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Abstract
Point process is an expressive tool in learning tem-
poral event sequence which is ubiquitous in real-
world applications. Traditional predictive models
are based on maximum likelihood estimation (MLE).
This paper aims to improve MLE by discriminative
and adversarial learning. The initial model is learned
by MLE explaining the joint distribution of the oc-
curred event history. Then it is refined by devising a
gradient based learning procedure with two comple-
mentary recipes: i) mean square error (MSE) that di-
rectly reflects the prediction accuracy of the model;
ii) adversarial classification loss which induces the
Wasserstein distance loss. The hope is that the ad-
versarial loss can add sharpness to the smooth effect
inherently caused by the MSE loss. The method is
generic and compatible with different differentiable
parametric forms of the intensity function. Empir-
ical results via a variant of the Hawkes processes
demonstrate its effectiveness of our method.

1 Introduction and Related Work
A major line of research has been devoted to modeling event
sequences, especially exploring the continuous timestamp in-
formation to learn the underlying dynamics, whereby point
process has been a powerful and elegant framework. There is
rich literature in point process learning under the maximum
likelihood estimation (MLE) framework, is aimed to model the
joint distribution of events in the sequence. The learned point
processes, with their parameters carrying certain implications,
can be either used for relational mining [Zhou et al., 2013], or
for event prediction by generating the future events [Du et al.,
2016]. This paper is aimed to further improve the prediction
capability and stability by introducing new learning techniques
to the point processes. The approach is based on the general
idea of discriminative learning and adversarial learning, which
are relatively ignored in the point process learning literature.
We briefly introduce the background.
∗Changsheng Li is correspondence author. The work is supported

by NSFC 61602176, 61672231 and NSFC-Zhejiang Joint Fund for
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Maximum likelihood model While notable progress has
been made in generative modelling, in many applications we
are still far from producing realistic samples. One of the key
open questions is what objective functions one should use
to train and evaluate generative models [Theis et al., 2016].
The model likelihood is often considered the most principled
training objective and most research in the past decades have
been focused on maximum likelihood estimation (MLE) and
approximations thereof. Recently we have witnessed several
new learning techniques such as those based on adversarial
networks [Goodfellow et al., 2014] and kernel moment match-
ing [Dziugaite et al., 2015], and they are not (at least on the
surface) related to maximum likelihood. Such a deviation
from MLE is often technically motivated by the fact that the
exact likelihood is often intractable. Moreover there exist re-
cent methods which further deliberately differ from MLE to
avoid undesired behaviour even when MLE is tractable. One
such example is the scheduled sampling strategy [Bengio et
al., 2015] which obtains empirically improved performance.

Adversarial learning Adversarial learning techniques e.g.
generative adversarial networks (GANs) [Goodfellow et al.,
2014; Arjovsky et al., 2017] have been recently applied for
data generation in different domains. In theory, GANs can be
used to model an arbitrarily complex probability distribution,
leading to state-of-the-art results on challenging tasks like
image super-resolution [Ledig et al., 2017], and video predic-
tion [Mathieu et al., 2015]. In this paper, we are interested in
using adversarial learning for point process based event pre-
diction, which is rarely addressed in existing literature [Xiao
et al., 2017a], especially for parametric point process.

Temporal point processes Temporal point processes are
fundamental mathematical tool to model event sequences in
continuous time space. One key component is its conditional
intensity function, defined as the probability of observing an
event in an infinitesimal window given the history [Aalen et al.,
2008]. Over the decades, different parametric forms of the con-
ditional intensity function are specified, including the Hawkes
processes [Hawkes, 1971], self-correcting process [Isham and
Westcott, 1979] etc. Based on the given parametric form, ex-
isting learning based methods are often devised to optimize
the objective of MLE with particular algorithms e.g. sampling
technique [Ertekin et al., 2015b], majorization-minimization
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solver [Lewis and Mohler, 2011] and the ADMM solver
[Zhou et al., 2013] etc. Recently there are also emerg-
ing works using recurrent neural networks [Du et al., 2016;
Xiao et al., 2017b], with the advantage of dismissing the pre-
specified parametric assumption which is nontrivial and often
requires strong domain expert knowledge. As a matter of fact,
parametric point processes still have important advantages as
prior knowledge can be incorporated (especially in face of
insufficient training data), and there is often a clear physical
meaning for the parameters [Zhou et al., 2013].

Motivation This paper focuses on enabling gradient de-
scent learning for differentiable parametric point process
model. One natural idea is adopting the mean squared er-
ror (MSE) as the discriminative loss (though there is tech-
nical gap for its use in parametric point process as will be
addressed in the paper). Moreover since the `2 loss inherently
assumes the data is drawn from a Gaussian distribution, it
tends to lead to smoothed prediction curves that fit poorly on
multimodal distributions [Mathieu et al., 2015]. As a comple-
mentary recipe, GAN technique (and its derived new loss e.g.
Wasserstein distance) is adopted to measure the authenticity
of predicted events. The hope is to push the predicted curves
from temporally evenly distributed sequences to those more
realistic-looking ones. However, the above gradient based
discriminative and adversarial learning paradigm cannot be
directly applied for many existing models. Popular models
like the Hawkes process [Hawkes, 1971], Reinforced Pois-
son Process [Shen et al., 2014] predict the future sequence
via sampling techniques e.g. the thinning algorithm [Ogata,
1981], where the loss cannot be computed in a closed form (at
least in the general case) for gradient backpropogation.

Novelty Beyond the MLE generative learning paradigm, we
propose a novel approach by discriminative and adversarial
learning of differentiable point processes. Our approach is
fundamentally based on the observation that by discretizing
the counting process, the prediction can be approximated by
recursively computing the intensity integral for prediction a
closed-form function. Note in the recent conditional GAN
based work [Xiao et al., 2018], a network based generator is
used for event prediction. While in this paper, the generator
refers to an explicit parametric point process model leading to
a different learning mechanism.

2 Preliminaries

2.1 Intensity Function of Temporal Point Processes

In temporal point processes, each observed point (i.e. event)
t (a non-negative real-valued timestamp) is an outcome of
the process, forming a sequence S = {ti|i ∈ Z+}. Such
sequences are inherently different from time series due to their
synchronized nature i.e. the timestamp falls in the continuous
domain while time series is formed with equal time interval
and the fine-grained time information is lost.

A temporal point process can be characterized by the in-
tensity function, and a cascade (i.e. the observed sequence)
can be called a realization of the underlying process. Con-
cretely, denote N(t, t′) as the number of points during interval
(t, t′), Λ(t) = E[N(0, t)] as the expected number of points,

the intensity function is defined as:

λ(t) =
d

dt
E[N(0, t)] =

d

dt
Λ(t) (1)

The key to characterize a point process is to find appro-
priate (parametric) form of intensity functions. Often, two
components are considered. One is the intrinsic component
whose value reflects the inherent property of the sequence. For
instance, consider a paper citation prediction task, i.e. pre-
dicting the future citation events of a paper, the properties
may refer to the publication venue, topic, author affiliation,
etc. The other component is the external effect generating
from the previous events, which can be called predecessor-
successor dependency, thus the intensity functions become
history-dependent. For example, it is commonly believed that
the citation exhibits a Mathew effect [Wang et al., 2013] such
that a paper with more citations tend to have even more in
(short) future. This effect is found ubiquitous for instance for
equipment failures [Ertekin et al., 2015a], crime [Mohler et
al., 2011], merger and acquisition [Yan et al., 2016] etc.

As a popular embodiment, the intensity function of a multi-
dimensional Hawkes process [Eichler et al., 2017] and the
variants [Liu et al., 2017] can be seen as a superposition of
background and history effect:

λmd (t) = µmd (t)︸ ︷︷ ︸
background

+
∑
j:tj<t

Γ
mmj
d (tj)g

m
d (t− tj)

︸ ︷︷ ︸
history effect

(2)

where d refers to event taker, t is timestamp, µ is background,
Γd(t) represents the strength that the preceding event affects
the successors and g is the affecting kernel function, m de-
motes the event dimension i.e. event type. It is affected by the
preceding events with dimension mj . A specification of these
terms is given in the experiment.

2.2 MLE Learning and Sampling based Prediction
The traditional way of training a temporal point process model
is usually based on maximum likelihood estimation (MLE)
[Ogata, 1988; Lewis and Mohler, 2011]. Concretely, for D
observed sequences S = {S1, S2, ..., SD}, and each sequence
is represented as Sd = {tdj}

Nd
j=1, where tdi ≤ tdj if i < j. Let

t0 = 0, tNd = Td as the observation window, the probability
density for point t is expressed as [Rubin, 1972]:

fd(tj |t1, . . . , tj−1) = λd(tj)exp

(
−
∫ tj

tj−1

λd(t)dt

)
,

Thus the log-likelihood Ld on the whole sequence is:

log

Nd∏
j=1

f(tj |t1, . . . , tj−1) =

Nd∑
j=1

log λd(tj)−
∫ Td

0

λd(t)dt (3)

As each timestamp tj is associated with an event type mj
i.e. the so-called dimension, each sequence is denoted as
Sd = {(tdj ,md

j )}
Nd
j=1. Hence, we have M interdependent

intensity functions {λmd (t)}Mm=1 for each type. The resulting
overall log-likelihood L can be written as:

D∑
d=1

M∑
m=1

Lmd =

D∑
d=1

(
Nd∑
j=1

log λ
mj
d (tj)−

M∑
m=1

∫ Td

0

λmd (t)dt

)
(4)
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Once the parameters are estimated, we can perform in-sample
future event prediction via simulation by adopting Ogata’s
thinning algorithm [Ogata, 1981], which is a counting process
based method that generates a sequence point by point. In
essence, it is a non-deterministic and sampling process which
prevents the use of gradient based analytical learning. Readers
are referred to [Ogata, 1981] for more details.

3 Discriminative and Adversarial Learning
Despite the popularity of the MLE models, in many applica-
tions one is more interested in predicting future events rather
than modeling the joint distribution of past events. This sug-
gests the potential value for a discriminative paradigm to di-
rectly boost the prediction performance. Specifically, the dis-
criminative loss used in the paper is the widely used mean
square error (MSE) between the predicted event distribution
and ground truth in a specified time window (via bining e.g.
by year). However, it is nontrivial to adapt existing prediction
methods e.g. Ogata’s thinning algorithm [Ogata, 1981]. This
paper aims to mitigate this gap.

3.1 Enabling Prediction Error Backpropogation
Maximum likelihood estimation (MLE) learning of point pro-
cess has achieved empirical success in a number of real-world
applications, such as social media popularity dynamics pre-
diction [Shen et al., 2014], citation forecasting [Liu et al.,
2017] etc. MLE can obtain a learned generative point process
model to fit the observed event sequence. As discussed above,
however, in prediction tasks the model is used for future event
prediction rather than explaining history. We are aimed to
improve the prediction capability via discriminative learning.

In fact, adopting discriminative loss for learning is nontriv-
ial to point process models. The main obstacle lies in the
prediction (used to compute the loss against ground truth) is
non-deterministic in a forward time window because the pre-
diction in the beginning can affect the prediction later in the
window e.g. the Hawkes process like models in Eq. 2. Thus
existing methods [Ogata, 1981; Møller and Rasmussen, 2006;
2005; Dassios et al., 2013] dominantly use the traditional
counting process based simulation algorithms to estimate the
predictions over time, which disallows the error signal of pre-
dicted sequence from gradient backpropagating.

For prediction, denote Ŝ = {t̂i}Ii=1 as the prediction gener-
ated via counting process simulation, whose point number in
(t1, t2) is denoted by N̂(t1, t2). It is desirable to update point
process parameters via error propagation by computing the
deviation from the actual count N(t1, t2). However, N̂(t1, t2)
is in general computed by random sampling from the intensity
function, which disallows the analytical gradient computing –
more details are given as follows.

We propose an approximation method to enable gradient
backpropagation. Recall the intensity function in Eq. 2, as
well as many other popular forms as listed in Table 1, the main
difficulty is that λmd (t) is nondeterministic over the prediction
window (t1, t2). For instance, in the self-exciting Hawkes
process, sampling method can generate a few events by some
chance during (t1, t1 + ∆t), which can in turn increase the
intensity during (t1 + ∆t, t2) (refer to the second term on

Process form Poisson Hawkes Self-correcting Reactive

History effect Neutral Exciting Inhibiting Mixtured

Table 1: Popular intensity functions can be decoupled by: λ(t) =
µ(t)+

∑
ti<t

γ(t, ti), where γ is the temporal kernel quantifying the
history event effect to current intensity. Except for Poisson process, in
general the prediction over a future time window requires recursively
considering the earlier events in that time period, and cannot be
computed as a closed-form integer of λ(t). This is because the earlier
prediction can affect the later predictions, no matter positively (e.g.
Hawkes process [Hawkes, 1971]), negatively (e.g. Self-correcting
process [Isham and Westcott, 1979]), or both (e.g. Reactive point
process [Ertekin et al., 2015a]). Our method is agnostic to these
specific parametric forms thus has wide application potential.

the right of Eq. 2). Hence, the prediction cannot be exactly
computed by the integral

∫ t2
t=t1

λmd (t) in a closed form. Be-
cause this will ignore the events that may occur during (t1, t2).
Similar case also happens for self-correcting point process
[Isham and Westcott, 1979] where the recent occurred events
decrease the successive event occurrence chance.

Based on the above analysis, our key idea is that for a future
time window, one can split it into multiple time units, and the
integration is recursively performed on a rolling basis from
earlier time units to the later – to get the whole picture, see Eq.
7 where ĉmd (i) is a function of {ĉmd (j)}j<i. As such, the events
occurring in earlier units can be approximately accounted for
the prediction in later ones in a more tight fashion.

Formally assume there are D sequences S = {S1, ..., SD},
with each sequence Sd = {(tdj ,md

j )}
Nd
j=1 where md

j is the
event type, we discretize the continuous timestamp tdj by:

tdj =
⌊
tdj/τ

⌋
τ = iτ (5)

where τ is the predefined length of the (short) time interval for
discretization. The rounding down operation b·c transforms a
sequence Sd with continuous timestamp within [0, Td] into a
one indexed with discrete time unit (i.e. bining):

Sd = {cmd (i)}bTd/τci=0 , for m = 1, 2, . . . ,M (6)

where cmd (i) = N(iτ, iτ + τ) is the number of events of
type m occurring during the (i + 1)th time interval unit [iτ ,
iτ + τ ) when the time interval is in the past. For predicted
future points, ĉmd (i) = E[N(iτ, iτ + τ)] is the expected event
number which in general is a real number.

This transformation enables to generate future points in a
differentiable way w.r.t. the point process parameters. More
concretely, without loss of generality given the intensity func-
tion in Eq. 2, we can write out the analytical approximation
formula for each interval (iτ, iτ + τ):

ĉmd (i) =EN(iτ,iτ+τ)∼P(N(iτ,iτ+τ))[N(iτ, iτ + τ)] (7)

=

∫ iτ+τ

iτ

(
µmd (s) +

∑
j:tj<iτ

Γ
mmj
d (tj)g

m
d (s− tj)

)
ds

≈
M∑

m′=0

i−1∑
j=0

Γmm
′

d (jτ)cm
′

d (j)
(
Gmd (iτ + τ − jτ)

−Gmd (iτ − jτ)
)

+ Umd (iτ + τ)− Umd (iτ)
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Figure 1: The model is first trained by MLE using the whole ob-
served sequence in line with existing point process learning literature.
Then the model is refined by discriminative and adversarial learning.
Different from the MLE learning, the refining stage need to split the
observed sequence into training and validation one. The latter is used
to compute the losses. Note we first use MLE pretraining because the
MLE paradigm can utilize the whole observed sequence as training
data. Moreover, we find the well-developed MLE technique is more
insensitive to initial point compared with our learning approach.

where P(·) is a distribution determined by the underlying
temporal point process, g (and its integration G) is the kernel
function, µ (and its integration U ) represents intrinsic proper-
ties, and Γ represents the predecessor-successor dependency
among events. Note the approximate equation in the above
formula is a lower-bound (for the Hawkes like self-exciting
process) to the true expectation because we only consider the
triggering effect from the history citations before iτ ignor-
ing the possible points occurring during (iτ , iτ + τ ). As we
assume τ is short such an approximation is reasonable and
in practice often becomes natural since the timestamps have
limited resolution e.g. year, month in raw data collection.

The above approximation treatment leads to a deterministic
and closed-form expectation. We recursively predict future
points by Eq. 7 from i-th unit to (i+ 1)th. In each step, ĉmd is
a real value regarding with the point process parameters (see
Eq. 7). The total event count until time t is written as:

Ĉd(t) =

M∑
m=1

b t
τ
c∑

i=0

ĉmd (i) (8)

3.2 Discriminative and Adversarial Learning
Figure 1 gives the main flow of our approach. We first apply
MLE on the whole observed sequence as pre-training to obtain
an initial model. This is because we empirically find compared
with directly discriminative or adversarial learning, MLE is
more insensitive to initial point and can often obtain a good
model for further refinement. In fact, there have been well-
developed MLE learning techniques [Lewis and Mohler, 2011;

Liu et al., 2017] that one can leverage. In contrast, it has
been well known that GAN models are practically difficult to
train [Arjovsky et al., 2017]. We leave on-the-fly learning of
parametric point process model via GAN for future work.

As shown in Fig. 1, we split the whole observed and
transformed (see Eq. 6) sequence Sd into two segments
(recall that we perform in-sample prediction): i) training
sequence Stnd = {cmd (i)}bT

tn
d /τc

i=0 ; ii) validation sequence

Svdd = {cmd (i)}bT
vd
d /τc

i=bT tnd /τc+1
, i.e. the rest events to validate

the correctness of model’s prediction YΘ(Stnd ) conditioned on
the input Stnd . By this protocol, we can compute discrimina-
tive loss e.g. mean squared error (MSE) between these two
event count vectors with size bT vdd /τc − bT tnd /τc:

Lmse = E
Stn
d
∼P(Stn

d
)

[∣∣∣∣∣∣YΘ(Stnd )− Svdd
∣∣∣∣∣∣

2

]
(9)

where P(Stnd ) is the distribution of training sequence Stnd
and Nacc(·) denotes the accumulated total event count in a
sequence or period. Given Stnd , the model YΘ(·) recursively

predicts {ĉmd (i)}bT
vd
d /τc

i=bT tnd /τc+1
based on Eq. 7, which estab-

lishes the analytical relation between Θ and the MSE loss.
Due to the limitation that the MSE loss inherently assumes

the data is drawn from a Gaussian distribution, and works
poorly with multimodal distributions [Mathieu et al., 2015],
we apply adversarial training technique to provide the multi-
modality for generated events. The objective function of our
GAN model is written as:

Lgan =


E
Stn
d
∼P(Stn

d
)

[
FW

(
YΘ(S

tn
d )
) ]
− E

Svd
d
∼Pr(Svd

d
)

[
FW (S

vd
d )
]

︸ ︷︷ ︸
for training critic FW

−E
Stn
d
∼P(Stn

d
)

[
FW

(
YΘ(S

tn
d )
) ]

︸ ︷︷ ︸
for training generator YΘ

(10)
where Pr(·) is the distribution of observed real sequence Sd.
The critic FW (·) is a network capable of measuring the Wasser-
stein distance [Arjovsky et al., 2017] between distribution of
generated sequence Pg and that of real one Pr. FW (·) is
trained to distinguish from real sequences from model genera-
tion. The resulting weighted loss is:

Lmix = δLgan + (1− δ)Lmse, δ ∈ [0, 1] (11)

In summary, given a parameterized model YΘ(·) and ob-
served sequences S, first we estimate parameter Θ via MLE
on S to obtain a good baseline model. Then we refine YΘ(·)
via the proposed adversarial and discriminative learning. The
overall learning method is sketched in Algorithm 1.

Note we use the Wasserstein GAN technique [Arjovsky
et al., 2017] (specifically the gradient clipping see line 15
in Algorithm 1) instead of the improved WGAN [Gulrajani
et al., 2017]. Because we encounter the persistent gradient
vanishing issue regarding with the discriminator’s penalty
terms accounting for the Lipschitz condition as required in
improved WGAN. We get more stable convergence by WGAN.
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Algorithm 1 Improving MLE based temporal point process
modeling via adversarial and discriminative learning.

Require: Observation {Sobd = [Stnd , S
vd
d ]}Dd=1 (see Fig. 1); its dis-

cretization Sobd ; event taker d’s profile features xd;
Require: Notations: YΘ(·): generator; FW (·): adversarial critic

network; ξ: the MLE learning early stop threshed; Nacc(·):
accumulated number of events in a period.

1: Initialize point process model parameter Θ randomly;
2: for t in 1 to tmle do
3: Update Θ by EM based estimation for L(Θ) by Eq. 4 on the

observed sequence Sobd ;
4: Compute prediction error on validation sequence:

rt =
∑D
d=1 |Nacc

(
YΘ(Stnd )

)
−Nacc(Svdd )|/Nacc(Svdd )

5: If rt−1 − rt < ξ, break (early stopping);
6: end for
7: Initialize critic network parameter W randomly;
8: while Θ not converge do
9: Sample {Stnd }D0

d=1 ∼ P(Stnd ) a batch of D0 sequences

10: Θ← Θ− η∇Θ

∑D0
d=1

(
− δFW

(
YΘ(Stnd )

)
+(1− δ)‖YΘ(Stnd )− Svdd ‖2

)
by Eq. 11 and Eq. 9, 10;

11: for t in 1 to tpost do
12: Sample {Svdd }D0

d=1 ∼ Pr for validation sequences;
13: Sample {Stnd }D0

d=1 ∼ P for training sequences;

14: W ←W − η∇W
(
FW

(
YΘ(Stnd )

)
− FW (Svdd )

)
15: W ← clip(W,−c, c)
16: end for
17: end while

3.3 Comparison to Network based Methods

Now we discuss the specific difference of our method to recent
work [Xiao et al., 2017a] and its more recent conditional GAN
version [Xiao et al., 2018] using network based Wasserstein
learning for point process: our model predicts the individual’s
future events’ timestamp and marker (superscript m in Eq.
2) by given its observed preceding sequences. It also means
our method allows for personalized model learning for each
individual event taker (subscript d in Eq. 2). While in [Xiao
et al., 2017a], the model is devised inherently shared for all
event takers. Moreover it cannot perform in-sample prediction
i.e. for event taker d, predicting its future events based on
the history. Instead, the whole sequence can only be gener-
ated from scratch in [Xiao et al., 2017a] which hinders the
applicability in real-world prediction problems.

More importantly, models in [Xiao et al., 2017a; 2018] are
all neural networks making gradient descent trivial. In fact
how to adapt to parametric point process calls for more in-
tellectual challenge, which is addressed in this paper. Since
parametric point process can have its advantage in terms of bet-
ter leveraging prior knowledge in face of small data, and higher
interpretability compared with black box neural networks, we
believe our contribution is orthogonal to [Xiao et al., 2017a;
2018]. In fact, to our best knowledge, we identified no relevant
work on adversarial learning of parametric point process.

4 Embodiment and Experiments
4.1 Prediction Performance Evaluation Metrics
Denote Ĉd(t) = N̂d(0, t) as the predicted event number for
sequence d before t and Cd(t) as its actual number. Two
popular metrics are used to measure the long-term prediction
capability in literature [Shen et al., 2014; Liu et al., 2017]:

Mean Absolute Percentage Error (MAPE) It measures
the mean relative deviation between predicted and true points
count. MPAE is given by (the lower the better):

MAPE(t) =
1

D

D∑
d=1

∣∣∣(Ĉd(t)− Cd(t))/Cd(t)∣∣∣ (12)

Accuracy It measures the fraction of sequences correctly
predicted for a predefined error tolerance ε. The accuracy of
popularity prediction is defined by (the higher the better):

ACC(t) =
1

D

D∑
d=1

∣∣∣d :
∣∣(Ĉd(t)− Cd(t))/Cd(t)∣∣ ≤ ε∣∣∣ (13)

Note the above definitions are regarding with a time period
[0, t) whereby the total event number is accounted for.

Intensity function modeling We use the intensity function
model i.e. Eq. 2 as developed in [Liu et al., 2017] for sequence
prediction. Here we briefly introduce the components and
readers are referred to the papers for details:

µmd (t) =

P∑
p=1

βmxde
−θmd t, gmd (t) = e−ωdt, Γmm

′
d (t) = αmm

′
d

(14)
where model parameter Θ includes α, β, θ and ω, except for
xd ∈ RP denoting properties associated with event performer
e.g. a paper with its publication venue, institution and its
citation events. Note we omit the index p in summation of
all profile features for βm, xd, θmd . By Eq. 4 and Eq. 2, the
overall MLE log-likelihood function is:

L(Θ) =

D∑
d=1

(
Nd∑
j=1

log λ
mj
d (tj)−

M∑
m=1

Umd (Td) (15)

−
M∑
m=1

Nd∑
j=1

Γ
mmj
d (tj)G

m
d (Td − tj)

)
+ r(Θ)

where r(Θ) is an optional sparsity regularizer. An EM al-
gorithm can be used for MLE based parameter estimation.
Details can be found in [Liu et al., 2017].

4.2 Dataset and Settings
Synthetic data We simulate D = 1000 synthetic sequences
by using the above intensity function over [0, T ) for T = 25.

The observation window spans [0, 15], consisting of [0, 10]
as training window and [10, 15] as validation. The testing
period is [15, 25]. For model’s parameters in Eq. 2 and Eq. 14,
event take d’s profile feature is of size P = 15 i.e. βm, xd ∈
R15. For each event taker, its profile value xd is sampled by a
uniform distribution U(0, 1). The profile encoding parameter
βm is sampled from U(0, 3), and θmd is shared among all takers
d and is sampled from U(0, 0.5). The triggering parameter
αd is set varying over takers and has the form of αd = c ∗
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(a) Accuracy on citation data. (b) MAPE on citation data.

Figure 2: Prediction performance evaluation (ε = 0.3 for ACC) over
years on the real-world citation dataset [Sinha et al., 2015]. Mean
absolute error (MAE) is also tested by replacing the MSE loss.

exp (−0.01
√
d) where c is a sampled from U(0, 6) and d is

the d-th sequence from 1 to D. Given the above parameters,
the event sequence can be readily simulated using off-the-shelf
algorithm e.g. the thinning method [Ogata, 1981].

To study the robustness of our model, we further add noise
to the timestamp of each event. Not for learning, we use the
noise-add data, while for performance evaluation of the test
period, we compare with the ground truth without noise.

Real-world dataset Microsoft Academic Graph (MAG)
[Sinha et al., 2015] consists scientific publications with their
individual profiles e.g. authors, institutions, venues etc. and
citation records over time. We have collected 10,000 publi-
cations satisfying: i) published in computer science venues
during 1980-1990; ii) each paper has at least 5 citations. For
each of these papers, we collect a span of 25 years of citation
records since its publishing year. Following the protocol in
Fig. 1, the 25-year is split into the observed period (from year
1 to 15) and the test period (from year 16 to 25). Moreover,
the observed period is divided into the training period (from
year 1 to 10) and the validation period (from year 11 to 15).

We also use NYSE transaction [Du et al., 2016] containing
0.7 million high-frequency transaction records at a stock one
day, forming 3200 sequences. We pick the top 1000 sequences
with most events for our experiments.

Protocols We use convolutional neural network (CNN) [Le-
Cun et al., 1998] as the critic for classifying genuine sequence
Svdd from the generated prediction YΘ(Stnd ). The CNN has a
conv-pooling-conv-FC structure with 128 filters. For WGAN
[Arjovsky et al., 2017], we set parameter clip c = 0.1, learning
stepsize η = 0.01, mixed loss weight δ = 0.5; For detecting
overfitting and early stopping, we set ξ = 0.001. RMSProp
[Tieleman and Hinton, 2012] is used for backpropagation. For
evaluation metrics, we use MAPE (Eq. 12) and ACC (Eq.
13) with different tolerance ε in line with [Shen et al., 2014;
Liu et al., 2017]. We test MSE (mean square error) as discrim-
inative loss. Three settings are evaluated: i) MLE alone, ii)
MLEMSE, iii) MLEMSE+WGAN where the subscripts denote the
posterior learning after MLE.

4.3 Results and Discussion
Synthetic data results From the results as shown in Table 2
one can observe our technique can improve MLE.

Real-world data results Table 3 reports both the MAPE
and ACC over the first 5 years and on the whole 10 years

method MAPE ACCε=.3 ACCε=.2 ACCε=.1

5 yrs.
MLE 7.46 99.9 99.0 69.8

MLEMSE 7.13 100.0 99.6 72.8
MLEWGAN 5.95 100.0 99.6 83.0

MLEMSE+WGAN 5.55 100.0 99.4 85.8

10 yrs.
MLE 11.87 98.8 84.8 43.0

MLEMSE 11.13 99.1 87.2 47.8
MLEWGAN 8.98 99.3 93.2 63.4

MLEMSE+WGAN 8.72 99.6 94.6 65.9

Table 2: Results (δ = 0.3) on 1000 sequences via simulation.

method MAPE ACCε=.3 ACCε=.2 ACCε=.1

5 yrs.
MLE 6.46 100.0 98.80 86.76

MLEMSE 4.21 100.0 100.0 95.75
MLEWGAN 4.10 100.0 100.0 96.23

MLEMSE+WGAN 3.87 100.0 100.0 96.63

10 yrs.
MLE 11.98 95.59 87.25 51.64

MLEMSE 7.42 99.60 97.03 79.87
MLEWGAN 7.19 99.84 97.43 81.40

MLEMSE+WGAN 6.76 99.68 97.67 83.48

5 yrs.

MLE 10.85 93.78 84.07 59.32
MLEMSE 11.11 92.63 82.46 59.23

MLEMSE+WGAN 10.48 94.59 85.07 62.25
MLEMAE+WGAN 10.41 94.77 85.66 62.82

10 yrs.

MLE 18.38 79.57 64.81 39.75
MLEMSE 18.41 78.84 63.96 40.87

MLEMSE+WGAN 17.43 81.32 66.64 42.77
MLEMAE+WGAN 17.33 81.61 66.99 42.82

Table 3: Results (δ = 0.5) on real-world data from NYSE transaction
(top half) and Microsoft Academic Graph (bottom half). Using
WGAN alone in our experiments on citation data failed to converge.

weight MAPE ACCε=.3 ACCε=.2 ACCε=.1

5 years
δ = 0.1 5.75 100.0 99.4 85.2
δ = 0.3 5.55 100.0 99.4 85.8
δ = 0.5 5.83 100.0 99.6 83.2
δ = 0.7 5.90 100.0 99.6 83.4
δ = 0.9 5.93 100.0 99.6 83.4

10 years
δ = 0.1 8.77 99.2 94.4 64.4
δ = 0.3 8.72 99.6 94.6 65.9
δ = 0.5 8.82 99.6 94.1 65.2
δ = 0.7 8.95 99.6 93.4 63.9
δ = 0.9 8.97 99.6 93.0 63.4

Table 4: Weight δ sensitivity in Eq. 11 on 1000 simulated sequences.

(including the first 5-year) respectively. The results show the
posterior learning, especially with the mixed loss involving
both discriminative and adversarial learning can often improve
the MLE baseline. Fig. 2 discloses the yearly performance
over the 10-year testing period. One can see combing MSE
with WGAN outpeforms MSE only, which suggests of adopt-
ing adversarial loss in addition with MSE. Similar results can
be found in Table 3 for the NYSE transaction dataset. More-
over, we study the behavior of the weight δ between MSE and
WGAN loss in Eq. 11 as shown in Table 4.
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5 Conclusion
This paper presents a novel technique for improving maximum
likelihood based estimation of temporal point processes. Its
utility is verified by testing multi-dimensional Hawkes-like
point process on synthetic and real-world sequences. Our
model is parametric in contrast to those full RNNs models.

For synergizing the MSE and WGAN losses, in this paper
we only tried a naive weighted linear sum with moderate
improvement to each other. Seeing the practical complexity
of training GAN, better tricks e.g. gradually adding GAN loss
may be developed which we leave for future work.
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