
Fast Factorization-Free Kernel Learning for Unlabeled Chunk Data Streams

Yi Wang1,2, Nan Xue1,2, Xin Fan1,2∗, Jiebo Luo3,
Risheng Liu1,2, Bin Chen1,2, Haojie Li1,2 and Zhongxuan Luo1,2

1 DUT-RU International School of Information Science and Engineering,
Dalian University of Technology, P. R. China

2 Key Laboratory for Ubiquitous Network and Service Software of Liaoning Province, P. R. China
3 Department of Computer Science, University of Rochester, USA

{dlutwangyi, xin.fan, rsliu, hjli, zxluo}@dlut.edu.cn, xnfiona@gmail.com, jluo@cs.rochester.edu

Abstract
Data stream analysis aims at extracting discrimina-
tive information for classification from continuously
incoming samples. It is extremely challenging to
detect novel data while updating the model in an
efficient and stable fashion, especially for the chunk
data. This paper proposes a fast factorization-free
kernel learning method to unify novelty detection
and incremental learning for unlabeled chunk data
streams in one framework. The proposed method
constructs a joint reproducing kernel Hilbert space
from known class centers by solving a linear sys-
tem in kernel space. Naturally, unlabeled data can
be detected and classified among multi-classes by
a single decision model. And projecting samples
into the discriminative feature space turns out to
be the product of two small-sized kernel matrices
without needing such time-consuming factorization
like QR-decomposition or singular value decompo-
sition. Moreover, the insertion of a novel class can
be treated as the addition of a new orthogonal basis
to the existing feature space, resulting in fast and
stable updating schemes. Both theoretical analysis
and experimental validation on real-world datasets
demonstrate that the proposed methods learn chunk
data streams with significantly lower computational
costs and comparable or superior accuracy than the
state of the art.

1 Introduction
One of the challenging aspects of data analytics nowadays
is dealing with streaming and fast-moving input data, e.g.,
digital monitor images, social media feedbacks, marketing
and financial data. In real applications, these data might come
from several terminals without labels, simultaneously, forming
chunk data streams. Particularly, a chunk of data may contain
some new examples belong to the seen/known classes and/or

∗Corresponding Author

unseen/novel classes. Therefore, we have to detect novelties
first, and then incorporate all new information into the existing
model. Although, novelty detection and incremental learning
for data streams have received increasing attention in the past
few years [Wang et al., 2016; Faria et al., 2016; Lu et al.,
2017], efficient and stable solutions to simultaneously detect
novelties and learn chunk data streams are still rare.

Recently, kernel null-space based discriminant analysis
(KNDA) [Bodesheim et al., 2013] and incremental KNDA
(IKNDA) [Liu et al., 2017] have been reported that their per-
formances outperform classifiers SVDD [Tax and Duin, 2004]
and GP-Mean/GP-Var [Kemmler et al., 2010], and deep ap-
proaches (e.g., Alexnet) [Krizhevsky et al., 2012] in multi-
classification and novelty detection. KNDA learns a decision
model by removing the intra-class variances in a reproducing
kernel Hilbert null (RKHN) space, which provides elegant
discrimination for highly complex and non-linear distribu-
tion data. Unfortunately, the eigen-decomposition of a large
kernel matrix makes KNDA hard to scale up. IKNDA pro-
vides an updating scheme to renew the null space based on
singular value decomposition (SVD). However, its incremen-
tal updating mechanism is not efficient for on-line learning
tasks on large datasets. Besides, kernel methods also suf-
fer from high memory cost of kernel matrix on large and/or
high-dimensional datasets.

In this work, we put forward an efficient kernel learning
method to unify the novelty detection and incremental learning
for unlabeled chunk data streams in one framework. Specifi-
cally, our contributions are twofold:

• We propose an efficient factorization-free batch kernel
discriminant analysis (FKDA). FKDA constructs a k-
dimensional RKH space from k known class centers by
solving a linear system [Chu et al., 2015] in kernel space.
The mapping (projection) to the feature space turns out to
be the production of two small kernel matrices, thus the
computational complexity of FKDA is significantly lower
than other kernel DA methods, especially for large-scale
scenarios. Moreover, each class is represented by a sin-
gle point with a deterministic novelty threshold in RKH
space, that also caters for multi-class novelty detection.

Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)

2833

• We develop a fast and stable incremental scheme for
FKDA, called IFKDA. In IFKDA, inserting a novel class
to the learned model acts by appending a new orthogonal
basis to the original feature space without disturbing the
distribution of known classes, which makes the evolution
more robust and stable. Moreover, IFKDA is very effi-
cient in on-line learning scenarios, requiring only a small
portion of the key kernel matrices to be recomputed.

2 Overview of Discriminative Analysis (DA)
In this section, we give a short overview of linear discrimina-
tive analysis and kernel discriminative analysis.

Given a data matrix with k clusters, X =
{X1,X2, . . . ,Xk} ∈ Rd×n, where Xi ∈ Rd×ni and
n =

∑k
i=1 ni. The widely known Foley-Sammon trans-

form [Chen et al., 2000] estimates a low-dimensional
subspace to discriminative features by maximizing the
following criterion:

G∗ := argmax
G

trace((GTStG)−1(GTSbG)), (1)

where G ∈ Rd×l is a transformation matrix which projects
data in d-dimensional space to l-dimensional subspace, Sb is
between-class scatter matrix, and St is total scatter matrix (
St = Sb + Sw, where Sw is within-class scatter matrix).

A common issue of discriminative learning is the small-
size-sample (SSS) problem that n is far less than d, such that
Sw is singular in general. One popular extension replaces the
inverse in the classical model by pseudo-inverse, resulting in
the following optimization model [Huang et al., 2002],

G∗ := argmax
G

trace((GTStG)†(GTSbG), (2)

where (·)† denotes the pseudo-inverse of (·). And any transfer
matrixG with the form

trace((GTStG)†(GTSbG)) = k − 1, (3)
should be an optimal solution to (2) [Chu et al., 2015].

In [Chu et al., 2015], Chu et al. proposed a more efficient
way for SSS problem by solving a linear system in (4) via the
economic QR-factorization ofX .

XTG = E, (4)
where G ∈ Rd×k, and E is a n-by-k matrix and the i-th
column is (0, ..., ei, ..., 0)T where ei = [1...1]T ∈ Rni×1.

Assuming that training samples are linearly independent,
the solution of (4) with the minimal 2-norm is

G = QR−TE. (5)
If considering kernel tricks for DA, we should further map

X into a feature spaceH with an implicit mapping function
Φ : xij → φ(xij), where φ(xij) ∈ H and xij denote the j-th
item of the i-th class. And we have

XΦ = Φ(X) = [φ(x1), . . . , φ(xn)]. (6)
Accordingly, the criterion in (2) extends to
G∗Φ := argmax

GΦ
trace(((GΦ)TSΦ

t G
Φ)†(GΦ)TSΦ

b G
Φ).

(7)
And anyGΦ with the form
trace(((GΦ)TSt

ΦGΦ)†(GΦ)TSb
ΦGΦ) = k − 1, (8)

is an optimal solution of the optimization problem (7).

3 Factorization-free KDA (FKDA)
In this section, a fast factorization-free batch kernel DA
method (FKDA) is developed. We first induce the linear sys-
tem in (4) into the kernel space.

Theorem 1: AssumingXΦ are linearly independent, and
the linear system in (9) is solvable, then the solution to the
optimization problem (7) is given byGΦ.

(XΦ)TGΦ = E. (9)

Proof: See the Appendix.
Considering the advantages of using class centers as input

in storage and computation as in AKDA/QR [Xiong et al.,
2005], we introduce them into (9) and have

(CΦ)TGΦ =MT (XΦ)TGΦ =MTE, (10)

where CΦ =XΦM is a global centroid matrix in the kernel
space, and M is a n-by-k matrix with the i-th column is
(0, ..., ei/ni, ..., 0)

T . Since

MTE =


1
n1
e1
T

. . .
1
nk
ek
T


 e1

. . .
ek



=


1
n1
e1
T e1

. . .
1
nk
ek
T ek

 = I,

(11)
where I ∈ Rk×k is an identity matrix, then

(CΦ)TGΦ = I. (12)

A key observation for most widely used Gaussian kernel
function: exp(−‖x−y‖2/σ), is that for relatively large σ, the
center of each class in the original space will be projected very
close to the center of each class in the kernel space [Xiong
et al., 2005]. So we adopt this idea to compute the centroid
matrix Co in the original space first, then we approximate the
kernel centroid matrix CΦ by

CΦ ≈ [φ(c1), . . . , φ(ck)](≡ CΦ
o), (13)

where ci denotes the center vector of classXi in the original
space. Therefore, we have

(CΦ
o)TGΦ = I. (14)

Assuming that class centers are linearly independent, we can
resort to QR-decomposition of CΦ

o = QΦRΦ to solve GΦ,
where QΦ is the column orthogonal and RΦ is nonsingular.
Then we have

GΦ = QΦ(RΦ)−T . (15)
DenoteKo = (CΦ

o)
TCΦ

o ∈ Rk×k.
Since (RΦ)TRΦ = (RΦ)T (QΦ)TQΦRΦ = (CΦ

o)
TCΦ

o ,
thus

GΦ = QΦRΦ(RΦ)−1(RΦ)−T = CΦ
o K

−1
o . (16)

Result: Given a sample z, we can get its projection in the
k-dimension RKH space by (GΦ)Tφ(z) in (17).

(GΦ)Tφ(z) = (CΦ
o K

−1
o)Tφ(z) =K−1

o Kcz, (17)

Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)

2834

Algorithm 1 FKDA-batch method

Require: Data matrixX , nonlinear mapping Φ and a testing
sample z.

Ensure: The projected feature of z.
Stage1:

1: Compute the centroid matrix: Co.
2: Construct the kernel matrix: Ko = (CΦ

o)
TCΦ

o .
Stage2:

3: Construct the kernel vector: Kcz =< φ(CΦ
o), φ(z) >.

4: Compute (GΦ)T zΦ =K−1
o Kcz .

Method Space Time

AKDA/QR O(dk + nk + k2) O(dnk + dn+ dk2)
SRKDA O(n2 + nk + k2) O(dn2 + n3 + n2k)
KNDA O(n2 + nk) O(dn2 + n3 + n2k)
LDA/QR O(dn+ n2 + nk) O(dn2 + dnk)
KPE O(n2) O(dn2 + dn+ n3)
FKDA O(dk + k2) O(dn+ dk2)

Table 1: Space and time complexities for batch DAs (n is the training
sample number, d is the feature dimension, and k is the class number).

whereKcz ∈ Rk×1 andKcz(i) =< φ(ci), φ(z) >.
Obviously, there is no need to really compute QR-

decomposition of CΦ
o .

FKDA is summarized as Algorithm 1.
Next, we compare the space and time complexities of FKDA

with AKDA/QR [Xiong et al., 2005], SRKDA [Cai et al.,
2007], KNDA [Bodesheim et al., 2013], KPE [Min et al.,
2016], and LDA/QR [Chu et al., 2015] in Table 1. Since
FKDA gives an implicit transform matrix GΦ, we add the
projecting step to other methods for fairness. We also compare
with a linear DA method (i.e., LDA/QR), so the space and
time complexities of constructing the kernel matrix are added
for all kernel methods in comparisons.

AKDA/QR and FKDA both use centroid matrix as input, so
they need less space and time cost in constructing kernel ma-
trix than other kernel DAs. The cost of constructing centroid
matrix is as low asO(dn) in our implementation. Although,
FKDA has to compute the inverse of Ko ∈ Rk×k with the
complexity of O(k3), other kernel DAs also have such com-
putation, e.g., AKDA/QR needs four times matrix inversion
with the same scale, though it employs QR-decomposition,
and KNDA has to compute the inversion of a matrix with the
complexity ofO(n3). In addition, the total computation cost
of FKDA, including constructing kernel matrix, is no more
than LDA/QR, especially when k is far less than n. Besides,
LDA/QR has a demand of (d >> n) of Q matrix of X . In
contrast, FKDA needs no factorization and can perform well
on both (d >> n > k) and (n >> d > k) datasets, that will
be demonstrated in Section 5.

4 On-line Learning for Chunk Data Streams
The on-line phase, shown in Figure 1, is composed of three
operations: detect novelties, classify new samples and evolute
the decision model. We will detail them in this section.

Figure 1: The framework of on-line learning for unlabeled chunk data
streams. FKDA learns a k-RHK space from k known classes centers,
and the projection of each known class center is fixed in the unit
position on each axis, e.g., C1 of X1(Dog) and C2 of X2(Rabit).
New or/and novel examples can be detected and discriminated in one
decision model with a deterministic boundary threshold. The model
evolves with the centralized new data. Particularly, inserting novel
classes, e.g., X3(Eagle) and X4(PolarBear), equals to append
new basics, e.g., D3 and D4, perpendicular to the original space.

4.1 Novelty Detection and Classification
Given a chunk of unlabeled data, we assume they are clus-
tered without noises or outliers by clustering algorithms, e.g.,
CluStream [Aggarwal et al., 2003], for clustering is not the
focus of this work. Then we have a set of unlabeled cluster
centers as input. And novelty detection and classification are
performed in the learned k-RKH space.

To be noted, from the derivation of (14), we have

((CΦ
o)TGΦ)T = (GΦ)T (CΦ

o) = I. (18)

This means k class centers are projected to the unit positions
of the k orthogonal axes, respectively, for the value of each
volume of I represents the coordinate of the mapping points
of known class centers in k-RKH space. For instance, given
two known classes as shown in Figure 1, we have a 2-RKH
space, where c1 ofX1(Dog) is projected to C1(1, 0) and c2

ofX2(Rabit) is projected to C2(0, 1).
Therefore, we can build a hypersphere surrounding each

class center as classification boundary. New instances will
be classified with respect to their distances to the previously
known classes centers. The instances that being projected
out of boundaries of all the known classes are classified as
novel classes. Furthermore, we set the same value for the
thresholds of boundaries of known classes, i.e., the half value
of the Euclidean distance between two arbitrary classes. Since
the positions of class centers are fixed on the axes, this value
is also valid for the new inserted classes, that will be explained
in the next subsection.

4.2 Updating Schemes (IFKDA)
The updating task can be easily accomplished by recomputing
or appending some parts of the kernel matricesKo andKcz .

Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)

2835

We suppose that a chunk of data is composed of some
new samples belong to ka existing classes and some samples
belongs to kb new classes. Then the new kernel matrix K̃o ∈
R(k+kb)×(k+kb) can be updated by (19)

K̃o =

[
K ′o Kb

o

Kb
o
T

Kc
o

]
, (19)

whereK ′o ∈ Rk×k is the updated original kernel matrixKo by
recomputing the items relating to those known classes which
have new samples, and Kb

o ∈ Rk×kb and Kc
o ∈ Rkb×kb are

the new items introduced by novel classes in (20) and (21),
respectively.

Kb
o =

< α1, αk+1 >, . . . , < α1, αk+kb >
...

< αk, αk+1 >, . . . , < αk, αk+kb >

 (20)

Kc
o =

 < αk+1, αk+1 >, . . . , < αk+1, αk+kb >
...

< αk+kb , αk+1 >, . . . , < αk+kb , αk+kb >

 (21)

where αi represents φ(ci).
The time complexity for computing K̃o, Kb

o and Kc
o are

O(dkka),O(dkkb), andO(dk2
b), respectively.

Similarly, we updateKcz in two parts by

K̃cz = [K ′cz,K
b
cz]

T , (22)

whereK ′cz is the updated kernel vector after inserting labeled
new samples by (23), and Kb

cz is the kernel vector after ap-
pending new classes by (24), where β denotes φ(z).

K ′cz = [< α1, β >, · · · ,< α̃i, β >, · · · , < αk, β >]
T

(23)
Kb
cz = [< αk+1, β >, · · · ,< αk+kb , β >]

T (24)
As we can see, the updating of known-class centers by new

arriving samples does not change the rank of the kernel matrix,
so as to the dimension of feature space. And the positions
of known-class centers do not change under the constraint
of (18). While inserting a novel class is equal to increasing
one rank of the kernel matrix, resulting in appending a new
basis perpendicular to the original space, see the demonstration
in Figure 1. And the center of a new class is also projected
into the unit position of the new axis, therefore its boundary
threshold can be set to the same value as the knowns classes.
Both of these features make IFKDA more stable and robust
for classification, that will be verified by experiments on real
datasets in Section 5.

We then compare space and time complexities for updating
chunk data for IFKDA, ILDA/SSS [Kim et al., 2011], and
ILDA/QR [Chu et al., 2015] in Table 2. In both respects, the
updating costs of IFKDA are minimal, especially when k is
far less than n (k << n) the advantages are more obvious.
Besides, IKNDA only has the algorithm for learning novel
classes, withO(ns+ s2) andO(d(n+ s)s+ n2s+ ns2) in
space and time complexities (where s is the sample number in
a new class), respectively, for the insertion of one novel class.
In contrast, IFKDA only needs extra space of (d+ k+1), and
hasO(dk + d) in time complexity in this case.

Method Space Time

ILDA/SSS O(dh+ dkb) O(dñ2 + ñ3)

ILDA/QR O(dh+ k̃h+ h2) O(dnh+ dk̃h+ dh2)

IFKDA O(dkb + k̃kb) O(dh+ dkf + dk2
b)

Table 2: The space and time complexities of incremental DAs for
learning chunk data. (h is the sample number in a chunk, kb is the
new class number in a chunk, ñ = n+ h, k̃ = k + kb, and f is the
total class number in a chunk.)

Dataset d kt ni ka/kb nci

AR 2000 100 6 5/4 4
MNIST-F 784 5 1000 1/1 50
AWA 4096 40 56 5/2 18
Caltech256 4096 200 37 5/3 12

Table 3: The settings of datasets. (d: the dimension of data, kt: the
training class number, ni: the sample number in each training class,
ka: the known class number in a chunk, kb: the novel class number
in a chunk, and nci : the sample number of each class in a chunk)

5 Experimental Results and Analysis
In this section, we evaluate the performances of the proposed
methods on four publicly-available datasets: AR [Kim et al.,
2011], AWA [Lampert et al., 2014], Caltech256 [Griffin et al.,
2007] and MNIST-Fashion (MINST-F for short) [Xiao et al.,
2017]. For AWA and Caltech256, we take the outputs from
the 7-th full connected layer of very deep 19-layer CNN as
features (4096 dims). The kernel function: exp(−‖x−y‖2/σ)
is used for all kernel DAs. Since FKDA uses approximate
centers to construct kernel matrix as AKDA/QR, σ should be
assigned a large value. Experiments show that choosing (σ =
d) for FKDA(IFKDA) and AKDA/QR produce good overall
results, we thus use this value for them in all the experiments.
All methods are implemented in MATLAB and ran on an Intel
(R) Core (TM) i7 PC with 3.40 GHz CPU and 8 GB RAM.

5.1 Multi-class Novelty Detection for Chunks
The settings of initial batch training stage and on-line incoming
chunk data are in Table 3. Table 4 tabulates the results for
FKDA and KNDA for detecting five unlabeled chunks with
20-fold cross-validation.

As we can see, although KNDA (σ = 1) produces good
overall results on AWA and Caltech256, and KNDA (σ = d)
performs better than KNDA (σ = 1) on AR and MNIST-F,
the overall misclassification rates (denoted by Err) of FKDA
(σ = d) are far less than those of KNDA on all datasets.

5.2 Incremental Learning
We first compare the performances of IFKDA and ILDA/QR
with batch methods AKDA/QR, KNDA (σ = 1), and FKDA
in learning chunk data streams on AWA and Caltech256.

The settings of experimental data are the same as those
in Table 3. The testing data are randomly selected from the
rest samples of training classes and the novel classes with

Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)

2836

Method Dataset Err Fa Fb Fc

KNDA AR 77.8 50.0 50.0 50.0
(σ = 1) MNIST-F 82.0 80.0 20.0 64.0

AWA 12.9 40.0 1.2 0.8
Caltech256 43.0 81.3 20.0 0.0

KNDA AR 48.4 75.5 12.0 14.8
(σ = d) MNIST-F 28.0 56.0 0.0 0.0

AWA 29.7 0.0 41.6 0.0
Caltech256 58.8 45.3 66.8 0.0

FKDA AR 20.7 0.5 36.8 0.0
(σ = d) MNIST-F 22.0 44.0 0.0 0.0

AWA 5.7 17.0 1.2 0.0
Caltech256 31.0 68.0 8.8 0.0

Table 4: The performance of novelty detection for chunk data streams.
Err = (Fn + Fp + Fe)/Nc is the overall percentage for misclas-
sification, where Fn is the number of instances belonging to novel
classes but misclassified into known classes, Fp is the number of in-
stance belonging to known classes but misclassified into novel classes,
and Fe is the number instance belonging to some known classes but
misclassified into other known classes in a chunk. Nc is the total
instance number in a chunk. No is the total instance number of novel
classes in a chunk. Fa = Fn/No: % of novel-class instances falsely
identified to known classes. Fb = Fp/(Nc−No): % of known-class
instances falsely identified to novel classes; Fc = Fe/(Nc −No): %
of known-class instances falsely identified to other known classes.

the same scale of chunk data. The results of classification
accuracy and CPU time on two datasets are shown in Figure 2
and Figure 3 with 20-fold-cross validation, respectively. We
have the following observations:

1) IFKDA is the exact incremental version of FKDA, giving
the same accuracies to FKDA in all tests. The accuracies of
IFKDA and FKDA are comparable to the best algorithm. All
kernel DAs are more accurate than ILDA/QR.

2) Both IFKDA and ILDA/QR are far faster than batch
methods, which verifies the efficiency of incremental methods
over the batch ones. IFKDA performs about 5-10 times faster
than FKDA, hundreds of times faster than AKDA, and thou-
sands of times faster than KNDA on both datasets. Although
ILDA/QR runs similar as IFKDA on AWA (d = 4096 and
n = 2240), but it can not work on Caltech256 (with d = 4096
and n = 7400), due to the limitation of (d >> n) for Q
matrix ofX in its algorithm.

3) FKDA spends less time than other batch methods in the
training stage on both datasets. FKDA even has five times
speed up over LDA/QR (the batch version of ILDA/QR, used
in the initial training stage) on AWA. FKDA is dozens of times
faster than AKDA/QR on AWA with comparable accuracy,
and hundreds of times faster than AKDA/QR on Caltech256
with higher accuracy, even though they share the common on
using centers as the input.

We then compare the classification accuracy and CPU time
of IFKDA with IKNDA (σ = 1) in learning novel classes
on Caltech256. AKDA/QR and FKDA are also taken as the
baseline. The settings of batch training stage are the same as
Table 3. And in on-line stage, fifteen novel classes (each has
nci samples) are inserted one by one. The testing samples are

(a) AWA

(b) Caltech256

Figure 2: The classification accuracy of inserting chunk data streams.

(a) AWA

(b) Caltech256

Figure 3: The CPU time of inserting chunk data streams.

Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)

2837

(a) Classification Accuracy

(b) CPU Time

Figure 4: The classification accuracy and CPU time of adding novel
classes one by one on Caltech256.

randomly selected form the rest of novel classes with the same
scale of inserting data. From the results in Figure 4, we have
the following observations:

1) As to accuracy, all algorithms drop with the injection of
new classes sequentially, but IFKDA is the most stable with
the highest accuracy at the end of insertion.

2)As to CPU time, IFKDA is hundreds of times faster than
IKNDA and AKDA/QR, even FKDA is faster than IKNDA.

Furthermore, we test the stability of IFKDA and IKNDA in
known-class recognition after inserting fifteen novel classes
on Caltech256. The testing samples are selected from the
rest of initially known classes. The recognition accuracy of
IFKDA is 72.35% in the batch training stage, then drops to
71.10% after the final insertion, while the accuracy of IKNDA
is 75.01% in the batch training stage, then drops to 49.83%
after the final insertion. This result further verifies the stability
and robustness of IFKDA.

6 Conclusions
We propose a fast factorization-free kernel method (FKDA) by
constructing an approximate kernel centroid matrix to solve
a linear system in kernel space. Then the incremental FKDA
(IFKDA) runs extremely fast by updating part of matrices.
Both theoretical analysis and empirical experiments on several
benchmarks validate the superiority of FKDA and IFKDA
against the state-of-the-art methods. By taking advantage of

our proposed algorithms, the kernel methods may be more
widely applied especially when handling incremental learning
problems for chunk data streams.

Acknowledgments
This research has been supported by the National Key
Research and Development Program of China (Grant No.
2017YFB1103704), and the National Natural Science Founda-
tion of China (Grant No. 61733002 and No.61572096).

A Proof of Theorem 1
The within class scatter in kernel space is

Sw
Φ =XΦ

I −
ε1

. . .
εk


 (XΦ)T , (25)

where ε = 1
nee

T , εi = 1
ni
ei
T , e = [1...1]T ∈ Rn×1 and

ei = [1...1]T ∈ Rni×1. Thus

(GΦ)TSw
ΦGΦ

= (GΦ)TXΦ

I −
ε1

. . .
εk


 (XΦ)TGΦ

= ET

I −
ε1

. . .
εk


E

= ETE −ET


e1√
n1

. . .
ek√
nk



×


e1√
n1

. . .
ek√
nk


T

E

=

n1

. . .
nk

−

√
n1

. . . √
nk



×


√
n1

. . . √
nk


T

= 0.

(26)

Since SΦ
t = SΦ

b + SΦ
w , therefore,

(GΦ)TSt
ΦGΦ = (GΦ)TSb

ΦGΦ. (27)

And

Sb
Φ =XΦ


ε1

. . .
εk

− ε
 (XΦ)T (28)

.

Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)

2838

We have the following result:

(GΦ)TSb
ΦGφ

= (GΦ)TXΦ


ε1

. . .
εk

− ε
 (XΦ)TGΦ

= ET


ε1

. . .
εk

− ε
E

=

n1

. . .
nk

− 1

n

n1

...
nk

 [n1 · · · nk] .

(29)

Thus, rank((GΦ)TSΦ
b G

Φ) = k − 1, which together
with (27) yields

trace(((GΦ)TSt
ΦGΦ)†(GΦ)TSb

ΦGΦ) = k − 1, (30)

soGΦ is a solution of (7).

References
[Aggarwal et al., 2003] Charu C Aggarwal, Jiawei Han,

Jianyong Wang, and Philip S Yu. A framework for cluster-
ing evolving data streams. In Proceedings of the 29th inter-
national conference on Very large data bases, volume 29,
pages 81–92. VLDB Endowment, 2003.

[Bodesheim et al., 2013] Paul Bodesheim, Alexander Frey-
tag, Erik Rodner, Michael Kemmler, and Joachim Denzler.
Kernel null space methods for novelty detection. In Pro-
ceedings of the IEEE Conference on Computer Vision and
Pattern Recognition (CVPR-13), pages 3374–3381, 2013.

[Cai et al., 2007] Deng Cai, Xiaofei He, and Jiawei Han. Ef-
ficient kernel discriminant analysis via spectral regression.
In Proceedings of Seventh IEEE International Conference
on Data Mining (ICDM -07), pages 427–432. IEEE, 2007.

[Chen et al., 2000] Li-Fen Chen, Hong-Yuan Mark Liao,
Ming-Tat Ko, Ja-Chen Lin, and Gwo-Jong Yu. A new lda-
based face recognition system which can solve the small
sample size problem. Pattern recognition, 33(10):1713–
1726, 2000.

[Chu et al., 2015] Delin Chu, Li-Zhi Liao, Michael Kwok-
Po Ng, and Xiaoyan Wang. Incremental linear discrimi-
nant analysis: a fast algorithm and comparisons. IEEE
transactions on neural networks and learning systems,
26(11):2716–2735, 2015.

[Faria et al., 2016] Elaine R Faria, Isabel JCR Gonçalves, An-
dré CPLF de Carvalho, and João Gama. Novelty detection
in data streams. Artificial Intelligence Review, 45(2):235–
269, 2016.

[Griffin et al., 2007] Gregory Griffin, Alex Holub, and Pietro
Perona. Caltech-256 object category dataset. 2007.

[Huang et al., 2002] Rui Huang, Qingshan Liu, Hanqing Lu,
and Songde Ma. Solving the small sample size problem of
lda. In Proceedings of the 16th International Conference on
Pattern Recognition, volume 3, pages 29–32. IEEE, 2002.

[Kemmler et al., 2010] Michael Kemmler, Erik Rodner, and
Joachim Denzler. One-class classification with gaussian
processes. In Asian Conference on Computer Vision (ACCV-
10), pages 489–500. Springer, 2010.

[Kim et al., 2011] Tae-Kyun Kim, Björn Stenger, Josef Kit-
tler, and Roberto Cipolla. Incremental linear discriminant
analysis using sufficient spanning sets and its applications.
International Journal of Computer Vision, 91(2):216–232,
2011.

[Krizhevsky et al., 2012] Alex Krizhevsky, Ilya Sutskever,
and Geoffrey E Hinton. Imagenet classification with deep
convolutional neural networks. In Advances in neural in-
formation processing systems, pages 1097–1105, 2012.

[Lampert et al., 2014] Christoph H Lampert, Hannes Nick-
isch, and Stefan Harmeling. Attribute-based classification
for zero-shot visual object categorization. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence,
36(3):453–465, 2014.

[Liu et al., 2017] Juncheng Liu, Zhouhui Lian, Yi Wang, and
Jianguo Xiao. Incremental kernel null space discriminant
analysis for novelty detection. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition
(CVPR-17), pages 792–800, 2017.

[Lu et al., 2017] Yang Lu, Yiu-ming Cheyng, and Yuan Yan
Tang. Dynamic weighted majority for incremental learning
of imbalanced data streams with concept drift. In Proceed-
ings of the Twenty-Sixth International Joint Conference on
Artificial Intelligence (IJCAI-17), pages 2393–2399, 2017.

[Min et al., 2016] Hwang-Ki Min, Yuxi Hou, Sangwoo Park,
and Iickho Song. A computationally efficient scheme for
feature extraction with kernel discriminant analysis. Pattern
Recognition, 50:45–55, 2016.

[Tax and Duin, 2004] David MJ Tax and Robert PW Duin.
Support vector data description. Machine learning,
54(1):45–66, 2004.

[Wang et al., 2016] Shuo Wang, Leandro L Minku, and Xin
Yao. Dealing with multiple classes in online class imbal-
ance learning. In Proceedings of the Twenty-Fifth Interna-
tional Joint Conference on Artificial Intelligence (IJCAI-
16), pages 2118–2124, 2016.

[Xiao et al., 2017] Han Xiao, Kashif Rasul, and Roland Voll-
graf. Fashion-mnist: a novel image dataset for bench-
marking machine learning algorithms. arXiv preprint
arXiv:1708.07747, 2017.

[Xiong et al., 2005] Tao Xiong, Jieping Ye, Qi Li, Ravi Ja-
nardan, and Vladimir Cherkassky. Efficient kernel discrim-
inant analysis via qr decomposition. In Advances in neural
information processing systems, pages 1529–1536, 2005.

Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)

2839

