jointly learns a
generation net. Triple GAN [LI et al., 2017a] adds a classi-
fier to help GAN framework characterize conditional distri-
bution. Bayesian GAN [Saatchi and Wilson, 2017] proposes
a framework to marginalize the weights of the generator and
discriminator nets. Bad GAN [Dai et al., 2017] shows that
bad GAN is the requirement for good semi-supervised classi-
fication performance. SN-GANs [Takeru Miyato, 2018] pro-
pose to use spectral normalization to stabilize the training of
discriminator. MGAN [Hoang et al., 2018] proposes an ad-
versarial learning process between multiple generators and a
discriminator, as well as a classifier specifying which gen-
erator a sample comes from. MMD GAN [Li et al., 2017b]
proposes adversarial kernel learning to improve the model ex-
pressiveness and computational efficiency.

Dropout [Srivastava et al., 2014] is an effective method to
avoid network from over-fitting and can prevent units from
co-adapting. [Pathak et al., 2016] use dropout as a manner
of avoiding over-fitting and obtaining impressive result in se-
mantic in-painting. In order to check the 1-Lipschitz continu-
ity in real data manifold, CT-GAN [Wei et al., 2018] inputs a
real sample to the critic net twice via dropout in hidden lay-
ers, and compares the difference between outputs. Recently
AM-GAN [Zhou et al., 2018] appends dropout to the discrim-
inator for only supervised image generation and studies how
class labels and associated losses influence GAN’s training.

3 Preliminaries
The original GAN framework consists of a generator G and
a discriminator D. To give the generator G the ability of
mapping random noise z ∼ p(z) to the real data distribu-
tion x ∼ Pr, the discriminator is trained to tell apart fake
samples x̃ = G(z) from the real input data, and the gener-
ator is optimized to generate plausible samples that fool the
discriminator. The minimax game between D and G is:

min
G

max
D

E
x∼Pr

[log(D(x))] + E
x̃∼Pg

[log(1−D(x̃))] (1)

where Pr and Pg are real data distribution and generated data
distribution respectively.

3.1 WGAN and WGAN-GP
The Wasserstein GAN [Arjovsky et al., 2017] was proposed
to address the problem of instability in GAN training. In or-
der to avoid the discontinuities and vanishing gradients of the
original GAN, WGAN was proposed to use Earth-Mover dis-
tance as the evaluation of discrepancy between real data dis-
tribution and model distribution. The objectives of the critic
and the generator are derived as:

LWGAN
D = E

x̃∼Pg

[D(x̃)]− E
x∼Pr

[D(x)] (2)
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LWGAN
G = − E

z∼p(z)
[D(G(z))] (3)

and the critic D should be restricted to the space of 1-
Lipschitz functions ‖D‖L ≤ 1 which is imposed by weight
clipping to lay the weights of the critic network within a com-
pact space [−c, c], say, [−0.01, 0.01].

[Gulrajani et al., 2017] gives an alternative way of im-
posing the 1-Lipschitz continuity by appending a gradient
penalty term to the objective of the critic:

LGP
D = LWGAN

D + λGP E
x̂∼Px̂

[
(‖∇x̂D(x̂)‖2 − 1)2

]
(4)

where x̂ is uniformly sampled from straight lines between
generated and real sample points. λGP is often set to 10,
and the loss function of the generator is kept the same as the
original WGAN, i.e. LGP

G = LWGAN
G .

3.2 Improved GAN
The Improved GAN [Salimans et al., 2016] generalizes the
objective of original discriminator from 2-class classification
problem to K+1 classes case where real samples are associ-
ated with class labels y ∈ {1, ...,K} and generated samples
correspond to the (K + 1)th label. Such a generalization is
suitable for semi-supervised learning. The objective of the
discriminator is:

LImp
D = − E

x,y∼Px,y

[logD(y|x)]− E
x̃∼Pg

[logD(K + 1|x̃)]

− E
x∼Pr

[log(1−D(K + 1|x))] (5)

and the objective of the generator changes to generate data
that match feature statistic of real data:

LImp
G =

∥∥ E
x∼Pr

f(x)− E
z∼p(z)

f(G(z))
∥∥2 (6)

where f(.) denotes the activation on an intermediate layer of
the discriminator.

4 Methods
In this section, we describe our methodology, the basic idea,
design and implementation of our Consistent Adversarial
Training Enhanced GAN (CAGAN).

4.1 Multiple Critics Construction via Dropout
Recent studies have shown that multiple critics can be trained
to alleviate the training instability and mode collapse problem
of GAN. The motivation of our method is to create nearly
infinite numbers of critics with tolerable expense.

We propose to produce multiple critics by randomly select-
ing sub-networks from a deep neural networks via dropout. It
is realized by adding dropout layers to discriminator. Sup-
pose the keep probabilities of dropouts are set to be 0.5, a
discriminator has M hidden layers and each hidden layer has
averagely N nodes, then the number of different critics that
can be generated by dropouts will be 2M×N . For example,
in ResNet, M is 3 and N is 8 × 8 × 128, thus it will gener-
ate approximately 224576 sub-networks via dropout, which is
nearly infinite in practice.

The above way of using the dropout technique to generate
multiple critics has three benefits: (1) The adversarial game
can be optimized in an exponential and nearly infinite space.
(2) A huge number of critics are constructed while parame-
ter explosion is avoided because they share parameters. (3) It
can prevent the generator from over-fitting the finite discrete
data. Without dropout, networks are trained on a finite dis-
crete dataset P̃r sampled from actual continuous infinite real
distribution Pr. As a result, the global optimum Pg = P̃r

of this game fails to capture the structure of Pr [Durugkar et
al., 2016]. But our method can allow the game escape the
degenerate situation where Pg = P̃r when converging.

4.2 Consistent Adversarial Training Objectives
Under the condition of multiple critics, we propose a con-
sistent adversarial training method to train the generator and
multiple critics. Our basic idea is to require these critics to
coordinately reflect different aspect of criterions to avoid re-
dundancy. Concretely, in each iteration, we randomly select
two temporal subnets from the discriminator neural network
via dropout, and require the two critics to be consistent to real
samples and be inconsistent to generated samples when train-
ing D. Then G is optimized to generate samples that critics
are consistent to. Formally, the consistent adversarial objec-
tives of the critics D and the generator G are:

LCA
D = E

x∼Pr

[C(x)] − E
x̃∼Pg

[C(x̃)] (7)

LCA
G = E

z∼p(z)
[C(G(z))] (8)

where C(.) is the function of evaluating the consistency of
two critics on a sample. On the image generation task:

Cgen(x)=‖D1(x)−D2(x)‖2+
λf
df
‖f1(x)−f2(x)‖2 (9)

D1(.) and f1(.) correspond to the output and the penultimate
activation of the first randomly selected critic, while D2(.)
and f2(.) are for the second critic. df is the dimension of
the penultimate layer and λf is a hyper-parameter. For semi-
supervised learning, the consistency can be written as:

Csemi(x) =
1

dc
‖Softmax(D1(x))−Softmax(D2(x))‖2

+
λf
df
‖f1(x)− f2(x)‖2 (10)

where dc is the dimension of the critic’s output layer.

4.3 Equilibrium of Consistency Loss
As the consistency loss needs to be combined with the orig-
inal generative adversarial loss to train generator and critics,
in practice, the consistency loss of critics for generated sam-
ples will increase explosively when the update times of critics
are more than that of generator during each iteration (such as
WGAN and WGAN-GP). To balance the consistency loss be-
tween real images and generated images, we borrow the idea
of Proportional Control Theory (which is also used in [Berth-
elot et al., 2017]) to maintain such an equilibria condition:

E
x∼Pr

[C(x)] = E
z∼p(z)

[C(G(z))] (11)
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The objectives of our consistent adversarial training are de-
rived as: L

CA
D = Ex[C(x)]− ktEz[C(G(z))] for D
LCA
G = Ez[C(G(z))] for G

kt+1 = kt + λk(LCA
R − LCA

G ) for k
(12)

where LCA
R = Ex[C(x)]. We initialize k0 = 0, and update k

with learning rate λk = 0.001 after each generator iteration.

4.4 Our WGAN-GP Enhancement
Based on the above design of our CAGAN, we implement it
to enhance WGAN-GP and apply it to the image generation
task. Using Equation 9 to measure consistency, we combine
Equation 12 with the objectives of WGAN-GP as the objec-
tives of our CAGAN for image generation task:{

Lgen
D = LGP

D + λCALCA
D

Lgen
G = LGP

G + λCALCA
G

(13)

4.5 Our Improved GAN Enhancement
We further implement our CAGAN to enhance the Improved
GAN and apply it to the semi-supervised classification task.
Employing Equation 10 evaluating consistency, we combine
Equation 12 with the objectives of Improved GAN as the ob-
jectives of our CAGAN for semi-supervised classification:{

Lsemi
D = LImp

D + λCALCA
D

Lsemi
G = LImp

G + λCALCA
G

(14)

5 Experiments
In this section, we evaluate the performance of CAGAN on
image generation and semi-supervised classification tasks.

5.1 Image generation
Datasets and Evaluation Protocols
To investigate the effectiveness of our CAGAN on image
generation task, we conduct experiments on two benchmark
datasets: CIFAR-10 [Krizhevsky, 2009] and STL-10 [Coates
et al., 2011]. CIFAR-10 contains 50,000 labeled training im-
ages of size 32 × 32 from 10 classes. We use it under unsu-
pervised and supervised settings. STL-10 is subsampled from
ImageNet which is more diverse than CIFAR-10, and it con-
tains 100,000 unlabeled images of size 96× 96. To compare
with other methods, we rescale the STL-10 images down to
48×48 as the same as other methods. We use Inception score
for quantitative evaluation. Following [Salimans et al., 2016],
we compute the average Inception score over 10 independent
groups of 5,000 randomly generated samples for CIFAR-10
and STL-10.

Network Structure and Hyper-parameters
We use ResNet designed by [Gulrajani et al., 2017] for fair
comparison except that we append dropouts with unit keep
probability of (1.0, 0.8, 0.5, 0.5) to the four residual blocks,
respectively. We keep the hyper-parameters all the same on
CIFAR-10 and STL-10 for all the experiments. In particu-
lar, we follow original WGAN-GP set λGP = 10, mini-batch
size of 64 when training D, and mini-batch size of 128 when

training G. We use Adam optimizer with a learning rate of
0.0002, β1 = 0, β2 = 0.9 to train G and D, and the learn-
ing rate is decreased linearly to 0. For consistent adversarial
hyper-parameters, we set λf = 0.1, λCA = 2, and training
totally 700 epochs. For the image generation task, we modify
kt to 0.1 + kt in Equation 12, where 0.1 is a pseudo factor
in order to guarantee the critics has an effect on evaluating
consistency of the generated samples.

Comparison to State-of-the-art
We report the Inception scores obtained by our CAGAN and
comparative state-of-the-art methods (which are introduced
in the Related Work section) in Table 1. The 2× filters in-
dicate that the number of feature maps in each convolutional
layer of both the generator net and the critic net are doubled
from 128 to 256. Photo-realistic random generated images
are shown in Figure 1.

Overall, our proposed CAGAN consistently outperforms
other methods on these tasks. It achieves new record incep-
tion scores of 9.17 and 10.02 on supervised CIFAR-10 and
unsupervised STL-10, and the shape of generated images on
supervised CIFAR-10 are demonstrated in Figure 1(b). To the
best of our knowledge, our CAGAN is the first to exceed the
inception score of 9 with a remarkable margin on CIFAR-10,
and also the first to reach inception score of 10 on STL-10.

It is worth noting that on unsupervised CIFAR-10, the in-
ception scores of WGAN-GP and Splitting GAN [Grinblat
et al., 2017] both drop when feature maps are doubled. In
contrast, our model gains better performance. We think more
parameters in their networks needs to be co-adapted, which
restricts the expressive ability of their networks. But the crit-
ics selected via dropout can avoid this, and doubled feature
maps allow critics to increase their capacity to explore more
useful information. Thus they can characterize data distribu-
tion and capture class structure better.

Ablation Studies
In order to further understand the effect of each component
in our model, we conduct comprehensive ablation studies on
the unsupervised CIFAR-10 image generation task. All ab-
lated models below share the same hyper-parameters during
training.

(a) WGAN-GP: Original gradient penalty WGAN. (b)
WGAN-GP (w/ dropout): The same mode as WGAN-GP
except that dropouts are added to the discriminator network.
(c) WGAN-CT: Only consistency loss of real samples being
added to the critic loss, that is, critics are only constrained to
be consistent to real samples. (d) WGAN-CT-G: Consistency
loss of real samples being added to the critic loss, meanwhile,
consistency loss of fake samples being added to the generator
loss. (e) CAGAN: The full model that trains critics to be con-
sistent to real samples and inconsistent to generated samples,
and optimizes the generator to generate images that critics
are consistent to. (f) CAGAN (w/ pseudo factor): The final
model that we use for the image generation task.

Their Inception scores are illustrated in Table 2. We also
plot the Wasserstein estimate curves of the entire learning
process of these models in Figure 2. Comparing the inception
scores and Wasserstein estimates, we summarize our results
as follows:
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Model CIFAR-10 STL-10Unsupervised Supervised
(Real data) 11.24± 0.12 26.08± 0.26
DCGANs 6.16± 0.07 6.58 7.84± 0.07
DFM 7.72± 0.13 − 8.51± 0.13
WGAN-GP 7.86± 0.07 8.42± 0.10 9.05± 0.12
Splitting GAN 7.90± 0.09 8.73± 0.08 9.50± 0.13
CT-GAN 8.12± 0.12 8.81± 0.13 −
SN-GANs 8.24± 0.08 8.59± 0.12 9.04± 0.12
MGAN 8.33± 0.10 − 9.22± 0.11
our CAGAN 8.35± 0.09 8.89± 0.11 9.51± 0.14
WGAN-GP (2× filters) 7.81± 0.10 8.67± 0.14 −
Splitting GAN (2× filters) 7.80± 0.08 8.87± 0.09 −
AM-GAN (≈ 2× filters) − 8.91± 0.11 −
our CAGAN (2× filters) 8.42± 0.07 9.17± 0.13 10.02± 0.13

Table 1: Inception scores of image generation on unsupervised/supervised CIFAR-10 and unsupervised STL-10.

(a) CIFAR-10 32× 32 unsupervised (b) CIFAR-10 32× 32 supervised (c) STL-10 48× 48 unsupervised

Figure 1: Generated images by our CAGAN model.

Model Inception score
(a) WGAN-GP 7.86± 0.07
(b) WGAN-GP (w/ dropout) 7.71± 0.07
(c) WGAN-CT 8.12± 0.12
(d) WGAN-CT-G 8.23± 0.09
(e) CAGAN 8.29± 0.10
(f) CAGAN (w/ pseudo factor) 8.35± 0.07

Table 2: Ablation studies of CAGAN on unsupervised CIFAR-10.

(1) For WGAN-GP, its training process is unstable and the
Wasserstein estimate rises up during a long continuous epoch
period. We think it is because the only critic in WGAN-GP
can evaluate samples well with all features, but is not good at
transferring valuable improvement suggestions to the genera-
tor. The critic is too strong for the generator to keep up with
it. (2) When only adding dropout to WGAN-GP, its exponen-
tial critics decrease the Wasserstein estimate but increase its
instability. The probable reason is that different critics extract
different features to evaluate samples, but they give diver-
gent information to the generator and disturb its learning pro-
cess. (3) When consistent adversarial constraints are added,
the other four models accordantly perform much more stably.
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(a) WGAN-GP
(b) WGAN-GP (w/ dropout)
(c) WGAN-CT
(d) WGAN-CT-G
(e) CAGAN
(f) CAGAN (w/ pseudo factor)

Figure 2: Wasserstein estimate of each model on unsupervised
CIFAR-10 image generation task.

But to our surprise, from Table 2 and Figure 2, these mod-
els consistently agree with that higher Wasserstein estimate
reward higher Inception score. After analysis, we conclude
that stable but higher Wasserstein estimate promise genera-
tor more exploration space, thus multiple critics can provide
various and meaningful guidance to the generator to generate
better images.
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Methods MNIST (# errors) SVHN (% errors) CIFAR-10 (% errors)
CatGAN 191± 10 − 19.58± 0.46
Improved GAN 93± 6.5 8.11± 1.3 18.63± 2.32
ALI − 7.42± 0.65 17.99± 1.62
Triple-GAN 91± 58 5.77± 0.17 16.99± 0.36
CT-GAN 89± 13 − −
Bayesian GAN 89± 3.4 14.1± 2.3 22.8± 2.4
our CAGAN 81.9± 4.5 4.83± 0.09 12.61± 0.12
Bad GAN (FM+VI) 86.5± 10.6 5.29 14.41± 0.30
Bad GAN (FM+LD) 79.5± 9.8 − −
Bad GAN (FM+PT+Ent) − 4.25± 0.03 −

Table 3: Comparison with state-of-the-art methods on 3 benchmarks. Only GAN based methods without data augmentation are included.

5.2 Semi-Supervised Image Classification
Datasets
To demonstrate that our method can enhance the Improved
GAN on the semi-supervised classification task, we gather
three widely used benchmark datasets: MNIST, SVHN, and
CIFAR-10. The same to other methods, we randomly select
100, 4,000, and 1,000 labeled images from MNIST, CIFAR-
10 and SVHN datasets as supervision, and the entire training
set is used for unsupervised training. We evaluate the results
with classification error on the testing set of each dataset.

Network Structure and Hyper-parameters
For MNIST, We keep the network structure the same as Im-
proved GAN. The generator and classifier are initialized with
N (0, 0.1). We use batch size of 100, λf = 0, λCA = 0.2, and
Adam optimizer with learning rate of 0.003, β1 = 0.5, β2 =
0.95 to train generator and classifier 300 epochs. For CIFAR-
10, we use the same network structure as Improved GAN,
both generator and classifier use 128 feature maps and are ini-
tialized with N (0, 0.01). We use batch size of 100, learning
rate of 0.0003, β1 = 0.5, β2 = 0.99, and λf = 0.1, λCA = 1
to train networks 1,000 epochs. For SVHN, the experiment
settings are the same with CIFAR-10 except that the batch
size is set to 64 and the total number of epochs is 300.

Results
The results are reported in Table 3. For MNIST, our result is
averaged over 10 random seeds. For SVHN and CIFAR-10,
the mean and standard deviation are obtained from 5 times of
repetitive running. Our results consistently exceed the base-
line model Improved GAN with a significant margin. We find
a recent Bad GAN method [Dai et al., 2017] also achieves im-
pressive results on the semi-supervised classification task, but
their best results are obtained by combining different models
to specifically fit different datasets. Mode collapse is a noto-
rious problem of GAN, which can be clearly observed when
GANs are applied to semi-supervised learning. The Improved
GAN encounters mode collapse. Inspiringly, we find that our
method can alleviate the mode collapse of Improved GAN
and generate diverse samples, as shown in Figure 3.

6 Conclusion
This paper proposes an approach of consistent adversarial
training between a generator and an exponential number of
critics generated via dropout. The critics are trained to be

(a) ImpGAN on CIFAR-10 (b) ours on CIFAR-10

(c) ImpGAN on SVHN (d) ours on SVHN

Figure 3: Image generation comparison between Improved GAN
and our model.

consistent to real samples and inconsistent to generated sam-
ples, so that the critics can explore more effective features to
evaluate samples, and the generator is then trained to gener-
ate samples that critics are consistent to. Experimental results
demonstrate that we obtain new state-of-the-art records on su-
pervised and unsupervised image generation tasks as well as
achieve competitive results on semi-supervised benchmarks.
We also show that our method can maintain the training sta-
bility of WGAN-GP and alleviate mode collapse problem of
Improved GAN. With a strong generalization ability, we will
apply our model to improve more GANs in our future work.
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