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Abstract

We investigate how to adopt dual random projec-
tion for high-dimensional similarity learning. For a
high-dimensional similarity learning problem, pro-
jection is usually adopted to map high-dimensional
features into low-dimensional space, in order to re-
duce the computational cost. However, dimension-
ality reduction method sometimes results in unsta-
ble performance due to the suboptimal solution in
original space. In this paper, we propose a dual ran-
dom projection framework for similarity learning
to recover the original optimal solution from sub-
space optimal solution. Previous dual random pro-
jection methods usually make strong assumptions
about the data, which need to be low rank or have
a large margin. Those assumptions limit dual ran-
dom projection applications in similarity learning.
Thus, we adopt a dual-sparse regularized random
projection method that introduces a sparse regular-
izer into the reduced dual problem. As the original
dual solution is a sparse one, applying a sparse reg-
ularizer in the reduced space relaxes the low-rank
assumption. Experimental results show that our
method enjoys higher effectiveness and efficiency
than state-of-the-art solutions.

1 Introduction

Pairwise similarity learning has been widely used in clas-
sification, information retrieval, and recommendation sys-
tems [Chechik et al., 2010; Bellet et al., 2012; Cheng, 2013].
The continuous increase of data scales and dimensions in
many applications (e.g. multimedia, finance, bioinformat-
ics, and healthcare) raises two main challenges for simi-
larity learning. First, high dimensionality poses computa-
tional and memory challenges. Second, large-scale data may
be sparse and noisy, making it difficult to find any struc-
ture in the data [Fern and Brodley, 2003]. As a solution to
these problems, random reduction techniques have received
much attention recently [Paul er al., 2013; Yang et al., 2015;
Xu et al., 2017].

Random projection (RP) is a simple but powerful fea-
ture dimensionality reduction method that projects a high-
dimensional sample (d dimensions) into a low-dimensional

space (m dimensions) by a randomly generated matrix [Bing-
ham and Mannila, 2001]. In contrast to other feature reduc-
tion methods, such as Principal Component Analysis (PCA),
Linear Discriminant Analysis (LDA), and undercomplete In-
dependent Component Analysis (ICA), RP can more effi-
ciently generate the projection matrix, so that it can avoid
computing the eigenvalues of samples (with time complexity
of O(d?)), which is too heavy as a data pre-processing step
for large-scale datasets. However, RP does not consider the
intrinsic structure of the data, so that it may lead to relatively
high distortion [Fern and Brodley, 2003]. Specifically, the
optimal solution solved in subspace can be used to recover
a suboptimal solution in the original space, however it may
significantly differ from the optimal solution of the original
problem. Recently, Dual Random Projection (DuRP) algo-
rithm is studied to recover the optimal solution in the original
space [Zhang er al., 2013; 2014; Yang et al., 2015]. Specif-
ically, by combining the Fenchel’s duality theorem and ran-
dom projection, Zhang [2013] proposed a stochastic DuRP
solution, which can effectively restore the optimal solution of
the original optimization problem. Currently, only a few stud-
ies examined the application of DuRP to similarity learning.

In this paper, we proposed an efficient dual random pro-
Jection framework for high-dimensional similarity learning
task. Our solution avoids the computational cost of O(d?).
This framework solves the optimization problem in two steps
using recovery method. In step 1: RP is applied to the original
data to reduce the dimensionality; then we need only solve a
low-dimensional optimization problem. In step 2: the dual
solution of the low-dimensional problem is constructed from
its primal solution, and then we use the dual solution to re-
cover the optimal solution of the original space. The empiri-
cal results show that the proposed framework achieves better
and more robust performance.

It is notable that previous dual random projection and
recovery methods rely on strong assumptions about the
data—low rank [Paul er al., 2013; Zhang et al., 2014]
or large separable margin [Balcan et al., 2006; Shi ef al.,
2012]—which may limit their application scenarios for sim-
ilarity learning. To address this issue, we adopt a dual-
sparse regularized random projection approach for high-
dimensional similarity learning. In particular, a dual-sparse
regularizer is added to the reduced optimization problem. Ex-
periments on a set of real datasets demonstrate that a suitable
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sparse regularizer can reduce the recovery error.

This paper is organized as follows. Related work is re-
viewed in the next section. Section 3 presents our dual-sparse
random regularized random projection framework. Section 4
reports experimental results, and Section 5 concludes our
work.

2 Related Work

Similarity/distance metric learning has been intensively stud-
ied [Bian and Tao, 2011; Kulis, 2013; Qian et al., 2015].
Distance metric learning (DML) methods focus on learn-
ing a symmetric distance between two objects x1 and 2 by
(ry — x9)TM(z; — z2), where the parametric matrix M
must be positive semi-definite (PSD) [Shalev-Shwartz et al.,
2004; Jin et al., 2009]. Another relative similarity learning
(RSL) approach learns a similarity score of two objects by
Sy (z1,22) = x{ Mxy, where the similarity matrix M in the
bilinear model can be non-symmetric [Chechik ef al., 2010;
Crammer and Chechik, 2012]. Without the PSD constraint,
the cost of optimization decreases from O(d®) (PSD projec-
tion) to O(d?). However, when solving the large-scale op-
timization problem, these two methods both have extremely
high computational cost.

Random projection is one popular and efficient techniques
to project high-dimensional data into a low-dimensional
space and learn a metric in the subspace. It has been suc-
cessfully applied in many applications, such as classification
task [Zhang et al., 2014], regression [Maillard and Munos,
2012; Zhang et al., 2016], and information retrieval [Venna
et al., 2010]. However, this dimensionality reduction method
often leads to suboptimal performance. To overcome this
shortcoming, Davis [2008] and Weinberger [2009] place a
strong assumption on the learned metric to be a low-rank ma-
trix. This assumption significantly limits the applications.

Recently, an original space optimal problem recovering
method is studied by using dual random projection [Qian et
al., 2015; Yang et al., 2015]. Same as random projection
method, DuRP reduces the dimensionality of the data and
solves a subspace optimization problem. Then, DuRP con-
structs the dual solution of the subspace and uses it to re-
cover the optimal solution of the original space problem. The
recovered optimal solution achieves a small error by using
Q(rlogr) projections, where r is the rank of the data ma-
trix [Zhang et al., 2013].

Our work is related to the DuRP work [Qian et al., 2015]
for DML (DuRPDML). However, DuRPDML still needs
to solve the PSD problem in the original high-dimensional
space. The time complexity of PSD solution would be O(d?),
which can cause expensive computational cost for the high-
dimensional dataset. The similarity learning method is more
efficient and consumes less memory than DML in solving
the high-dimensional optimization problem because it does
not need the PSD step. Also, to recover the primal solution,
DuRPDML assumes the data is low-rank. In contrast, our al-
gorithm makes use of the sparsity of the dual solution to relax
this assumption.
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3 Dual-sparse Random Projection for
Similarity Learning

Let X = (x1,"-,%X,) € R¥™ denote a set of train-
ing examples. Our goal is to learn a similarity function
S : R? x RY — R based on a sequence of training triplets
D = {(x,x7,x;) € R x R? x Rt € [T]} with
[T] = {1,---, T}, where the similarity score between x;
and x;" is greater than that between x; and x; . Specifically,
we would like to learn a similarity function S(x,x’) that
assigns higher similarity scores to more relevant instances,
S(xe,x;) > S(xt,x; ), Vte|T).

For the similarity function, we adopt a parametric similar-
ity function that has a bi-linear form: Sy (x,x’) = x" Mx/,
where M € R4 In order to learn the optimal param-
eter M, we introduce a loss function £(M; (xs,x;,%;))
that measures its performance on the ¢-th triplet. One pop-
ular loss function is the hinge loss: £(M; (x¢,x;,2;)) =
[1— S (xe,x;77) + Sar(xe,%x; )]+, where [-] 1 = max(0, -).
The above loss measures how much the violation of the de-
sired constraint S(x¢,x;) > S(x¢,x; ) is by the similarity
function defined by M.

A set of T triplet constraints is derived from the train-
ing examples in X. During each learning step ¢, a triplet
(x¢,x;,x;7) will be presented to the algorithm. The algo-
rithm can update the model from M, to M, 1, based on the
current triplet. We denote the model’s estimation after the
(#-1)-th round by M;. Following the empirical risk minimiza-
tion framework, the optimal similarity function is learned by
solving the following optimization problem:

miny cpaxa 3 IM T+ 3 000 6OM30x05 %)), (D
where A > 0 is the regularization parameter and /(-) is a
convex loss function. We define the following hinge loss
function for the triplet: ¢(M; (x;,x;,%x;)) = max{0,1 —
S(x4, %)) + S(x¢,%; )} = max{0,1 — (M, A;)}, where
Ay = x¢(xF —x;7) T and (M, A;) = trace(M " A;). Hence,
the optimization problem can be described as solving:
M.=argminy cpaxd 3 [|MI5+3 71 6(M,A)), 2)
on triplet constraints {A4;}7_,. By writing £(-) in its convex
conjugate form £, (-), we can turn the primal problem (2) into
a dual problem:
maXaq,.-aq % Z?:1 —Z*(—at)—ﬁ Hthzl atAtH;, (3)
which is equivalent to
o =argmax, o 11T isr, —K*(—at)—ﬁaTGa, 4)
where o = (ay,--- ,ar)" and G = [G4p] 5 7 is a matrix
in RT*T with G, = (A4, Ap). We denote M, € R4*d
as the optimal primal solution to (2), and o, € R7 as the

optimal dual solution to (4). Using the first order condition
for optimality, we have:

1 T

_ t

M, = 3T ;:1 L As. 5)
3.1 Dual Random Projection for Similarity

Learning
It is a computationally challenge to solve either the primal
problem in (2) or the dual problem in (4), when the dimen-
sionality d is high and the number of training triplets 7 is
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Algorithm 1 Dual Random Projection Method for Relative
Similarity Learning (DuRPRSL)

Algorithm 2 SDCA: Stochastic Dual Coordinate Ascent for
Relative Similarity Learning

Input: the triplet constraints D = {(x;,x;",x; )}, and
the number of random projection m
1: Initialize a Gaussian random matrix R € R¥™
2: Project each triplet as A, = RT AR
3: Solve the optimization problem (7) using SDCA and ob-
tain the optimal solution av, *)
4: Recover the original solution ]\Zf* according to (9):M* =
1 T
AT Zt:l o Ay
Output:
the recovered solution M*

large. We try to overcome this challenge by using the dual
random projection technique. Let R € R?*™ be a Gaus-
sian random matrix, where m < d and R; ; ~ N(0,1/m).
For each triplet constraint, we project its representation A
into the low-dimensional space using a randomized matrix:
/Alt = RTA;R. In the low-dimensional space, the primal
goal is solving the following optimization problem with the

randomly projected triplets {A;} L ;:
M. =argming camxm 1+ 31— (M A)+3IM)%. (6)
The corresponding dual problem is written as
& =argmaxg o7 F Sreq —bs(—0)— 5= a Ga,  (7)

where @a,b = (RTA.R, RT A R). We denote &, € R™ as
the optimal solution to (7) and the primal solution is

T
= 1 P
M* = ﬁ ti - Oé*At. (8)

Comparing the dual problen; (4) in original space and
problem (7) in subspace, the only difference is that the
matrix G, = (Aq, Ap) in (4) is replaced by G, =
(RTA,R,RTAyR) in (7). As E(RTA,R,R" AyR)) ~
E((Aa, Ap)) when the reduced dimension m is sufficiently
large, G will be close to G, and @, is also expected to be
close to a,. As the result, we can use &, to approximate cx,
in (4). So the original optimal model can be recovered as:

T
-1 At
M, ~ M, = T ;:1 a.As. 9

It is important to note that the recovered metric M, is the opti-
mal solution in the projected subspace, while M, is computed
directly in the original space using the approximate dual solu-
tion av,. Compared to the original space optimization solving
method in (3), the time complexity of the proposed method
will drop to O(md)(< O(d?)).

Solving the dual problem (7) is the key step in our frame-
work. Here we choose the Stochastic Dual Coordinate As-
cent (SDCA) [Shalev-Shwartz and Zhang, 2013] method to
find the optimal a,. It is shown to be empirically faster than
other stochastic methods, especially for solving large-scale
optimization learning problems [Shalev-Shwartz and Zhang,
2013]. Now the whole framework to obtain M, can be de-
scribed in Algorithm 1. The SDCA solution in the projected
space is described in Algorithm 2.

3007

Input: ) > 0, the projected triplet constraints {A;}7_,
1: Initialize M° = M@©®) = 0 € R™m, a0 =
(@y,---,ar) =0
2: fort=1,2,...,T do
3:  Uniformly pick a triplet EZ
4:  Compute Aq; to increase dual:

. . 1— (M= Ay _(t—1) (t—1)
Aai_max<0,m1n<l,W+ai -a;

5: éé\\(t) — a/(_t\il) + Aazel
6 M® — MY 4 (A\T)'Ad; A,
7: end for

Output (Average option):

=_ T T ~(t—1)
Leta = 7= Xi_p 11 ¥

Let /]\Z == /M(a\) == T%%E;:TO+1TW\(IS_1)
return &
Output (Random option):
Leta = a® and M = M® for uniformly random ¢ €
{TO‘FL"' ’T}
return @

For the hinge loss, step 3(*) in SDCA has a closed form
solution as

o . =M@ Ay (-1 (t—1)
Aalfmax<0,m1n<l,m+ai —a; . (10)

The dual random projection and recovery approach has one
deficiency: some non-support samples in the original opti-
mization problem will become support samples, due to the
feature reduction. This could result in the corruption of re-
cover error. As a result, the dual recover methods rely on
some strong assumptions of data: low rank [Paul er al., 2013;
Zhang et al., 2014] or large separable margin [Balcan er al.,
2006; Shi et al., 2012]. To address this limitation, we plan
to use dual-sparse randomized reduction to relax the assump-
tions.

3.2 Dual-sparse Regularized Random Projection
(DuSRPRSL) for Similarity Learning

To reduce the number of training instances that are non-
support samples in the original optimization problem and
transformed into support samples due to the reduction of the
feature space, we add a dual-sparse regularization to the re-
duced dual problem (7). The optimal problem is written as

T 5
2A1T2a Ga—%7| a1,

Y

. T
G =argmax, (o 1)T Ll i (—ar)—

where the regularizer is ||a||; with 7 > 0.

To understand the effectiveness of dual-sparse regular-
izer in random projection for similarity learning, we eval-
uate the performance on a non-smooth hinge loss function
£(u) = max(0,1 — ) and also give a solution for a smooth
squared hinge loss function £(u) = max(0,1 — u)?. In this
paper, the hinge loss function is chosen for illustration. Given

l(—a;) = —a for o € [0, 1], the new dual problem is writ-
ten as:
G =argmax, (o 1)T L Zle atfﬁaTéaf%HaHl. (12)
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Using variable transformation —a; — [3;, the above prob-
lem is written as

maxXge[—1,0)7 T i 515(_1_7')_2)\1T26T65' (13)
Changing into the primal form, we have
maxy cgmxm 7 3oy —r (M7, A)+3 M3, (14)

where £, (z) = maz(0,7 — z) is a max-margin loss with
margin given by .

For the hinge loss, step 3(*) in SDCA has a closed form
solution as

_ ~ a-n-—mt=D Ay | t-1) (t—1)

Aalfmax(o,mm<1,W+ai ! )>7ozl D, (15)

For the squared loss, we have £(u) = max(0,1 — u)?, a
closed form solution is

- 0.5 o (t=1) 4.
(1—7)—0.5a} (M »AG)
A i= L . 1

« 05+ 14,15/ (A1) (16)

The proposed dual-sparse formulation provides a bounding
on the dual recovery error ||, — .|| to overcome the low-
rank limitation, which is another contribution of this paper.
As the margin becomes small in the reduction feature space,
samples become difficult to separate after dimension reduced.
A suitable sparse regularizer can help to improve the recovery
accuracy. This is because adding the ¢; regularization in the
reduced problem of similarity learning is equivalent to using
a max-margin loss with a smaller margin. The experiment
results demonstrate that the recovery error can be reduced by
a suitable sparse regularizer.

4 Experiments

In this section, we first present our study on DuRPRSL for
ranking and classification tasks. Then we give a case study
on the support of dual-sparse regularized DuRPRSL.

4.1 Experiment Datasets and Settings

To examine the effectiveness of the proposed method, we
tested on six public datasets: Protein, Gisette, RCVI, URL,
Caltech256, and BBC from LIBSVM, Caltech, and UCD, as
shown in Table 1.

[ DataSet [ Source [ #Class | #Feature | #Train | #Test |
Protein LIBSVM 3 357 17,766 6,621
Caltech30 Caltech 30 1,000 20,623 8,838
Gisette LIBSVM 2 5,000 6,000 1,000
BBC UCD 5 9,636 1,558 667
RCV1 LIBSVM 2 47,236 20,242 677,399
URL LIBSVM 2 3,231,961 1,677,291 718,839

Table 1: Statistics of standard datasets.

Caltech30 is a subset of the Caltech256 image dataset. We
filtered out the 30 most popular categories. The BBC news
article dataset was gathered from BBC news website. The
Protein is a bioinformatics dataset, which is used to predict
the local conformation of the polypeptide chain. The Gisette
dataset is used for a handwritten recognition problem, re-
leased from NIPS 2003 Feature Selection Challenge. The
RCVI is a binary text classification dataset. The URL dataset
is used for malicious URL detection, consisting of 2.4 million
URLs and 3.2 million features collected in 120-day. For eval-
uation, we used the standard training and testing split given

by the providers, except for Caltch30 and BBC. For these two
datasets, we randomly split them into a training set (70%)
and a test set (30%). To generate a triplet (x;, xzr, X; ), Xt
is firstly randomly selected from the whole training set, then
x; is randomly selected from the subset of training set, which
consists of the examples with the same class of x;, at last, x;
is randomly selected from the rest of training set, which con-
sists of the examples with different classes of x;.

To make a fair comparison, all methods adopted the same
experimental setup. We randomly selected 7=50, 000 triplets
as training instances and set the number of epochs to be 5
for all stochastic methods. The average results over five trials
were reported finally. Cross-validation was used to select the
values of hyperparameters for all algorithms. Specifically, the
parameters set by cross-validation included: the aggressive-
ness parameter C' for OASIS (C € {l, 0.1, 0.08, ..., 0.01})
and X\ € {5e-2, 5e-1, ..., 5e+6}. Moreover, the hinge loss was
used in the implementation of the proposed algorithms.

To evaluate the quality of learned metrics, we first used
mean-average-precision (MAP) to evaluate the accuracy of
the retrieval performance. Second, we evaluated the classifi-
cation performance using k-nearest neighbor classifier. More
specifically, we applied the proposed algorithms to learn a
measurement metric. Then for each test instance q, we used
the learned metric to find the top k-nearest training examples
and predicted the class assignment by choosing the majority
class among the k-nearest neighbors. We also recorded the
time cost of the proposed algorithms.

4.2 Comparison Algorithms

We compared eight approaches. Euclidean: The base-
line measurement method using the standard Euclidean dis-
tance in feature space. OASIS: A state-of-the-art algorithm
learns a bilinear similarity, which is based on online passive-
aggressive algorithm using triplet instances. [Chechik ef al.,
2010]. DuDML: This algorithm applies Stochastic Dual Co-
ordinate Ascent (SDCA) [Shalev-Shwartz and Zhang, 2013]
to learn the distance metric. DuRSL: This algorithm ap-
plies SDCA to solve the dual problem Eq.(4) and recover
the similarity metric by Eq.(5). SRP: Apply random pro-
jection to reduce the dimensionality and then use SDCA to
learn the similarity metric in subspace. SPCA: Apply PCA
to project original data into lower dimensional space and then
use SDCA to learn the similarity metric in subspace. DuR-
PDML: Dual Random Projected Distance Metric Learning
proposed by [Qian et al., 2015]. DuRPRSL: The proposed
algorithm (Algorithm 1).

OASIS, DuDML, and DuRSL are the algorithms that solve
the optimization problem in the original space. DuRPDML,
DuRPRSL, SRP, and SPCA are the methods that apply RP or
PCA and solve the optimization problem in subspace. More-
over, DURPDML and DuRPRSL will recover the solution in
the original space by using the suboptimal results.

4.3 Evaluation by Ranking

To demonstrate the effectiveness of the proposed method,
we first compared the MAP performance for different ap-
proaches, where the dimension of the subspace projection is
set as 100. The results are summarized in Table 2. Then,
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Metric in Original Space Metric in SubSpace ]

| Euclidean | OASIS [ DuDML | DuRSL | DuRPDML | DuRPRSL | SRP [ SPCA |
Protein 38.78 45.18+0.12 | 47.05+0.31 | 49.30+£0.24 | 43.35+0.16 | 45.47+0.08 | 41.38+0.29 | 43.98+0.15
Caltech30 17.45 31.37+0.03 | 28.3940.37 | 30.71+£0.40 | 25.054+0.18 | 28.43+0.13 17.37+£0.43 | 25.78+0.11
Gisette 62.05 82.62+0.22 | 88.92+0.53 | 95.10+0.61 84.26+0.67 | 91.01£0.66 | 69.10+2.35 | 87.9540.09
BBC 31.75 79.36+0.42 | 83.394+0.35 | 94.02+0.70 | 81.5440.31 90.45+0.78 | 50.084+1.52 | 88.58+0.08
RCVI 60.50 92.75+0.03 | 81.44+0.78 | 92.41+0.53 | 80.05+0.82 | 90.62+0.54 | 60.414+2.33 | 85.57+0.17
URL 67.21 87.92+0.24 | 91.15£0.02 | 94.04+0.03 | 82.67+0.42 | 72.68+0.25 83.094+0.20 | 86.92+0.03

Table 2: Comparison of ranking results by MAP (%) (dim=100).

60—+ ——1

)

Projected
Original

Original

Projected

Projected

Original

Projectad

= DURPDML
—e—onsis DURPRSL
DuDML

¢ spca

al (o DuRPOML

DuRSL

(a) Protein

= DuRPDML
a0 —=—onsis ul
DuDML S
o o
50 50 00

#Projections m

DuRSL

100
#Projections m

(b) Caltech30

50 100 150 200
#Projections m

(c) Gisette

~—onsis
DuDML
DuRSL

= DURPDIL

o spca

DuRPRSL.
SRP

Classi

DuRSL

=~ DURPDML.

-o-spca

Projected

DURPRSL
sk

Classification Accuracy (%;

Projected
Original

—=—onsis

DuDML | |-o- SRP

= DuRPDML
DURPRSL.

50 100
#Projections m

(a) Protein

150 200

50 100 1
#Projections m

(b) Caltech30

DuRsL | |- spea
00 150
#Projections m

(c) Gisette

Projected 80

= DURPDML.
DURPRSL
| |-o-sre
DuRSL | |0 SPCA

100 500 1000 2000 4000 50 100
#Projections m

#Projections m

(d) BBC

#Projections m

(e) RCVI (f)y URL

Figure 1: Performance of ranking algorithms with different number
of projection dimensions in terms of MAP.

in order to observe the effect of different dimensions on the
MAP performance, we varied the dimension of the subspace
from 20 to 200 on each dataset. Fig. 1 shows how the MAP
results are affected by the projection dimension. In aver-
age, DURPRSL provides at least 5% improvement than DuR-
PDML. The proposed dual optimal solution DuRPRSL is also
quite close to the primal optimal solutions.

For the first experiment, Table 2 shows the MAP results
of different learning approaches. First, we observe that RSL-
based methods perform better than DML-based methods, and
DuRSL achieves the best performance among all the meth-
ods. Second, compared with DuRSL, DuRPRSL achieves
similar performance on all datasets except URL, which re-
sulted from an extremely dimension reduction, from 3 million
to 100. When the dimension increases to 2000, we can see
that DuRPRSL works best among all algorithms in Fig. 1(f).
With the growth of dimensions, the MAP is increasing.

In the subspace, SPCA performs significantly better than
SRP, while SRP is slightly better than the baseline method.
That is because SPCA keeps the maximal data variance when
making projections. Compared with methods in original
space, SPCA achieves similar performance as DuRPDML.

For the second experiment, we compared the MAP perfor-
mance changes with different projection dimensions in Fig. 1.
We set the number of random projection dimensions from 20
to 200 for datasets Protein, Caltech30, Gisette, and BBC. For
RCVI and URL, we changed the number of random projec-
tion dimensions from 50 to 4000 as their feature space are
larger. Note that the performance of OASIS, DuDML, and
DuRSL remain unchanged with the varied number of dimen-
sions because they do not apply reduction. We can observe
that DuRSL almost achieves the best performance of all the
datasets.
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Figure 2: Performance of classification algorithms with different
number of projection dimensions in terms of k-NN accuracy.

Of the methods that use random projection, DuRPRSL al-
most performs the best for different projection dimensions
and datasets except for the URL dataset. DuRPRSL be-
comes better than other random projection methods after the
number of random projections reaches 2000, while SRP per-
forms better than DuRPRSL when the dimension is less than
2000. That is because SRP projects all the data into a low-
dimensional space which maximizes the variance of the low-
dimension datasets and solves the optimization problem in
the space. DuRPRSL needs to solve the original space op-
timization problem. Although RP is more computationally
efficient than PCA, it often yields worse performance than
PCA unless the number of random projections is sufficiently
large [Fradkin and Madigan, 2003].

In addition, when comparing SRP and SPCA, the perfor-
mance of SRP improves with an increasing number of pro-
jections, while the performance of SPCA is not significantly
affected by the projection dimensions. That is because the
principal components are already captured in the subspace.

4.4 Evaluation by Classification
In this experiment, we evaluate the learned metric by its clas-
sification application accuracy with k-NN (k=5) classifier.
The k-NN accuracy changes in different projection dimen-
sions, which is shown in Fig. 2. From the results, we can see
that DuRSL has the best performance and DuRPRSL is sim-
ilar. Totally, we essentially have the same observation as that
for the ranking experiments reported in Section 4.3. DuR-
PRSL provides at least 10% accuracy improvement than the
PR methods for the high-dimensional datasets. DuRPRSL is
also quite close to the primal solution DuRSL, which indi-
cates that the recovery error is small.

Comparing DuRPRSL and DuRPDML, DuRPRSL also
achieves 5% accuracy improvement except for the dataset
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[ Protein [ Caltech30 [ Gisette [ BBC [ RCV1 [ URL ]
OASIS 163.184+12.62(844.744+57.54{11142.05+306.66| 6952.13+560.81| 22767.31+£1303.77| 16086.494+2253.54
Metric in | DuDML 134.18+26.24[739.08+71.54[33994.66+505.87[341260.11+810.73[383310.98+2851.23[560486.51+3053.87
Original |[DuRSL 65.62+1.62 [541.55+45.05[29443.66+155.07]246310.02+959.40|158217.06+821.51 [537627.78+493.84
Space DURPDML learning 13.124+0.62 11.594+1.87 12.114+1.43 11.6940.76 12.984+0.13 11.704+0.83
recovering| 58.7610.46 [166.15+24.33] 2644.12+193.92| 13106.39+434.72] 2718.18%£87.93 2185.98+116.92
DURERSL learning 10.28+0.58 9.48+0.28 9.84£0.52 9.95+0.41 10.55+0.13 9.61£0.04
recovering| 30.9240.13 [110.41£1.50 | 1123.224+37.69 5817.32£719.52] 1093.59+141.88 1155.52+217.48
Metric in|SRP 21.41+28.05| 21.85+6.65 20.33+2.18 22.09+4.04 11.274+1.61 9.95+2.33
SubSpace [ SPCA 15.33+3.53 | 10.02+0.07 8.84+0.12 8.84+0.12 10.154+0.98 10.9940.52

Table 3: Learning time (seconds) used by different approaches.

Gisette. The dual recovery framework we proposed is mainly
concerned with time efficiency. For the dataset Gisette, DuR-
PRSL achieves similar performance as DuRPDML, but DuR-
PRSL has small computational overhead than DuRPDML as
shown in Table 3.

4.5 Learning Efficiency of DuRPRSL

In this section, we compare the computational cost of all the
learning algorithms, which is recorded in Section 4.3. The
dimension of the subspace projection was set to 100 and we
choose the optimal performance results for each algorithm.
The learning time is recorded by CPU time (in seconds).

The learning time for the different methods is summarized
in Table 3. DuRPDML and DuRPRSL learning time are
recorded as two steps: subspace learning step and original
space recovering step. It is not surprising to observe that the
DuRPDML and DuRPRSL have similar subspace learning
time to SRP and SPCA, which are significantly more effi-
cient than other methods. Combining subspace learning time
and original space recovering time, DuRPDML and DuR-
PRSL are 10 times faster than OASIS and 100 times faster
for RCVI and URL datasets. RSL-based methods are always
faster than DML-based methods due to avoiding PSD con-
straints. This PSD constraint makes the recovery time of the
DuRPRSL method 2 times faster than DuRPDML.

Comparing the methods (DuRPDML, DuRPRSL) that ap-
ply random projection with those (OASIS, DuDML, DuRSL)
that do not, we see that random projection methods signifi-
cantly reduce the computational cost in Table 3. DuRPRSL
can save at least 80% computational time than the original
space optimization methods in these test datasets.

4.6 Dual-sparse Study

In this experiment, a case study in support of DuSRPRSL is
presented. We used the RCV1 data in Table 1 to conduct
a case study. We aimed to answer two questions related to
our motivation: (i) How is the recovery error affected by the
value of 7 in Eq. (11)? (ii) How does the number of random
projection dimension m affect the recovery error?

We varied the value of 7 €{0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6,
0.7, 0.8, 0.9}, the value of m {100, 1000, 2000, 4000},
and the value of A €{le-4, le-5, le-6}. T = 0 corresponds to
the random reduction approach without the sparse regularizer.

Three evaluation metrics were used: e; = llelsells
- 1 [eex]s—les]slli’
[[M— M, |2

llos —ots |2
= === l12 and eq = L2 = li2
’ 3 M.l

llec Il «
mal dual solution to (11) and «, is the optimal dual solution

to (4) solving in the original space with the support set S. The
set S¢ is the complement of S. e tells the error ratio of non-
support sample and support sample. eo and es tell the dual

, where a, is the opti-
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Figure 3: Recovery error for non-smooth hinge loss.

recovery error and primal recovery error.

The recovery performance is shown in Fig. 3. In the left
column, the ration of e; decreases when 7 increases. This
indicates that the magnitude of dual variables for the origi-
nal non-support samples decreases. The recovery errors of
the dual solution and the primal solution are illustrated in the
middle column and right column in Fig. 3. Generally, the
larger 7 will lead to a larger dual recovery error. For the
case A=le-5 and A=le-6, the recovery error first decreases
and then increases. This indicates that, when 7 is less than a
threshold, the dual recovery error will decrease as T increases.
This can help to relax the low-rank assumption issue. Com-
paring case A=1e-4, A\=1e-5 and case A\=1e-6, the difference
is that smaller A\ will lead || M,||2 larger, which makes the
support samples more sparse.

5 Conclusions

This paper presented a dual random projection method for
similarity learning, which is suitable for large-scale high-
dimensional datasets. The main idea is to first solve the dual
problem in the subspace spanned by the random projection
matrix, and then use these dual variables to recover the sim-
ilarity function in the original space. This method can ac-
curately and efficiently recover the original optimal solution
with a small error. In addition, a dual-sparse regularized ran-
domized reduction method is proposed to relax the low-rank
assumption. The numerical experiments demonstrated the ef-
ficiency and effectiveness of our proposed reduction and re-
covery methods.
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