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Abstract
Multi-label learning is widely applied in many real-
world applications, such as image and gene an-
notation. While most of the existing multi-label
learning models focus on the single-task learning
problem, there are always some tasks that share
some commonalities, which can help each other to
improve the learning performances if the knowl-
edge in the similar tasks can be smartly shared.
In this paper, we propose a LABel-sensitive TAsk
Grouping framework, named LABTAG, based on
Bayesian nonparametric approach for multi-task
multi-label classification. The proposed framework
explores the label correlations to capture feature-
label patterns, and clusters similar tasks into groups
with shared knowledge, which are learned jointly
to produce a strengthened multi-task multi-label
model. We evaluate the model performance on
three public multi-task multi-label data sets, and the
results show that LABTAG outperforms the com-
pared baselines with a significant margin.

1 Introduction
Recent years have witnessed the vast amount of interest and
research in multi-label learning for various kinds of appli-
cations, such as image annotation [Gong et al., 2013], gene
annotation [Li et al., 2012], sentiment classification [Liu and
Chen, 2015] and so on. A common approach to multi-label
classification is to transform the multi-label data set to one
multi-class data set or multiple single-label data sets. In this
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Figure 1: Example of context recommendation.

faction, single-label classifiers can be applied independently,
such as the binary relevance method [Boutell et al., 2004],
label powerset method [Tsoumakas et al., 2011], etc. Sev-
eral works were proposed to exploit label correlations for
multi-label classification. For example, the Classifier Chain
model and its variants are utilized to depict the label correla-
tions [Dembczynski et al., 2010; Read et al., 2011]. In addi-
tion, the label dependencies can be further represented based
on Bayesian graphical model or conditional random field
[Ghamrawi and McCallum, 2005; Zhang and Zhang, 2010;
Guo and Gu, 2011]. Moreover, a Bayesian nonparametric ap-
proach was introduced to capture the feature-label correlation
patterns for multi-label classification [Nguyen et al., 2016].

However, most existing multi-label learning models focus
on single-task learning problems. They assume different tasks
are independent and learn a classification model for each task
individually. In practice, tasks could be highly correlated, and
the performance of multiple classification tasks can be im-
proved by learning them jointly. For example, in the spam-
filter problem, each user receives only a portion of spams, and
learning a model across multiple users (tasks) can obtain a
stronger filter for spam detection. The Multi-task learning ap-
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proach provides a good solution to explore similarities among
multiple tasks [Bakker and Heskes, 2003; Xue et al., 2007;
Kim and Xing, 2010; Chen et al., 2012], which can be in-
corporated with multi-label learning to learn knowledge from
similar tasks to enhance the overall performance.

Taking the Context Recommendation Problem [Zheng et
al., 2014] as an example: given a movie item information, we
want to recommend suitable contexts (time, location, com-
panion, etc) for a user to watch the movie. As shown in
Fig. 1(a): the problem corresponds to learn a mapping {User,
Item}→ {Context} that takes user(s) and movie item(s) as
input to suggest a list of contexts for the user. Here user in-
formation includes the user ID, the user profile (e.g., gender),
and movie item information includes the movie ID, the actors,
the director, the ratings, etc. The suggested contexts to watch
the movie could be the Day (e.g., “Weekend” or “Week-
day”), the Location (e.g., “Cinema” or “Home”), the Com-
panion (e.g., “Kids” or “Spouse”), etc. Traditionally, we can
apply single-task learning to training a multi-label classifica-
tion model for each user individually. However, when the data
set is sparse (e.g., each user has very few items and contexts),
the performance could be degraded due to the shortage of
training instances. To overcome the drawback, we adopt the
idea of multi-task learning to explore the correlations among
similar tasks. Fig. 1 shows the idea of treating context recom-
mendation as a multi-task multi-label learning problem. The
tasks are latently related label-sensitively, which means the
tasks can be clustered into different groups with respect to
different labels, e.g., in Fig. 1(b), Task 1 and 3 are clustered
into a group and Task 2 and M are grouped together according
to the context of “Day”, while Task 1, 3 and M are grouped
together with respect to the context of “Location”, etc. Intu-
itively, by grouping similar users/tasks together and learning
their models jointly using a shared representation, the training
data for each task is strengthened and the overall performance
of multiple classification tasks can be improved.

Along this line, in this paper, we propose a LABel-sensitive
TAsk Grouping framework (LABTAG for short) by Bayesian
nonparametric approach for multi-task multi-label classifica-
tion. The reason for adopting the Bayesian nonparametric ap-
proach is that it can estimate the unknown number of feature-
label patterns and the different unknown number of task clus-
ters under different labels. To this end, we place one Dirichlet
process (DP) prior on the distributions of features and labels
to capture the feature-label patterns, and another DP prior on
parameters of features to clustering similar tasks under dif-
ferent labels, respectively. Therefore, the proposed LABTAG
model not only explores the label correlations but also takes
the advantage of label-sensitive task grouping. For the model
solution, we utilize the variational inference to estimate the
parameters in the graphical model to form a learning algo-
rithm. Finally, we conduct extensive experiments on three
public data sets to demonstrate the effectiveness of the pro-
posed model compared with various of baseline approaches.

2 Related Work
Multi-label Learning. A straightforward approach to multi-
label learning is to transform the multi-label data set to one
or multiple single label data sets, which is called the problem

transformation methods [Zhang and Zhou, 2014]. Normally,
label powerset method [Tsoumakas et al., 2011] transforms
the multi-label data set to a multi-class classification prob-
lem, in which each class is a unique set of labels that exist in
a multi-label training set. Apparently, label powerset method
could face the problem of exponential explosion when the la-
bel space is too large. In contrast, binary relevance [Boutell
et al., 2004] is to transform the multi-label data sets to k
binary classification data sets, where k is the number of la-
bels. However, it ignores the fact that some labels are more
likely to co-exist in the instances. To parameterize the label
co-occurrences, Ghamrawi et al. [Ghamrawi and McCallum,
2005] proposed a conditional random field based multi-label
classification model. Zhang et al. [Zhang and Zhang, 2010]
utilized a Bayesian network structure to encode the condi-
tional dependencies of the labels and the features. Nguyen et
al. [Nguyen et al., 2016] proposed a Bayesian nonparametric
approach to learn the number of label-feature correlation pat-
terns automatically. However, the most previous multi-label
classification models focus on single-task learning problems
while ignoring modeling the similarity among tasks.
Multi-task Learning. The multi-task learning approach try
to solve multiple learning tasks at the same time, while
exploiting commonalities and differences across tasks. The
main purpose of the multi-task learning is to capture the sim-
ilarity information or shared structures among multiple tasks
to enhance the learning performance [Zhou et al., 2012]. Typ-
ical shared structures include fully connected structure (all
tasks are related) [Lawrence and Platt, 2004; Evgeniou and
Pontil, 2004], clustered structure [Bakker and Heskes, 2003],
tree structure [Kim and Xing, 2010], network structure [Chen
et al., 2012], etc. Particularly, Xue et al. [Xue et al., 2007]
proposed a multi-task learning model with Dirichlet process
prior to identify groups of related tasks automatically. Differ-
ent from their works, in this paper, we adopt the multi-task
learning to jointly learn several related multi-label classifica-
tion tasks based on the Bayesian nonparametric approach in
a generalized framework.

3 Multi-task Multi-label Classification Model
3.1 Problem Description
Given M tasks with multi-label classification problem, let
X = {X1, X2, · · · , XM} denote all domains of data, Y =
(0, 1)C be the labels, C be the number of labels, Nm be
the number of instances in the m-th task, where Xm =
{xmn, ymn}|Nm

n=1 and ymn ∈ Y , the goal of the multi-task
multi-label learning is to explore the label correlation and task
correlation to learn a function that maps xmn to multi-label
vector ymn: f(xmn)→ ymn.

3.2 Model Overview
We build a multi-task multi-label model with Dirichlet pro-
cess priors to jointly learn the multiple multi-label classifica-
tion problems. The graphical model is shown in Fig. 2, which
consists of two parts:

• Firstly, a Dirichlet process prior is placed on parame-
ters φ and ψ. {φmk, ψmk} are feature-label pattern pairs,
which is similar with literature [Nguyen et al., 2016].
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Figure 2: Graphical representation of the model.

For different tasks, different feature-label patterns are
captured. The number of feature-label patterns can be
determined automatically after training due to the non-
parametric setting;
• Then we place another Dirichlet process prior on the pa-

rameters {wct} to implement label-sensitive task group-
ing. Under different labels, the tasks can be clustered
into different groups according to the between-task sim-
ilarity. The variable {smc} indicates which cluster task
m belongs to under label c.

3.3 Generative Process
The generative process of the proposed multi-task multi-
label model is shown as follows. Given the context recom-
mendation as an example. For each task (e.g., user) m, we
utilize the stick-breaking view [Ishwaran and James, 2001]
of the Dirichlet process to capture the feature-label pat-
terns firstly. Therefore, We sample vmk from the Beta dis-

tribution Be(1, α) and calculate πmk = vmk
k−1∏
i=1

(1− vik).

Then we sample ψmk, φmk from the base Dirichlet dis-
tribution Dir(δ), Dir($) respectively, k = 1, · · · ,∞.
In addition, the tasks are latently related label-sensitively,
which means the parameters may be shared between dif-
ferent tasks under different labels. Therefore, we place an-
other Dirichlet process prior on the parameter {wct} for
each label c. Similarly, we draw θct from the Beta distri-

bution Beta(1, β), calculate π∗ct = θct
t−1∏
i=1

(1− θci), and

then draw wct from Gaussian distribution N(µ0,Σ0), t =
1, · · · ,∞, c = 1, · · · , C. In the next step, we sample the
indicator variable smc ∼ Mult(1;π∗c1, · · ·πc∞∗). Then we
record the parameters wm = {wc,smc

}|Cc=1. Finally, for each
instance n in task m, we draw the indicator variable zmn ∼
Mult(1;πm1, · · ·πm∞). Next we generate the feature xmn
(e.g., the item content information): xmn ∼ Mult(φzm,mn),
and the corresponding label ymn (e.g., the contexts informa-
tion) : ymn ∼ Mult(ψm,zmn . ∗ σ(xTmn ∗ wm)), where σ(·)
is the sigmoid function. The details of the generative process
can be found in Alg. 1.

3.4 Learning Algorithm
In the Bayesian approach, the calculation of the posterior dis-
tribution of the latent variables given the observed variable
and the hyper-parameters is critical. However, the posterior
distribution does not have an analytic form in most cases [Xue
et al., 2007]. Variational inference and Monte Carlo Markov

Algorithm 1 The generative process of the proposed LAB-
TAG model

1: for each task m do
2: Draw vmk independently from Beta distribution

Beta(1, α), k = 1, · · · ,∞,m = 1, · · · ,M .

3: πmk = vmk
k−1∏
i=1

(1− vik), k = 1, · · · ,∞.

4: Draw ψmk independently from Dirichlet distribution
Dir(δ), k = 1, · · · ,∞,m = 1, · · · ,M .

5: Draw φmk independently from Dirichlet distribution
Dir($), k = 1, · · · ,∞,m = 1, · · · ,M .

6: for each label c do
7: Draw θct independently from Beta distribution

Beta(1, β), t = 1, · · · ,∞, c = 1, · · · , C.

8: π∗ct = θct
t−1∏
i=1

(1− θci), t = 1, · · · ,∞.

9: Draw wct independently from Gaussian distribution
N(µ0,Σ0), t = 1, · · · ,∞, c = 1, · · · , C.

10: smc ∼Mult(1;π∗c1, · · ·π∗c∞),m = 1, · · · ,M .
11: wm = {wc,smc

}|Cc=1.
12: end for
13: for each instance n in task m do
14: zmn ∼ Mult(1;πm1, · · ·πm∞),m =

1, · · · ,M, n = 1, · · · , Nm.
15: xmn ∼Mult(φm,zmn).
16: ymn ∼Mult(ψm,zmn

. ∗ σ(xTmn. ∗ wm)).
17: end for
18: end for

chain (MCMC) sampling are two widely used methods for
Bayesian inference. However, when faced with Dirichlet pro-
cess prior, MCMC method is slow and difficult to converge
while variational inference methods are deterministic com-
pared with MCMC sampling methods [Ishwaran and James,
2001; Blei et al., 2006].

Generally, variational inference method is to approximate
the posterior distribution p of interest using a variational dis-
tribution q [Jordan et al., 1999; Ghahramani and Beal, 2001].
By minimizing the Kullback-Leibler (KL) divergence be-
tween p and q, the calculation of the posterior distribution
can be transformed to an optimization problem. Particularlly,
by assuming that the variational distribution could be factor-
ized with different parts in the exponential family, the analytic
form of the variational distribution q could be obtained. Un-
der this assumption, the factorized variational distribututions
of the LABTAG model are as follows:

q(v, ψ, φ, z, θ, w, s) =
M∏
m=1

K−1∏
k=1

q(vmk)
M∏
m=1

K∏
k=1

q(ψmk)

M∏
m=1

K∏
k=1

q(φmk)
M∏
m=1

Nm∏
n=1

q(zmn)
C∏
c=1

T∗∏
t=1

q(θct)

T∗∏
t=1

C∏
c=1

q(wct)
M∏
m=1

C∏
c=1

q(smc)

(1)
where q(vmk) are Beta distributions with parameter
(rm1k, r

m
2k); q(ψmk) are dirichlet distributions with parameter

∼
ψmk; q(φmk) are dirichlet distributions with parameter

∼
φmk;
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q(zmn) are multinomial distributions with parameter
∼
zmn;

q(θct) are Beta distributions with parameter (τ c1t, τ
c
2t); q(wct)

are normal distributions with parameters (
∼
µct,

∼
Σct); q(smc)

are multinomial distributions with parameter
∼
smc. It is worth

noting that we utilize truncated stick-breaking representations
here [Blei et al., 2006]. In the proposed model, K and T ∗ are
all truncation levels which could be set freely. Next, the esti-
mations of the parameters of the variational distribution will
be introduced in detail.

Estimating the parameters of q(vmk):
From the Bayesian nonparametric setting, q(vmk) is the same
distribution type as P (vmk|z, α), in which the difference is
the parameter. According to Bayes’ theorem [Rosen, 2007],
the posterior distribution can be written in exponential family
as follows:

P (vmk|z, α) ∝
Nm∏
n=1

P (zmn|vmk)P (vmk|α)

∝ exp{
Nm∑
n=1

(I[zmn > k] + α− 1) log(1− vmk)

+ I(zmn = k) log vmk}

(2)

According to the principle of the variational inference [Blei
et al., 2006], the parameters of the variational distribution
q(vmk) equals to the expectation of the natrual parameter
of the posterior distribution under the variational distribution
and can be calculated as following equations:

rm1k = 1 +
Nm∑
n=1

EqI(zmn = k) = 1 +
Nm∑
n=1

∼
zkmn,

rm2k = α+
Nm∑
n=1

K∑
j=k+1

EqI(zmn > k)

= α+
Nm∑
n=1

K∑
j=k+1

∼
zjmn

(3)

Estimating the parameters of q(φmk):
Again, the posterior distribution P (φmk|z,X,$) is a Dirich-
let distribution which is also in the exponential family. Hence,

the parameters
∼
φmk of variational distribution q(φmk) can be

obtained as follows:
P (φmk|z,X,$) ∝ exp{($ − 1+

Nm∑
n=1

xmnI[zmn = k]) log(φmk)}
∼
φmk = $ +

Nm∑
n=1

xmnEqI(zmn = k) = $ +
Nm∑
n=1

xmn
∼
zkmn

(4)Estimating the parameters of q(ψmk):
As disscussed before, in different tasks, different feature-label
patterns can be captured by (φmk, ψmk). Similar with the

estimation of
∼
φmk, ψmk also has a Dirichlet process prior,

therefore,
∼
ψk can be estimated similarly:

∼
ψmk = δ +

Nm∑
n=1

ymn
∼
zkmn (5)

Estimating the parameters of q(zmn):
The posterior of zmn is a multinomial distribution as follows:

P (zmn = i|·) ∝ exp{log vmi +
i−1∑
j=1

log(1− vmj) +

ymn logψmi + xmn log φmi}.

Hence
∼
zimn equals to the expectation of the natural param-

eter of the posterior distribution under the variational distri-
bution q:

∼
zimn ∝ exp{Eq log vmi +

i−1∑
j=1

Eq log(1− vmj)

+ ymnEq logψmi + xmnEq log φmi}

(6)

where,
Eq log vmi = Ψ(rm1i)−Ψ(rm1i + rm2i),

Eq log(1− vmj) = Ψ(rm2j)−Ψ(rm1j + rm2j),

ymnEq logψmi =
C∑
c=1

ycmnΨ(
∼

ψcmi)−Ψ(
∑
v

∼
ψcvi),

xmnEq log φmi =
D∑
d=1

xdmnΨ(
∼

φdmi)−Ψ(
∑
v

∼
φdvi),

(7)

in which Ψ(·) is the digmma function, which is the first
derivative of the log Gamma function. C is the number of
the labels and D is the number of the features.

Estimating the parameters of q(θct):
Similar with estimating r, τ is calculated as follows:

τ c1k = 1 +
M∑
m=1

∼
stmc, τ c2k = β +

M∑
m=1

T∑
j>t

∼
sjmc (8)

Estimating the parameters of q(wct):
Since the sigmoid function is not in the exponential fam-
ily, it is difficult to transform the the posterior distribution
of P (wtc|·) to a exponential expression. Hence, we utilize a
variational approximation to calculate the posterior distribu-
tion [Jaakkola and Jordan, 1997; Xue et al., 2007], which is
shown as follows.

∼
µct =

∼
Σct[Σ0

−1µ0 +
M∑
m=1

∼
stmc

Nm∑
n=1

(ycmn −
1

2
)xmn]

∼
Σct = [Σ0

−1 + 2

M∑
m=1

∼
stmc

Nm∑
n=1

|ρ(ξcmn)|xmnxTmn]−1

(9)

where ξcmn =

√
T∑
t=1

∼
stmc x

T
mn(

∼
µct µTct +

∼
Σct)xmn

Estimating the parameters of q(smc):
smc is another indicator variable which reveals which cluster
each task belongs under different labels. Similar with estimat-

ing
∼
zimn,

∼
simc can be estimated as follows:

∼
simc ∝ exp{Eq log θci +

i−1∑
j=1

Eq(1− log θcj)

+
Nm∑
n=1

[ρ(ξcmn)xTmn(
∼
µci

∼
µci

T
+
∼

Σci)xmn

+ (ycmn − 1
2 )
∼
µci

T
xmn + log(σ(ξcmn))

− 1
2ξ
c
mn − ρ(ξcmn)ξc

2

mn]}

(10)

3.5 Prediction
Given the learned parameters Θ = {z, s, v, φ, ψ, θ, w} and
a new test sample xm,n∗ , we need to predict the corre-
sponding label vector ym,n∗ ∈ (0, 1)C . We assume ym,n∗
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Data set Metrics LABTAG BR CDN BNMC ML-kNN

LDOS-CoMoDa

Accuracy (%) 42.19 39.59 33.71 37.00 41.47
F1 score (%) 57.47 52.83 47.19 50.88 55.23

Hamming loss 0.2457 0.2698 0.2431 0.1798 0.2034
One-error 0.0063 0.4416 0.4789 0.0406 0.0063
Rank loss 0.4513 0.5119 0.5745 0.6076 0.5210

Enron Email Corpus

Accuracy (%) 69.06 66.20 54.65 41.46 59.45
F1 score (%) 72.22 70.63 56.86 44.40 64.55

Hamming loss 0.0135 0.0226 0.0192 0.0294 0.0148
One-error 0.1798 0.2350 0.3702 0.4859 0.2208
Rank loss 0.2608 0.2850 0.4059 0.5459 0.3782

TripAdvisor

Accuracy (%) 67.45 64.21 61.17 64.42 64.52
F1 score (%) 68.61 65.12 62.21 64.42 65.34

Hamming loss 0.1313 0.1453 0.1335 0.1423 0.1405
One-error 0.2906 0.3361 0.3216 0.3558 0.3339
Rank loss 0.3081 0.3497 0.3434 0.3558 0.3480

Table 1: Mean value of evaluation metrics on all tasks

is drawn from a multinomial distribution with parameters
[ς1m,n∗ , . . . , ςCm,n∗ ], in which ςcm,n∗ can be calculated as:

ςcm,n∗ ∝ P (ycm,n∗ = 1|xm,n∗ ,
∼
µ,
∼
Σ,
∼
s) × P (ycm,n∗ =

1| ∼z,
∼
φ,
∼
ψ). Particularly, since P (ycm,n∗ = 1|xm,n∗ ,

∼
µ,
∼
Σ,
∼
s)

does not have a accurate analytic form, we utilize the approx-

imation form as follows:
T∗∑
t=1

∼
stmc σ(

∼
µct xm,n∗√

1+ PI
8 xT

m,n∗
∼

Σct xm,n∗

)

according to literature [Xue et al., 2007].

4 Experimental Evaluation
4.1 Data Preparation
We use three public data sets for the performance eval-
uation, including TripAdvisor, LDOS-CoMoDa and Enron
Corpus data sets, to evaluate the performance of all com-
pared algorithms. TripAdvisor and LDOS-CoMoDa are two
context-aware data sets, which are used for context recom-
mendation systems [Zheng et al., 2014]. TripAdvisor is a
hotel rating data set, in which the content information in-
cludes user country, rating, etc. and the context is the trip
type. LDOS-CoMoDa [Adomavicius and Tuzhilin, 2015] is
a movie rating data set, which utilizes the movie contents in-
cluding movie year, genre, actor, etc. to recommend the con-
texts consisting of time, location, day and companion. Finally,
the Enron Email Corpus contains email information (email
content and recipients) from Enron [Klimt and Yang, 2004;
Carvalho and Cohen, 2007]. The statistics of three data sets
are shown in Table 2. These three data sets contain different
number of tasks ranging from 10 to 46, different numbers of
labels and features, which are able to prove the robustness of
the proposed model.

4.2 Baselines and Evaluation Metrics
Baselines. We compare our model LABTAG with the follow-
ing baselines,

• Binary Relevance (BR) transforms the multi-label data
set to k single label data sets, then adopts some basic al-
gorithms on each data set, such as Decision Tree, SVM,
Logistic Regression, etc., finally combines the results to

Statistics LDOS Enron Corpus TripAdvisor
# of tasks 10 18 46
# of labels 17 58 5

# of features 146 93 460
Ave. # of ins. 22 10 28

Table 2: Description of datasets.

form the prediction. In our experiment setting, the Deci-
sion Tree is used as the basic algorithm.

• ML-kNN [Zhang and Zhou, 2007] is from the traditional
KNN algorithm, which utilizes k nearest neighbors in
the training data to predict the instances in the test data.

• Conditional Dependency Networks (CDN) [Guo and
Gu, 2011] is a cyclic directed graphical model by con-
sidering the label dependency, in which Gibbs sampling
is utilized for inference.

• Bayesian Nonparametric Multi-label Classification
(BNMC) [Nguyen et al., 2016] is a Bayesian non-
parametric framework which can learn the unknown
number of label correlations automatically and handle
the missing label samples naturally.

We utilize MEKA toolbox [Read et al., 2016] for the imple-
mentation of BR and CDN, and download the Matlab code
from the author’s website for BNMC and ML-KNN.

Evaluation Metrics. We adopt five widely used metrics for
performance evaluation [Zhang and Zhou, 2014], including
Accuracy, F1-score, Hamming loss, One-error and Rank loss.
For Accuracy and F1-score, larger value indicates the better
performance, while for Hamming loss, One-error and Rank
loss, smaller value indicates the better performance.

The hyper-parameter settings of LABTAG model are as
follows: α = 1, δ = 0.01, $ = 0.07, β = 1, µ0 = 0,
Σ0 = 10I. The truncation threshold is set as 0.001×#Train
and the learning rate is set as 0.01. In each task, 50% data are
used for training and the remaining 50% for test.

4.3 Numerical Results
The comparison of the classification performance between
the proposed model and the baseline methods is shown in
Table 1, and the best results w.r.t each evaluation metric are
marked in bold. Besides, Fig. 5 shows the mean Accuracy and
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(a) Label 6 in Enron dataset. (b) Label 46 in Enron dataset. (c) Label 47 in Enron dataset. (d) Label 1 in LDOS dataset.

Figure 3: Hinton diagram for the between-task similarity under different labels in Enron and LDOS dataset.

(a) Label 2. (b) Label 3.

Figure 4: Hinton diagram for the between-task similarity in Trip-
Advisor dataset.
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(a) Mean Accuracy.
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(b) Mean Hamming Loss.

Figure 5: Mean Accuracy and Hamming Loss under different training
dataset sizes in Enron dataset.

Hamming Loss under different training dataset sizes. From
the results in Table 1 and Fig. 5, we have the following in-
sightful observations,

- Our model LABTAG can achieve the best performance
compared with all baselines on three data sets in term of
all five metrics, except that on LDOS-CoMoDa data set,
BNMC obtains a better result in term of Hamming loss
and ML-kNN obtains a better result in term of One-error.

- LABTAG outperforms BR, CDN, BNMC, and ML-
kNN, which shows the importance of applying multi-
task learning to handling multi-label classification prob-
lem. The reason is that the small number of instances
in each task can lead to under-fitting if each task is
trained separately, while LABTAG can learn multiple
tasks jointly to enhance performance. Similar tasks can
share the same model parameters under different labels,
in which one task could benefit the knowledge from
other similar tasks.

- The success of LABTAG also attribute to the adoption of
Bayesian nonparametric approach, based on which we
do not need to specify the number of clusters.

- The proposed LABTAG model can also perform better
than all baselines under different sizes of training data,
even when the size of training data is small.

4.4 Model Analysis
To explain the cluster structures of multiple tasks under dif-
ferent labels in each data set, we calculate the between-task
similarity as follows: (1) We obtain the results of 10 random

trials; (2) In each random run, we output {
∼
stmc}T

∗

t=1 which in-
dicates the probability that task m belongs to cluster t under

label c. Hence we utilize arg maxt
∼
stmc as the cluster index

of task m under label c; (3) We construct a task similarity

matrix, in which the element (i, j) records the number of oc-
currences that task i and task j are grouped into the same
cluster among the total 10 random runs. The Hinton diagram
for the between-task similarity matrices of different data sets
is shown in Fig. 3 and Fig. 4, in which the larger size of blocks
brings to higher between-task similarity. Specifically, we in-
troduce three different cluster patterns of tasks under different
labels (label 6, 46, 47) from the Enron data set as displayed in
Figs. 3(a), 3(b), 3(c). Task 5 shares the same parameters with
tasks 6∼11 under label 6 and label 47, while task 5 has high
similarity with tasks 2∼4 under label 46. The same with task
15, task 15 is clustered differently under label 6 and label 46.
We can observe the similar results from the TripAdvisor data
set as shown in Figs. 4. Tasks 1∼11 and tasks 14∼15 form
a large cluster together under label 2 while tasks 1∼5 and
tasks 6∼15 form two clusters respectively under label 3. This
reveals the motivation of the proposed LABTAG model that
one task could belong to different clusters with other tasks
under different labels. However, on LDOS-CoMoDa data set
shown in Fig. 3(d), all tasks are grouped together and share
the same parameters. This is the reason why LABTAG per-
forms relatively worse performance on this data set.

5 Conclusion
In this paper, we addressed the problem of multi-task multi-
label learning, which is particular suitable to deal with the
applications of multiple highly correlated tasks with sparse
training instances. Specifically, we proposed a label-sensitive
task grouping framework (LABTAG) by Bayesian nonpara-
metric approach for multi-task multi-label classification. In
this framework, LABTAG took advantages of both the la-
bel correlations and similar task grouping under different la-
bels to enhance the performance of classification. We evalu-
ated the performance of the proposed model on three public
multi-label data sets, which validated the superiority of the
proposed model over the state-of-the-arts.
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