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Abstract
Label distribution is more general than both single-
label annotation and multi-label annotation. It cov-
ers a certain number of labels, representing the de-
gree to which each label describes the instance.
The learning process on the instances labeled by
label distributions is called label distribution learn-
ing (LDL). Unfortunately, many training sets on-
ly contain simple logical labels rather than label
distributions due to the difficulty of obtaining the
label distributions directly. To solve the problem,
one way is to recover the label distributions from
the logical labels in the training set via leverag-
ing the topological information of the feature s-
pace and the correlation among the labels. Such
process of recovering label distributions from log-
ical labels is defined as label enhancement (LE),
which reinforces the supervision information in the
training sets. This paper proposes a novel LE al-
gorithm called Graph Laplacian Label Enhance-
ment (GLLE). Experimental results on one artifi-
cial dataset and fourteen real-world datasets show
clear advantages of GLLE over several existing LE
algorithms.

1 Introduction
Learning with ambiguity is a hot topic in recent machine
learning and data mining research. A learning process is es-
sentially building a mapping from the instances to the labels.
This paper mainly focuses on the ambiguity at the label side
of the mapping, i.e., one instance is not necessarily mapped
to one label. Multi-label learning (MLL) [Tsoumakas and
Katakis, 2006] studies the problem where each example is
represented by a single instance while associated with a set
of labels simultaneously, and the task is to learn a multi-label
predictor which maps an instance to a relevant label set [Giba-
ja and Ventura, 2015; Zhang and Zhou, 2014]. During the
past decade, multi-label learning techniques have been wide-
ly employed to learn from data with rich semantics, such as
text [Rubin et al., 2012], image [Cabral et al., 2011], audio
[Lo et al., 2011], video [Wang et al., 2011], etc.
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In most of the supervised data, an instance x is assigned
with lyx ∈ {0, 1} to each possible label y, representing
whether y describes x. In this paper, lyx is called logical la-
bel as lyx reflects the logical relationship between the label
and the instance. Logical label answers the essential question
“which label can describe the instance”, but not involves the
explicit relative importance of each label. To solve this prob-
lem, a more natural way to label an instance x is to assign
a real number dyx to each possible label y, representing the
degree to which y describes x. Without loss of generality,
assume that dyx ∈ [0, 1]. Further suppose that the label set is
complete, i.e., using all the labels in the set can always fully
describe the instance. Then,

∑
y d

y
x = 1. Such dyx is called

the description degree of y to x. For a particular instance, the
description degrees of all the labels constitute a real-valued
vector called label distribution, which describes the instance
more comprehensively than logical labels. The learning pro-
cess on the instances labeled by label distributions is therefore
called label distribution learning (LDL) [Geng, 2016]. Label
distribution is more general than logical labels in most super-
vised learning problems because the relevance or irrelevance
of a label to an instance is essentially relative in mainly three
aspects:
• The differentiation between the relevant and irrelevan-

t labels is relative. A bipartite partition of the label set
into relevant and irrelevant labels with respect to an in-
stance is actually a simplification of the real problem. In
many cases, the boundary between relevant and irrele-
vant labels is not clear. For example, in emotion analysis
from facial expressions, a facial expression often con-
veys a complex mixture of basic emotions (e.g., happy,
sad, surprise, anger, disgust and fear) [Zhou et al., 2015].
As shown in Fig. 1a, for an expression, different basic
emotions exhibit different intensities. The partition be-
tween the relevant and irrelevant emotions depends on
the choice of the threshold. But there is no absolutely
subjective criterion to determine the threshold.
• When multiple labels are associated with an instance,

the relative importance among them is more likely to be
different rather than exactly equal. For example, in Fig.
1b, a natural scene image may be annotated with the la-
bels sky, water, building and cloud simultaneously, but
the relative importance of each label to this image is dif-
ferent.
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(a) Emotion (b) Nature scene (c) Target

Figure 1: Three examples about the relevance or irrelevance of each label.

• The “irrelevance” of each irrelevant label may be very
different. For example, in Fig. 1c, for a car, the label
airplane is more irrelevant than the label tank.

However, in most training sets, label distribution is not ex-
plicitly available. It is difficult to obtain the label distribution-
s directly because the process of quantifying the description
degrees is costly. Therefore, we need a way to recover the
label distributions from the logical labels in the training set
via leveraging the topological information in the feature s-
pace and the correlation among the labels. This process is
called label enhancement (LE) in this paper. LE reinforces
the supervision information in the training sets by exploiting
the relative importance of each label. After the label distribu-
tions are recovered, more effective supervised learning can be
achieved by leveraging the label distributions [Li et al., 2015;
Hou et al., 2016].

Note that although there is no explicit concept of LE de-
fined in existing literatures, some methods with similar func-
tion to LE have been proposed. For example, logical la-
bels are transferred to a discretized bivariate Gaussian la-
bel distribution centered at the coarse ground-truth label by
using priori knowledge in head pose estimation [Geng and
Xia, 2014] and facial age estimation [Geng et al., 2014].
Some works [Gayar et al., 2006; Jiang et al., 2006] build
the membership degrees to the labels, which can consti-
tute a label distribution. Some works [Li et al., 2015;
Hou et al., 2016] establish the relationship between instances
and labels by graph and transfer logical labels into label dis-
tributions.

The rest of this paper is organized as follows. First, the for-
mulation of LE and the details of the LE algorithms are pro-
posed in Section 2. After that, the results of the comparative
experiments are reported in Section 3. Finally, conclusions
are drawn in Section 4.

2 Label Enhancement
2.1 Formulation of Label Enhancement
First of all, the main notations used in this paper are listed as
follows. The instance variable is denoted by x, the particular
i-th instance is denoted by xi, the label variable is denoted
by y, the particular j-th label value is denoted by yj , the log-
ical label vector of xi is denoted by li = (ly1xi , l

y2
xi , ..., l

yc
xi)
>,

where c is the number of possible labels. The description de-
gree of y to x is denoted by dyx, and the label distribution
of xi is denoted by di = (dy1xi , d

y2
xi , ..., d

yc
xi)
>. Let X = Rq

denote the q-dimensional feature space. Then, the process of
LE can be defined as follows.

Given a training set S = {(xi, li)|1 ≤ i ≤ n}, where
xi ∈ X and li ∈ {0, 1}c, LE recovers the label distribution
di of xi from the logical label vector li, and thus transforms
S into a LDL training set E = {(xi,di)|1 ≤ i ≤ n}.

2.2 Existing Label Enhancement Algorithms
Fuzzy Label Enhancement
The LE algorithm based on fuzzy clustering (FCM) [Gayar
et al., 2006] employs fuzzy C-means clustering [Castillo and
Melin, 2005] which attempts to cluster feature vectors by it-
eratively minimizing an objective function. Supposing that
fuzzy C-means clustering divides the training set S into p
clusters and µk denotes the k-th cluster prototype. Then, the
membership degree of xi to the k-th cluster is calculated by

mk
xi =

1∑p
j=1

(
Dist(xi,µk)
Dist(xi,µj)

) 1
β−1

, (1)

where β > 1, and Dist(, ) is the Euclidean distance. Then,
the matrixA providing soft connections between classes and
clusters is constructed by initializing a c × p zero matrix A
and updating each rowAj through

Aj = Aj +mxi , if l
yj
xi = 1, (2)

where mxi = (m1
xi ,m

2
xi , ...,m

p
xi). Then, the membership

degree vector of xi to the labels is calculated by using fuzzy
composition d̃i = A ◦m>xi . Finally, the label distribution
corresponding to each instance is generated via the softmax

normalization dyxi = e
d̃
y
xi∑

y e
d̃
y
xi

.

For each label yj , the LE algorithm based on kernel method
(KM) [Jiang et al., 2006] divides S into two sets, i.e., Cyj+
and Cyj− . Cyj+ contains such sample point xi with lyjxi = 1

and Cyj− contains such sample point xi with lyjxi = 0. Then,
the center of Cyj+ in the feature space is defined by ψyj =
1
n+

∑
xi∈C

yj
+

ϕ (xi), where n+ is the number of the samples in

C
yj
+ and ϕ (xi) is a nonlinear transformation of x to a higher

dimensional feature space. Then, the radius of Cyj+ is calcu-
lated by

r = max‖ψyj − ϕ (xi)‖. (3)

The distance between a sample xi ∈ C
yj
+ and the center of

C
yj
+ is calculated by

si = ‖ϕ (xi)−ψyj‖. (4)
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The calculations involving ϕ (xi) can be obtained indirect-
ly though the kernel function K (xi,xj) = ϕ (xi) · ϕ (xj).
Then, the membership degree of xi to each label can be cal-
culated by

d̃
yj
xi =

{
1−

√
s2i
r2+δ if lyjxi = 1

0 if lyjxi = 0
, (5)

where δ > 0. Finally, the membership degrees are transferred
to the label distribution via the softmax normalization.

Graph-based Label Enhancement
The LE algorithm based on label propagation (LP) [Li et al.,
2015] recovers the label distributions from logical labels by
using iterative label propagation technique [Zhu and Gold-
berg, 2009]. Let G denotes the fully-connected graph con-
structed over S , and then the n× n symmetric similarity ma-
trixA is specified for G as

aij =

{
exp

(
−‖xi−xj‖

2

2

)
if i 6= j

0 if i = j
. (6)

Correspondingly, the label propagation matrixP is construct-
ed from the similarity matrix through P = Â−

1
2AÂ−

1
2 .

Here Â is a diagonal matrix with the elements âii =
n∑
j=1

aij . At the t-th iteration, the label distribution matrix

D = [d1,d2, ...,dn] is updated by propagating labeling-
importance information with the label propagation matrix P
as

D(t) = αPD(t−1) + (1− α)L, (7)

whereL = [l1, l2, ..., ln] is the logical label matrix in training
set and the initial matrix D(0) = L. Specifically, α ∈ (0, 1)
is the balancing parameter which controls the fraction of the
information inherited from the label propagation and the log-
ical label matrix. Finally, D(t) will converge to D∗, and we
normalize the label distributions by using the softmax nor-
malization.

The LE algorithm based on manifold learning (ML) [Hou
et al., 2016] considers that the topological structure of the
feature space can be represented by a graph G. W is the
weight matrix whose element wij represents the weight of
the relationship between xi and xj . This method assumes
that each data point can be optimally reconstructed by using
a linear combination of its neighbors [Roweis and Saul, 2000;
Wang and Zhang, 2008]. Then, the approximation of the fea-
ture manifold is to induce the minimization of

Θ (W ) =
n∑
i=1

‖xi −
∑
j 6=i

wijxj‖2, (8)

where wij = 0 unless xj is one of xi’s K-nearest neighbors

and
n∑
j=1

wij = 1. According to the smoothness assumption

[Zhu et al., 2005], the topological structure of the feature s-
pace can be transferred to the label space local by local. Then,

the reconstruction of the label manifold can infer to the min-
imization of

Ψ (d) =
n∑
i=1

‖di −
∑
j 6=i

wijdj‖2

s.t. dylxi l
yl
xi > λ, ∀1 ≤ i ≤ n, 1 ≤ j ≤ c,

(9)

where λ > 0. The label distributions are generated with the
optimization by using a constrained quadratic programming
process. Finally, we normalize di by using the softmax nor-
malization.

2.3 The GLLE Algorithm
This section proposes a new LE algorithm named Graph
Laplacian Label Enhancement (GLLE). Given a training set
S , we construct the feature matrix X = [x1,x2, ...,xn] and
the logical label matrix L = [l1, l2, ..., ln]. Our aim is to re-
cover the label distribution matrix D = [d1,d2, ...,dn] from
the logical label matrixL. To solve this problem, we consider
the model

di = W>ϕ(xi) + b = Ŵφi, (10)
where W = [w1, ...,wc] is a weight matrix and b ∈ Rc is
a bias vector. ϕ(x) is a nonlinear transformation of x to a
higher dimensional feature space. For convenient describing,
we set Ŵ = [W>, b] and φi = [ϕ(xi); 1]. Accordingly, the
goal of our method is to determine the best parameter Ŵ ∗

that can generate a reasonable label distribution di given the
instance xi. Then, the optimization problem becomes

min
Ŵ

L(Ŵ ) + λΩ(Ŵ ), (11)

where L is a loss function, Ω is the function to mine hidden
label importance, and λ is the parameter trading off the two
terms. Note that LE is essentially a pre-processing applied to
the training set, which is different from standard supervised
learning. Therefore, our optimization does not need to con-
sider the overfitting problem. Since the information in the
label distributions is inherited from the initial logical labels,
we choose the least squares (LS) loss function as

L(Ŵ ) =
n∑
i=1

‖Ŵφi − li‖2

= tr[(ŴΦ−L)>(ŴΦ−L)],

(12)

where Φ = [φ1, ...,φn].
In order to mine the hidden label importance from the train-

ing examples via leveraging the topological information of
the feature space, we specify the local similarity matrix A
whose elements are calculated by

aij =

{
exp

(
−‖xi−xj‖

2

2σ2

)
if xj ∈ N(i)

0 otherwise
, (13)

where N(i) means the set of xi’s K-nearest neighbors, and
σ > 0 is the width parameter for similarity calculation which
is fixed to be 1 in this paper. According to the smoothness
assumption [Zhu et al., 2005], the points close to each other
are more likely to share a label. Intuitively, if xi and xj have
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No. Dataset #Examples #Features #Labels

1 Artificial 2601 3 3

2 SJAFFE 213 243 6
3 Natural Scene 2,000 294 9
4 Yeast-spoem 2,465 24 2
5 Yeast-spo5 2,465 24 3
6 Yeast-dtt 2,465 24 4
7 Yeast-cold 2,465 24 4
8 Yeast-heat 2,465 24 6
9 Yeast-spo 2,465 24 6
10 Yeast-diau 2,465 24 7
11 Yeast-elu 2,465 24 14
12 Yeast-cdc 2,465 24 15
13 Yeast-alpha 2,465 24 18
14 SBU 3DFE 2,500 243 6
15 Movie 7,755 1,869 5

Table 1: Statistics of the 15 Datasets Used in the Experiments

a high degree of similarity, as measured by aij , then di and
dj should be near to one another. This intuition leads to the
following function which we wish to minimize:

Ω(Ŵ ) =
∑
i,j

aij‖di − dj‖2

= tr(DGD>)

= tr(ŴΦGΦ>Ŵ>),

(14)

whereG = Â−A is the graph Laplacian and Â is the diag-

onal matrix whose elements are âii =
n∑
j=1

aij .

Formulating the LE problem into an optimization frame-
work over Eq. (12) and Eq. (14) yields the target function of
Ŵ

T (Ŵ ) = tr[(ŴΦ−L)>(ŴΦ−L)]

+λtr(ŴΦGΦ>Ŵ>).
(15)

The optimization of Eq. (15) uses an effective quasi-Newton
method BFGS [Nocedal and Wright, 2006]. As to the op-
timization of the target function T (Ŵ ), the computation of
BFGS is mainly related to the first-order gradient, which can
be obtained through

∂T

∂Ŵ
= 2ŴΦΦ> − 2LΦ> + λŴΦG>Φ>

+λŴΦGΦ>.

(16)

When the best parameter Ŵ ∗ is determined, the label dis-
tribution di can be generated through Eq. (10). Finally, we
normalize di by using the softmax normalization.

According to the representor’s theorem [Smola, 1999], un-
der fairly general conditions, a learning problem can be ex-
pressed as a linear combination of the training examples in
the feature space, i.e. wj =

∑
i θ

jϕ(xi). If we replace this
expression into Eq. (15) and Eq. (16), it will generate the in-
ner product< ϕ(xi), ϕ(xj) >, and then the kernel trick can
be applied.

(a) Ground-Truth (b) GLLE

(c) LP (d) ML

(e) FCM (f) KM

Figure 2: Comparison between the ground-truth and recovered label
distributions (regarded as RGB colors) on the artificial manifold.

3 Experiments
3.1 Datasets
There are in total 15 datasets used in the experiments includ-
ing an artificial toy dataset and 14 real-world datasets1. Some
basic statistics about these 15 datasets are given in Table 1.

The first dataset is an artificial toy dataset which is gen-
erated to show in a direct and visual way whether the LE
algorithms can recover the label distributions from the log-
ical labels. In this dataset, the instance x is of three-
dimensional and there are three labels. The label distribution
d = (dy1x , d

y2
x , d

y3
x )> of x = (x1, x2, x3)> is created in the

following way.

ti = axi + bx2i + cx3i + d, i = 1, ..., 3, (17)

ψ1 = (h>1 t)
2, ψ2 = (h>2 t+ β1ψ1)2, ψ3 = (h>3 t+ β2ψ2)2,

(18)

dyix =
ψi

ψ1 + ψ2 + ψ3
, i = 1, ..., 3, (19)

where t = (t1, t2, t3)>, xi ∈ [−1, 1], a = 1, b = 0.5,
c = 0.2, d = 1, h1 = (4, 2, 1)>, h2 = (1, 2, 4)>,
h3 = (1, 4, 2)>, and β1 = β2 = 0.01. In order to show the
results of LE algorithms in a direct and visual way, the exam-
ples of the toy dataset are selected from a certain manifold in
the feature space. The first two components of the instance x,
x1 and x2, are located at a grid of the interval 0.04 within the
range [−1, 1], and there are in total 51×51 = 2601 instances.
The third component x3 is calculated by

x3 = sin((x1 + x2)× π). (20)

Then, the label distribution d corresponding to each is calcu-
lated via Eq. (17)-(19).

1http://cse.seu.edu.cn/PersonalPage/xgeng/LDL/index.htm
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Datasets FCM KM LP ML GLLE

Artificial 0.188(3) 0.260(5) 0.130(2) 0.227(4) 0.108(1)
SJAFFE 0.132(3) 0.214(5) 0.107(2) 0.190(4) 0.100(1)
Natural Scene 0.368(5) 0.306(4) 0.275(1) 0.295(2) 0.296(3)
Yeast-spoem 0.233(3) 0.408(5) 0.163(2) 0.400(4) 0.108(1)
Yeast-spo5 0.162(3) 0.277(5) 0.114(2) 0.273(4) 0.092(1)
Yeast-dtt 0.097(2) 0.257(5) 0.128(3) 0.244(4) 0.065(1)
Yeast-cold 0.141(3) 0.252(5) 0.137(2) 0.242(4) 0.093(1)
Yeast-heat 0.169(4) 0.175(5) 0.086(2) 0.165(3) 0.056(1)
Yeast-spo 0.130(3) 0.175(5) 0.090(2) 0.171(4) 0.067(1)
Yeast-diau 0.124(3) 0.152(5) 0.099(2) 0.148(4) 0.084(1)
Yeast-elu 0.052(3) 0.078(5) 0.044(2) 0.072(4) 0.030(1)
Yeast-cdc 0.051(3) 0.076(5) 0.042(2) 0.071(4) 0.038(1)
Yeast-alpha 0.044(3) 0.063(5) 0.040(2) 0.057(4) 0.033(1)
SBU 3DFE 0.135(2) 0.238(5) 0.123(1) 0.233(4) 0.141(3)
Movie 0.230(4) 0.234(5) 0.161(2) 0.164(3) 0.160(1)

Avg. Rank 3.13 4.93 1.93 3.73 1.27

Table 2: Recovery Results (value(rank)) Measured by Cheb ↓

Datasets FCM KM LP ML GLLE

Artificial 0.933(3) 0.918(5) 0.974(2) 0.925(4) 0.980(1)
SJAFFE 0.906(3) 0.827(5) 0.941(2) 0.857(4) 0.946(1)
Natural Scene 0.593(5) 0.748(4) 0.860(1) 0.818(2) 0.769(3)
Yeast-spoem 0.878(3) 0.812(5) 0.950(2) 0.815(4) 0.968(1)
Yeast-spo5 0.922(3) 0.882(5) 0.969(2) 0.884(4) 0.974(1)
Yeast-dtt 0.959(2) 0.759(5) 0.921(3) 0.763(4) 0.983(1)
Yeast-cold 0.922(3) 0.779(5) 0.925(2) 0.784(4) 0.969(1)
Yeast-heat 0.883(3) 0.779(5) 0.932(2) 0.783(4) 0.980(1)
Yeast-spo 0.909(3) 0.800(5) 0.939(2) 0.803(4) 0.968(1)
Yeast-diau 0.882(3) 0.799(5) 0.915(2) 0.803(4) 0.939(1)
Yeast-elu 0.950(2) 0.758(5) 0.918(3) 0.763(4) 0.978(1)
Yeast-cdc 0.929(2) 0.754(5) 0.916(3) 0.759(4) 0.959(1)
Yeast-alpha 0.922(2) 0.751(5) 0.911(3) 0.756(4) 0.973(1)
SBU 3DFE 0.912(2) 0.812(5) 0.922(1) 0.815(4) 0.900(3)
Movie 0.773(5) 0.880(4) 0.929(1) 0.919(2) 0.900(3)

Avg. Rank 2.93 4.87 2.07 3.73 1.40

Table 3: Recovery Results (value(rank)) Measured by Cosine ↑

The second to the fourteen datasets are real-world LDL
datasets [Geng, 2016] collected from biological experiments
on the yeast genes, facial expression images, natural scene
images and movies, respectively.

3.2 Evaluation Measures
In order to compare the recovered label distribution with the
ground-truth, a natural choice of the evaluation measure is
the average distance or similarity between the recovered label
distribution and the ground-truth label distribution. Accord-
ing to Geng’s suggestion [Geng, 2016], we select six LDL
measures, i.e., Chebyshev distance (Cheb), Clark distance
(Clark), Canberra metric (Canber), Kullback-Leibler diver-
gence (KL), cosine coefficient (Cosine) and intersection sim-
ilarity (Intersec). The first four are distance measures and the
last two are similarity measures. Due to page limitation, we
only show representative results on Cheb and Cosine. Those
results on other evaluation measures are similar.

3.3 Methodology
The four algorithms described in Section 2.2, i.e., FCM [Ga-
yar et al., 2006], KM [Jiang et al., 2006], LP [Li et al., 2015],
ML [Hou et al., 2016], and our GLLE are all applied to the
15 datasets shown in Table 1.

We consider the following LDL learning setting. With each
instance, a label distribution is associated. The training set,

however, contains for each instance not the actual distribu-
tion, but a set of labels. The set includes the labels with the
highest weights in the distribution, and is the smallest set such
that the sum of these weights exceeds a given threshold. This
setting can model, for instance, the way in which users label
images or add keywords to texts: it assumes that users add
labels starting with the most relevant ones, until they feel the
labeling is sufficiently complete. Therefore, the logical labels
in the datasets can be binarized from the real label distribu-
tions as follows. For each instance x, the greatest description
degree dyjx is found, and the label yj is set to relevant label,
i.e., lyjx = 1. Then, we calculate the sum of the description
degrees of all the current relevant labels H =

∑
yj∈Y+ d

yj
x ,

where Y+ is the set of the current relevant labels. If H is less
than a predefined threshold T , we continue finding the great-
est description degree among other labels excluded from Y+

and select the label corresponding to the greatest description
degree into Y+. This process continues untilH > T . Finally,
the logical labels to the labels in Y+ are set to 1, and other
logical labels are set to 0. In our experiments, T = 0.5.

There are two parts in the experiments. In the first part,
we recover the label distributions from the logical labels vi-
a the LE algorithms, and then compare the recovered label
distributions with the ground-truth label distributions. In the
second part, in order to further test the effectiveness of LDL
after the LE pre-process on the logical-labeled datasets, we
first recover the label distributions from the logical labels via
the LE algorithms, and then use the recovered label distri-
butions for LDL training. Finally, the trained LDL models
are tested on the new test dataset, and the label distribution
predictions are compared with those predictions made by the
model directly trained on the ground-truth label distributions.
Ten-fold cross validation is conducted for each algorithm.

For GLLE, the parameter λ is chosen among
{10−2, 10−1, ..., 100} and the number of neighbors K
is set to c + 1. The kernel function in GLLE is Gaussian
kernel. The parameter α in LP is set to 0.5. The number of
neighbors K for ML is set to c+ 1. The parameter β in FCM
is set to 2. The kernel function in KM is Gaussian kernel.
The LDL algorithm used in this paper is SA-BFGS [Geng,
2016].

3.4 Experimental Results
Recovery Performance
In order to visually show the results of the LE algorithms on
the artificial dataset, the description degrees of the three la-
bels are regarded as the three color channels of the RGB col-
or space, respectively. In this way, the color of a point in
the feature space will visually represent its label distribution.
Thus, the label distribution recovered by the LE algorithm-
s can be compared with the ground-truth label distribution
through observing the color patterns on the manifold. For
easier comparison, the images are visually enhanced by ap-
plying a decorrelation stretch process. The results are shown
in Fig. 2. It can be seen that GLLE recovers almost identi-
cal color patterns with the ground-truth. LP, ML and FCM
can also recover similar color patterns with the ground-truth.
However, KM fails to obtain a reasonable result.
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Figure 3: Comparison of the LDL after the LE pre-process against the direct LDL measured by Cheb ↓.
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Figure 4: Comparison of the LDL after the LE pre-process against the direct LDL measured by Cosine ↑.

Table 4: The Average Ranks of Five Algorithms on Six Measures

Criterion FCM KM LP ML GLLE

Cheb 4.40 4.20 2.00 3.13 1.27
Clark 4.33 4.07 2.27 3.07 1.27
Canber 4.20 4.13 2.27 3.13 1.27
KL 4.37 4.30 2.00 3.13 1.20
Cosine 4.53 4.27 1.93 3.07 1.20
Intersec 4.40 4.20 1.93 3.13 1.33

For quantitative analysis, Table 2 and Table 3 tabulate the
results of the five LE algorithms on all the datasets evaluat-
ed by Cheb and Cosine, and the best performance on each
dataset is highlighted by boldface. For each evaluation met-
ric, ↓ indicates the smaller the better while ↑ indicates the
larger the better. Note that since each LE algorithm only runs
once, there is no record of standard deviation. The perfor-
mances of the five LE algorithms evaluated by six measures
are ranked as GLLE�LP�FCM�ML�KM. GLLE ranks 1st
in 86.7% cases and ranks 2nd in 6.7% cases across six eval-
uation measures. Thus, GLLE generally performs better than
other LE algorithms.

LDL Predictive Performance
In this experiment, ‘Ground-Truth’ represents the prediction-
s made by the LDL model directly trained on the ground-
truth label distributions. Then, ‘FCM’, ‘KM’, ‘LP’, ‘ML’ and
‘GLLE’ represent the predictions made by the LDL model
trained on the label distributions recovered by each LE algo-
rithm, respectively. All the algorithms are tested via ten-fold
cross validation. The histograms of the LDL predictive per-
formances are given in Fig. 3 and Fig. 4. The average rank
of each algorithm over all the datasets is shown in Table 4.
Note that since ‘Ground-Truth’ is regarded as a upper bound

performance in this experiment, we rank FCM, KM, LP, ML
and GLLE without considering Ground-Truth.

Based on the experimental results, GLLE ranks 1st in
78.9% cases and ranks 2nd in 16.7% cases across all the e-
valuation measures. Thus, GLLE achieves superior perfor-
mance over other LE algorithms. Note that in most cases,
GLLE is very close to Ground-Truth, especially on the Na-
ture Scene and Yeast-spoem datasets. But the difference be-
tween them is relatively larger on a few datasets (Yeast-cold,
Yeast-diau and Yeast-alpha). This is because that the descrip-
tion degrees constituting each ground-truth label distribution
in these datasets are almost equal. Thus, the binarization pro-
cess to generate the logical labels might become unstable. It
is hard to recover the reasonable label distributions from these
logical labels. When the description degrees constituting each
ground-truth label distribution in the datasets (e.g., the Nature
Scene and Yeast-spoem datasets) are much different, the bi-
narization process can easily differentiate the relevant labels
and the irrelevant labels, which is helpful to recover the rea-
sonable label distributions. Compared with the second best
algorithm, on average, GLLE’s distance to Ground-Truth is
closer by 12.9% on Cheb, 16.9% on Clark, 17.0% on Can-
ber, 18.0% on KL, 23.1% on Cosine, and 18.9% on Intersec,
respectively. The results of the LDL predictive performances
prove the effectiveness of LDL after LE pre-process by using
GLLE on the logical-labeled training sets.

4 Conclusion
This paper shows label enhancement, which reinforces the
supervision information in the training sets. LE can recover
the label distributions from the logical labels in the training
sets via leveraging the topological information of the feature
space and the correlation among the labels. In order to solve
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the LE problem, we introduce existing algorithms that can
be used for LE and propose a novel method called GLLE.
Extensive comparative studies clearly validate the advantage
of GLLE against other LE algorithms and the effectiveness of
LDL after LE pre-process on the logical-labeled datasets. In
the future, we will explore if there exist better ways to recover
the label distributions.
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