
Stochastic Fractional Hamiltonian Monte Carlo

Nanyang Ye1, Zhanxing Zhu∗2,3

1 University of Cambridge, Cambridge, United Kingdom
2 Center for Data Science, Peking University, Beijing, China

3 Beijing Institute of Big Data Research (BIBDR)
yn272@cam.ac.uk, zhanxing.zhu@pku.edu.cn

Abstract
In this paper, we propose a novel stochastic fraction-
al Hamiltonian Monte Carlo approach which gener-
alizes the Hamiltonian Monte Carlo method within
the framework of fractional calculus and Lévy diffu-
sion. Due to the large “jumps” introduced by Lévy
noise and momentum term, the proposed dynamics
is capable of exploring the parameter space more
efficiently and effectively. We have shown that the
fractional Hamiltonian Monte Carlo could sample
the multi-modal and high-dimensional target distri-
bution more efficiently than the existing methods
driven by Brownian diffusion. We further extend our
method for optimizing deep neural networks. The
experimental results show that the proposed stochas-
tic fractional Hamiltonian Monte Carlo for training
deep neural networks could converge faster than
other popular optimization schemes and generalize
better.

1 Introduction
Sampling and minimizing error functions over continuous
and high-dimensional spaces have been a primary challenge
in current machine learning research, mainly attributed to
the exponentially increasing local minima and saddle points
of modern models [Dauphin et al., 2014; Goodfellow et al.,
2016].

Markov Chain Monte Carlo (MCMC) methods have at-
tracted a lot of attentions recently due to their sucesses in
high-dimensional Bayesian inference [Max and Whye, 2011;
Chen et al., 2016; 2014]. In addition, MCMC methods have
also been incorporated in optimization algorithms for better ex-
ploring the landscapes of the loss function[Chen et al., 2016;
Chaudhari et al., 2016]. These methods are based on con-
structing stochastic differential equations (SDE) equipped with
Brownian motion, assuming that the particle is driven by infi-
nite number of small forces with finite variance. However, the
finite variance assumption essentially restricts the trajectory
of the particle to be continuous. This means that when the
time step is small, the exploration over the parameter space
could be quite slow. Additionally, to facilitate the Brownian

∗Corresponding author.

motion based SDE to sample correctly the target posterior,
small learning rates and large numbers of sampling steps are
typically required in practice to ensure the correct stationary
distribution [Ahn et al., 2012]. All these existing issues lead
to slow mixing during the sampling procedure.

One alternative to tackle these issues is to relax the assump-
tion of finite variance in Brownian motion and generalize the
Brownian motion based SDE to the one driven by Lévy dif-
fusion. With Lévy diffusion, the moving of particle in the
high-dimensional space does not have to be continuous, al-
so referred to as “jumps”. The jumping property of Lévy
process has been proven to be more appropriate for model-
ing fast-changing stochastic processes, where lots of appli-
cations involve, such as finance market modeling [Barndorff-
Nielsen and Shephard, 2003] and signal processing [Wolpert
and Taqqu, 2005]. [Simsekli, 2017] investigated relaxing the
finite variance assumption in stochastic gradient first-order
Langevin dynamics, and showed that the Lévy diffusion based
fractional Langevin dynamics (FLD) could sample the pa-
rameter space more efficiently than the first-order Langevin
dynamics (LD). However, when the variance of Lévy noise is
large, the numerical computation of FLD is unstable especial-
ly when applied to deep neural networks. Besides, this first
order extension of LD could not sample the parameter space
efficiently. This motivates us to marry the Lévy diffusion with
HMC to facilitate more efficient sampling of parameter space.

To facilitate more efficient and effective exploration of
parameter space, we marry the Lévy diffusion based SDE
and Hamiltonian Monte Carlo for sampling and optimization,
“Fractional Hamiltonian Monte Carlo”, abbreviated as FHM-
C. This new proposal introduces a friction term (also called
momentum) to handle the numerical instability of Lévy dif-
fusion while still maintaining the nice property of efficient
exploration of Lévy jumps.

For sampling, we compare our methods with first-order LD,
FLD and HMC to demonstrate its effectiveness in sampling
multi-modal distributions. For training deep neural networks,
our training process is divided into two phases: Bayesian
sampling to explore the parameter space efficiently and get to
the “fat mode” for better generalization ability; optimization
for fine-tuning. With the support of extensive evidence, we
demonstrated the efficiency and effectiveness of our proposed
algorithm for sampling and training deep neural networks.
To the best of our knowledge, this is the first attempt that

Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)

3019

adopts Lévy diffusion and HMC into training modern deep
networks and produces remarkable improvements over the
state-of-the-art techniques.

2 Preliminaries
In the scenario of Bayesian learning, obtaining the samples of
a high-dimensional distribution is a necessary procedure for
many tasks. We denote U(θ) the potential energy function,
i.e., the negative log posterior,

U(θ) = −
N∑
i=1

log p(xi|θ)− log p0(θ),

where xi represents the i-th observed data point, p0(θ) is the
prior distribution for the model parameters and p(xi|θ) is the
likelihood term for each observation. In optimization scenario,
the counterpart of the complete negative log likelihood is
the loss function and − log p0(θ) is typically referred to as a
regularization term.

Classic dynamics offers such a way to sample the distri-
bution. The Hamiltonian in classic dynamics is H(z) =
H(θ, r) = U(θ) + 1

2r
T r, the sum of the potential energy

U(θ) and kinetic energy 1
2r
T r, where r ∈ Rd is the momen-

tum term, and z = (θ, r).
Standard (second-order) Langevin dynamics driven by

Gaussian noise 1 can be described by following stochastic
differential equations (SDEs),

dθ = rdt, dr = −∇θU(θ)dt− γrdt+
√

2γdW (1)

where ∇θU(θ) is the gradient of the potential energy w.r.t.
the configuration states θ, γ denotes the friction coefficient,
and dW is the standard Wiener process.

If we simulate the dynamics in Eqs (1), a well-known sta-
tionary distribution can be achieved [Rapaport, 2004], p(z) =
exp (−H(z)) /Z, where Z =

∫ ∫
exp (−αH(θ, r)) dθdr is

the normalization constant for the probability density. The
desired probability distribution associated with the parame-
ters θ can be obtained by marginalizing the joint distribution,
p(θ) =

∫
p(z)dr ∝ exp (−U(θ)).

However, the Gaussian proposal distribution induced by the
dynamics (1) is light-tailed, which might not provide sufficient-
ly large “jumps” to explore full parameter space efficiently.
In this work, we consider a heavy-tailed proposal distribution
driven the Lévy stable noise, and investigate its benefits for
fast mixing in MCMC.

Lévy stable distributions do not have closed-form probabili-
ty density function (PDF). Instead, it could be represented by
its characteristic function as: E[exp(iwZ)] = exp(−|σω|α).
In order for the mean of the process to exist, the range of α is
restricted to be (1, 2]. The Gaussian distribution is a special
case for Lévy stable distributions when α is 2 and the Lévy
stable distribution becomes more heavy tailed when α is closer
to 1.

1Standard Langevin dynamics is different from that used in S-
GLD [Max and Whye, 2011], which is the first-order Langevin dy-
namics, i.e., Brownian dynamics.

3 Fractional Lévy Dynamics for MCMC

We propose a general form of Lévy dynamics as follows:

dz = (D + Q)b(z, α)dt+ D1/αdLα, (2)

where dLα represents the Lévy stable process, and the drift
force has the following form,

b(z, α) =
Dα−2{fp(z)}

φ(z)
(3)

fp(z) = −φ(z)
∂H(z)

∂z
, (4)

where the unnormalized target probability density function
φ(z) = exp (−H(z)). The matrix Q is a skew-symmetric
curl matrix representing the deterministic traversing effects
in the proposed Lévy dynamics. In contrast, the diffusion
matrix D determines the strength of the Lévy process-driven
diffusion. Matrices D and Q will be specified later to attain
fast convergence to the target distribution.

The stationary distribution of the general Lévy dynamics in
(2) can be characterized by the following theorem.

Theorem 1. p(z) ∝ exp (−H(z)) is a stationary distribution
of the dynamics of Eq. (2) if the matrix D positive semidefinite
and Q skew-symmetric.

Proof. We consider the Fokker-Planck equation of the Lévy
dynamics described by Eq. (2)

∂tρ(z, t) =−
∑
i

∂

∂zi

∑
j

(Dij +Qij)bj(z, α)ρ(z, t)


+Dα−2

∑
ij

∂

∂zizj
Dijρ(z, t)

 (5)

Denote the two termsA andB, respectively, and insert b(z, α)
into A,

A =
∑
i

∂

∂zi

∑
j

(Dij +Qij)
Dα−2{φ(z)∂H(z)/∂zj}

φ(z)
ρ(z, t)


(6)

=
∑
i

∂

∂zi

∑
j

(Dij +Qij)
Dα−2{p(z)∂H(z)/∂zj}

p(z)
ρ(z, t)


(7)

= −
∑
i

∂

∂zi

∑
j

(Dij +Qij)
Dα−2{∂p(z)/∂zj}

p(z)
ρ(z, t)


(8)

Now we verify whether ∂tρ(z, t) will vanish given that

Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)

3020

ρ(z, t) = p(z),

A = −
∑
i

∂

∂zi

∑
j

(Dij +Qij)Dα−2

{
∂p(z)

∂zj

} (9)

= −
∑
ij

(Dij +Qij)Dα−2

{
∂p(z)

∂zi∂zj

}
(10)

= −Dα−2

∑
ij

∂

∂zizj
Dijp(z)

 , (11)

where the last equality holds because
∑
ij

∂
∂zi∂zj

[Qijp(z)] =

0 due to anti-symmetry of Q. Therefore, when ρ(z, t) =
p(z) ∝ exp(−H(z)), the Fokker-Planck equation ∂tρ(z, t) =
A+B = 0.

3.1 Fractional Hamiltonian Monte Carlo
We now specify a simple and rather effective configuration of
matrix D and Q to facilitate efficient sampling and optimiza-

tion, D =

[
0 0
0 γI

]
, G =

[
0 −I
I 0

]
, where γ is the friction

coefficient with the role in standard Langevin dynamics (1).
With this configuration, the general Lévy dynamics can be
instantiated as following,

dθ =
Dα−2{φ(z)r}

φ(z)
dt (12)

dr = −D
α−2{φ(z)∇θU(θ)}

φ(z)
dt− γD

α−2{φ(z)r}
φ(z)

dt

+ γ1/αdLα (13)

We name the dynamics described by Eq. (12) and (12) as Frac-
tional Hamiltonian Monte Carlo (FHMC) due to its similarity
with Hamiltonian Monte Carlo.

However, there exists two issues when we implementing
FHMC for practical use,
• Though Theorem 1 guarantees the desired stationary dis-

tribution of FHMC, the Riesz derivatives cannot be com-
puted exactly in general. We have to resort to some
numerical approximation;
• When we consider the “Big Data” settings with large N ,

evaluating the full gradient term∇θU(θ) is computation-
ally expensive during the iterative sampling procedures.
An efficient strategy is required for handling large-scale
dataset.

To facilitate its practical use, we propose to apply approx-
imation schemes to FHMC, as elaborated in the following
section.

4 Two Approximations to FHMC
Riesz approximation
We use the similar methods proposed by [Çelik and Duman,
2012; Simsekli, 2017], the α-th order fractional Riesz deriva-
tive of a function g(z) can be approximated by the following
equation,

Dαg(z) ≈ cαg(z) (14)

where cα = Γ(α+ 1)/Γ(α2 + 1)2.
With this approximation, we have the following form of

FHMC,

dθ = cαrdt,

dr = −cα∇θU(θ)dt− γrdt+ (γ)1/αdLα
(15)

Stochastic Gradient Approximation
To allow its applicability to large-scale datasets, we use s-
tochastic approximation to reduces the computational bur-
den dramatically, where a much smaller subset of the data,
{xk1 , . . . ,xkm}, is selected randomly to approximate the full
one,

Ũ(θ) = −N
m

m∑
j=1

log p(xkj |θ)− log p0(θ). (16)

And the resulting stochastic gradient∇Ũ(θ) is an unbiased es-
timation of the true gradient. This sampling method is referred
as Stochastic Gradient FHMC (SGFHMC).

We summarize the procedure of FHMC for sampling in
Algorithm 1.

Algorithm 1 (Stochastic Gradient) Fractional Hamiltonian
Monte Carlo

1: Input: γ, α, η, and number of sampling steps L.
2: Initialize θ0, r0.
3: for t = 1, 2, . . . , L do
4: If N is large, randomly sample a minibatch of the

dataset with size m to obtain Ũ(θ(t)) to approximate
∇U(θt), otherwise evaluate the full gradient∇U(θt);

5: Sample εt ∼ Lα;
6: Update θ:

θt = θt−1 + cαηrt−1,

7: Update r:

rt = (1− ηγ)rt−1 − cαη∇θŨ(θt−1) + (ηγ)1/αεt

8: end for

5 FHMC for Optimizing Deep Neural
Networks

Minimizing non-convex error functions U(θ) over contin-
uous and high-dimensional spaces has been a challenging
issue in machine learning. Particularly, optimizing mod-
ern deep neural networks exhibits severe obstacles, mainly
due to the large number of critical points, including var-
ious saddle points and minima [Goodfellow et al., 2016;
Dauphin et al., 2014]. Moreover, the objective functions of
deep networks contain multiple, nearly equivalent global mini-
ma. The key difference between these minima is whether they
are “flat” or “sharp”, i.e., lying in “wide” or “stiff valleys”.
A recent study by [Keskar et al., 2016] showed that flat min-
ima of the energy landscape tend to generalize better due to
their robustness to data perturbations, noise in the activations
as well as perturbations of the parameters. However, most
of existing optimization methods are incapable to efficiently

Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)

3021

explore the flat minima, often trapping into sharp ones too
early.

We deal with this problem from a Bayesian perspective:
the flat minima corresponds to “fat” modes of the induced
probability distribution over θ, p(θ) ∝ exp (−U(θ)). Clearly,
the fat modes have much more probability mass than “thin”
ones since they are nearly as “tall” as each other, particularly
in high-dimensional cases. Based on this simple observation,
we propose to implement a Bayesian sampling procedure be-
fore the optimization phase. Bayesian learning is capable of
exploring the energy landscape more thoroughly. Due to the
large probability mass, the sampler tends to capture the areas
near the desired “flat” minima. This provides a good starting
region for optimization phase to fine-tune the parameters.

When sampling the distribution p(θ), the multi-modality
issue demands the samplers to transit between isolated modes
efficiently. Fortunately, SGFHMC with Lévy noise can pro-
duce large “jumps” in the parameter space, facilitating effi-
cient traversing between different modes. Therefore, we plug
SGFHMC sampling as the first phase for training deep neural
networks. And the entire procedure is detailed in Algorithm 2.

Algorithm 2 SGFHMC for training neural networks
1: Input: γ, α, η, number of steps for sampling Ls.
2: Initialize θ(0), r(0), .
3: for t = 1, 2, . . . do
4: Randomly sample a minibatch of the dataset with size

m to obtain Ũ(θ(t));
5: if t < Ls then
6: Sample εt ∼ Lα;
7: θt = θt−1 + cαηrt−1, rt = (1 − ηγ)rt−1 −

cαη∇θŨ(θt) + (ηγ)1/αεt
8: else
9: θt = θt−1 + cαηrt−1, rt = (1 − ηγ)rt−1 −

cαη∇θŨ(θt)η.
10: end if
11: end for

5.1 Connection to Other Methods
There is a direct relationship between the SGFHMC to other
methods. In the sampling phase, when α equals 2, SGFHMC
becomes SGHMC since cα = 1. In the optimization phase,
SGFHMC is essentially SGD with momentum. To facilitate
the use of SGFHMC, we use a re-parameterization scheme by
replacing γ with (1−momentum)/η. Thus we could tune the
momentum from [0, 1) just like tuning SGD with momentum.

6 Experiments
To evaluate the proposed method on both sampling and op-
timization, we conduct experiments on synthetic examples
and mnist classification task. For sampling, we compare our
method with FLD, HMC and LD. For training deep neural
networks, we compare our method with popular optimization
methods-SGD, Adam, RMSprop. The same parameter initial-
ization is used for all methods. In the following experiments,
for the synthetic example, we only use the sampling steps, for

training neural networks, we fix the number of sampling steps
to be 8000 and the temperature to be 10−6.

−3 −2 −1 0 1 2 3
θ

−4

−2

0

2

4

6

U
(θ
)

Figure 1: Double well potential function.

6.1 Synthetic Example
Double well potential function is widely used for evaluating
inference methods. The target distribution function used is:
U(θ) = −2θ2 + 0.2 ∗ θ4 as shown in Figure 1, similar to
the one used in [Chen et al., 2014]. Note that the sampling
iteration is set to be 5000 instead of 80000×50 in the original
example [Chen et al., 2014] to test the methods’ ability to
efficiently sample the parameter space in a limited amount of
time. Besides, the momentum resampling is neglected which
corresponds to the practical algorithm in [Chen et al., 2014].
We set the initialization point of θ at 2 which is close to a
local minima and our goal is to estimate the expectation of the
distribution function.

In the experiment, we found that when the α is small, the
large jump probability of α-stable noise could cause problem
in numerical computation for FLD, which makes us hard to
choose larger learning rate for FLD. But when small learning
rate is chosen for FLD, large α is needed for fast mixing. The
setting for each method is the following: FHMC(learning rate
is 0.05, momentum is 0.9, α is 1.6), FLD(learning rate is 0.01,
α is 1.6), SGHMC(learning rate is 0.1, momentum is 0.1),
SGLD(learning rate is 0.05). The corresponding estimation
bias achieved by these methods are shown in Table 1.

Method Bias
FHMC 0.0360
FLD 0.6768
HMC 1.9913
LD 0.2661

Table 1: Estimation bias of double well potential

As FHMC and FLD are more general cases for HMC and
LD in the framework of α stable noise driven process, we
further show the sampling distribution of these two method to
know how the extension works in real practice. In Figure 2,
the sampling distribution for FLD is not accurate because there
are too many samples concentrated close to the initialization
point θ = −2. We could conclude that with the introduction
of momentum, the sampling of parameter space becomes more

Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)

3022

−3 −2 −1 0 1 2 3
θ

0.0

0.2

0.4

0.6

0.8

−3 −2 −1 0 1 2 3
θ

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6

−3 −2 −1 0 1 2 3
θ

0.0
2.5
5.0
7.5

10.0
12.5
15.0
17.5
20.0

−3 −2 −1 0 1 2 3
θ

0.0

0.2

0.4

0.6

0.8

1.0

Figure 2: (TopLeft) FHMC result; (TopRight) FLD result; (Down-
Left) HMC result; (DownRight) LD result

gentle thus enable the adoption of small α for more efficient
sampling. In this task, the mixing speed is crucial for success-
fully sampling across the parameter space, the HMC could get
easily stuck in local minima because of the extended momen-
tum could bias it into the nearby local minima [Tripuraneni et
al., 2017].

Furthermore, to compare the mixing speed of FHMC and
HMC, we plot the trajectory of FHMC and HMC in this task
on the first 3000 time steps as shown in Figure 3.

From Figure 3, we could conclude that the proposed FHMC
could jump out of the local minima much more efficiently
than other baseline methods. This property could be used to
efficiently sampling high-dimensional loss functions such as
neural networks. We will demonstrate our proposed methods
efficiency in training deep neural networks, such as variational
autoencoders as below.

Time Step
−3

−2

−1

0

1

2

3

θ

Time Step
−3

−2

−1

0

1

2

3

θ

Time Step
−3

−2

−1

0

1

2

3

θ

Time Step
−3

−2

−1

0

1

2

3

θ

Figure 3: (TopLeft) FHMC result; (TopRight) FLD result; (Down-
Left) HMC result; (DownRight) LD result

6.2 Variational Autoencoders
The variational autoencoder (VAE) is an efficient algorithm
for training direct graphical models with continuous latent
variables [Kingma and Welling, 2013]. We used the training
set of MNIST dataset consisting of 60000 training images for
this task. We use multi-layered perceptrons(MLPs) with Gaus-
sian distributed outputs for the encoder to encode the input
images to latent spaces. Then we use MLPs with Bernoul-
li distributed outputs to decode the encoded features in the
latent spaces. The number of hidden neurons in the MLP is
500 and the number of latent vectors is 20. The batch size
is set to be 128. Our implementation is adapted from 2. The
total likelihood loss that includes the negative log likelihood
and KL-divergence is measured. We compare our proposed
method with popular optimization algorithms including SGD,
Adam and RMSprop. The best parameter setting for each
method are: SGFHMC(learning rate is 0.03, momentum is
0.9, α is 1.6), SGD(learning rate is 0.003, momentum is 0.2),
Adam(learning rate is 0.0001), RMSprop (learning rate is
0.0001). We run the model with different methods and the
result is shown in Figure 4. From Figure 4, after efficiently
exploring parameter space in the sampling phase at around 17
epochs with SGFHMC, the proposed algorithm then converges
very fast and achieves the best result.

Figure 4: Learning curves of variational autoencoders

Figure 5: Likelihood loss versus burnin times

2https://github.com/hwalsuklee/tensorflow-mnist-VAE

Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)

3023

Figure 6: (Left) Original test digits; (Middle) SGFHMC result; (Right) RMSprop result

To further analyze the convergence speed, we plot the gener-
ated digits output from models trained by different methods at
the same epoch as shown in Figure 6. From Figure 6, we can
conclude that the results obtained by SGFHMC are generally
clearer and contain less errors than the results obtained by
RMSprop. For example, the number in row 3, column 3 which
should be ’6’ is decoded as ’0’ by RMSprop trained model,
while for SGFHMC, the result is similar to the original input.

To analyze the proposed method’s robustness against the
chosen of burnin times, we plot the results with different
burnin times for SGFHMC as shown in Figure 5. From Fig-
ure 5, we could conclude that the proposed method is very
robust against different burnin times. This is because the
proposed SGFHMC could mix fast and the target “fat mode”
could be sampled at high probabilities.

6.3 Recurrent Neural Networks for Language
Modeling

We test our method on the task of character
prediction using LSTM networks. The objec-
tive is to minimize the per-character perplexity,
1
N

∑N
i=1 exp

(∑Ti

t=1− log p(xit|xi1, ...,xit−1;θ)
)
, where θ

is a set of parameters for the model, xnt is the observed data
and Ti is the length of i-th sentence. The hidden units are set
as LSTM units. We run the models with different methods
on the PTB dataset with a setting of 2-layer LSTM, 200
LSTM units. We adopt the implementation from Tensorflow
official document. Noted that we do not use the learning
rate decay for fine-tuning to focus on tuning optimizers only.
During training, the dataset is split into training, validation
and test dataset. We run the training for 13 epochs and choose
parameters and the early-stopping epoch based on the results
on validation dataset. The best parameter setting for each
method are: SGFHMC(learning rate is 0.6, momentum is
0.5, α is 1.6), SGD(learning rate is 0.1, momentum is 0.1),
Adam(learning rate is 0.0003), RMSprop (learning rate is
0.0005). The best training and test perplexities are reached
by our method SGFHMC. The learning curves are shown in
Figure 7. From Figure 7, we could conclude that SGFHMC
converges fastest among all methods. Then, we choose
the best model for each method based on the validation
learning curve to generate results on test dataset. The results

are shown in Table 2. From Table 2, we could conclude
that with Lévy-driven SDEs, SGFHMC could have better
generalization abilities with fast convergence. Note that
although SGD and Adam could achieve similar loss in the
training dataset, the Adam’s test loss is worse than SGD. This
is consistent with the empirical observations that most of the
state-of-the-art results are obtained by fine-tuned SGD. For
our method, the use of SGFHMC in the sampling phase and
SGD in the fine-tuning phase could help training converge
faster and generalize better at the same time.

1 2 3 4 5 6 7 8 9 10111213
Epoch

100
200
300
400
500
600 SGFHMC

SGD
Adam
RMSprop

1 2 3 4 5 6 7 8 9 10111213
Epoch

150
200
250
300
350
400 SGFHMC

SGD
Adam
RMSprop

Figure 7: CharRNN learning curves on PTB dataset: (Left) Training
perplexity; (Right) Validation perplexity

Method Test-perplexity
SGFHMC 125
SGD 135
Adam 138
RMSprop 187

Table 2: Test perplexity (test loss)

7 Conclusion

We proposed (SG)FHMC-an effective method for sampling
and optimization in high-dimensional parameter space based
on Lévy diffusion and Hamiltonian Monte Carlo. Extensive
empirical evidence indicates the superiority of the proposed
methods over the existing methods. Future directions include
more accurate and computation cost effective way of approxi-
mating the fractional derivatives, and incorporating the adap-
tive momentum to further enhance the performance.

Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)

3024

Acknowledgments
Dr. Zhanxing Zhu is supported by Beijing Municipal Natural
Science Foundation, project 4184090.

References
[Ahn et al., 2012] S. Ahn, A. Korattikara, and M. Welling.

Bayesian Posterior Sampling via Stochastic Gradient Fisher
Scoring. arXiv preprint arXiv:1206.6380, 2012.

[Barndorff-Nielsen and Shephard, 2003] Ole Barndorff-
Nielsen and Neil Shephard. Impact of jumps on returns and
realised variances: econometric analysis of time-deformed
levy processes. Economics Papers 2003-W12, Economics
Group, Nuffield College, University of Oxford, 2003.

[Çelik and Duman, 2012] Cem Çelik and Melda Duman.
Crank–nicolson method for the fractional diffusion equa-
tion with the riesz fractional derivative. Journal of Compu-
tational Physics, 231(4):1743–1750, 2012.

[Chaudhari et al., 2016] Pratik Chaudhari, Anna Choromans-
ka, Stefano Soatto, Yann LeCun, Carlo Baldassi, Christian
Borgs, Jennifer T. Chayes, Levent Sagun, and Riccardo
Zecchina. Entropy-sgd: Biasing gradient descent into wide
valleys. CoRR, abs/1611.01838, 2016.

[Chen et al., 2014] T. Chen, E. B. Fox, and C. Guestrin. S-
tochastic gradient Hamiltonian Monte Carlo. In Proceed-
ings of the 31st International Conference on Machine
Learning, pages 1683–1691, 2014.

[Chen et al., 2016] C. Chen, D. Carlson, Z. Gan, C. Li, and
L. Carin. Bridging the gap between stochastic gradient
MCMC and stochastic optimization. In AISTATS, 2016.

[Dauphin et al., 2014] Y. N. Dauphin, R. Pascanu, C. Gul-
cehre, K. Cho, S. Ganguli, and Y. Bengio. Identifying
and attacking the saddle point problem in high-dimensional
non-convex optimization. In NIPS, 2014.

[Goodfellow et al., 2016] Ian Goodfellow, Yoshua Bengio,
and Aaron Courville. Deep Learning. MIT Press, 2016.
http://www.deeplearningbook.org.

[Keskar et al., 2016] N. S. Keskar, D. Mudigere, J. Nocedal,
M. Smelyanskiy, and P. T. Tang. On large-batch training
for deep learning: Generalization gap and sharp minima.
arXiv preprint arXiv:1609.04836, 2016.

[Kingma and Welling, 2013] Diederik P. Kingma and Max
Welling. Auto-encoding variational bayes. CoRR, ab-
s/1312.6114, 2013.

[Max and Whye, 2011] Welling Max and Teh Yee Whye.
Bayesian learning via stochastic gradient langevin dynam-
ics. In ICML, 2011.

[Rapaport, 2004] D. C. Rapaport. The art of molecular dy-
namics simulation. Cambridge university press, 2004.

[Simsekli, 2017] Umut Simsekli. Fractional Langevin Monte
carlo: Exploring Levy driven stochastic differential equa-
tions for Markov chain Monte Carlo. In Proceedings of
the 34th International Conference on Machine Learning,
volume 70, pages 3200–3209, 2017.

[Tripuraneni et al., 2017] Nilesh Tripuraneni, Mark Rowland,
Zoubin Ghahramani, and Richard Turner. Magnetic Hamil-
tonian Monte Carlo. In Doina Precup and Yee Whye Teh,
editors, Proceedings of the 34th International Conference
on Machine Learning, volume 70 of Proceedings of Ma-
chine Learning Research, pages 3453–3461, International
Convention Centre, Sydney, Australia, 06–11 Aug 2017.
PMLR.

[Wolpert and Taqqu, 2005] Robert L. Wolpert and Murad S.
Taqqu. Fractional ornstein-uhlenbeck lévy processes and
the telecom process: Upstairs and downstairs. Signal Pro-
cess., 85(8):1523–1545, August 2005.

Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)

3025

