
Multi-Task Clustering with Model Relation Learning

Xiaotong Zhang1,2, Xianchao Zhang1,2, Han Liu1,2, Jiebo Luo3

1 School of Software, Dalian University of Technology
2 Key Laboratory for Ubiquitous Network and Service Software of Liaoning Province

3 Department of Computer Science, University of Rochester
zxt.dut@hotmail.com, xczhang@dlut.edu.cn, liu.han.dut@gmail.com, jluo@cs.rochester.edu

Abstract
Multi-task clustering improves the clustering per-
formance of each task by transferring knowledge
among the related tasks. An important aspect of
multi-task clustering is to assess the task related-
ness. However, to our knowledge, only two pre-
vious works have assessed the task relatedness,
but they both have limitations. In this paper, we
propose a multi-task clustering with model rela-
tion learning (MTCMRL) method, which automat-
ically learns the model parameter relatedness be-
tween each pair of tasks. The objective function
of MTCMRL consists of two parts: (1) within-
task clustering: clustering each task by introduc-
ing linear regression model into symmetric non-
negative matrix factorization; (2) cross-task relat-
edness learning: updating the parameter of the lin-
ear regression model in each task by learning the
model parameter relatedness between the clusters
in each pair of tasks. We present an effective al-
ternating algorithm to solve the non-convex opti-
mization problem. Experimental results show the
superiority of the proposed method over traditional
single-task clustering methods and existing multi-
task clustering methods.

1 Introduction
Multi-task clustering, which improves the clustering perfor-
mance of each task by transferring knowledge among the re-
lated tasks, receives increasing attention recently. Most exist-
ing multi-task clustering methods make an ideal assumption
that the tasks are completely related, i.e., the tasks share the
same latent categories. However, in many real applications,
the tasks are usually partially related, i.e., only parts of the
latent categories are shared among the tasks. Transferring
knowledge among the partially related tasks without consid-
ering the task relatedness may cause negative transfer [Pan
and Yang, 2010], which degrades the clustering performance.
For example, we have two tasks to cluster the news from two
news agencies by topics, one agency reports the news of Ed-
ucation, Sport and Science, the other agency reports the news
of Education, Sport and Politics. Only the news on the topics
of Education and Sport are useful for multi-task knowledge

transfer, and transferring the knowledge of the news on the
topics of Science and Politics may cause negative effect.

In the multi-task clustering literatures, only two method-
s can automatically assess the task relatedness. (1) DMTRC
[Zhang, 2015] formulates the task relatedness as the covari-
ance matrix by the Gaussian prior. But it assumes that the
cluster numbers in all the tasks are the same and the label
marginal distribution in each task is evenly distributed, which
is too restrictive. (2) SAMTC [Zhang et al., 2016] first finds
possibly related clusters between each pair of tasks and ob-
tains a pair of subtasks, then it further learns the relatedness
between each pair of subtasks. But it only transfers the in-
stance knowledge between each pair of subtasks, which may
lose the useful instance knowledge not in the subtasks.

In light of the limitations of the existing multi-task cluster-
ing methods, in this paper, we propose a multi-task cluster-
ing with model relation learning (MTCMRL) method, which
can automatically learn the model parameter relatedness be-
tween each pair of tasks. The overall objective function of
MTCMRL consists of two parts. (1) Within-task clustering:
this part is to find the clusters within each task and update the
clusters by knowledge transfer from the other tasks. We in-
troduce linear regression model into symmetric nonnegative
matrix factorization [Kuang et al., 2012] to accomplish this
goal. The symmetric nonnegative matrix factorization cap-
tures the cluster structure embedded into the similarity ma-
trix. The linear regression model provides a condition for
transferring the knowledge of model parameters across the
tasks. (2) Cross-task relatedness learning: this part is to learn
the model parameter relatedness between the clusters in each
pair of tasks, then the model parameter of each task can be
updated by those of the other tasks. The basic intuition is that
if the tasks are related, there are some clusters related to each
other among these tasks. Thus the model parameters used
for predicting the cluster indicator among these tasks should
have some relatedness. We further present an effective alter-
nating algorithm to solve the non-convex optimization prob-
lem. Experimental results show the superiority of the pro-
posed method over traditional single-task clustering methods
and existing multi-task clustering methods.

2 Related Work
Multi-Task Clustering: Most multi-task clustering methods
make an ideal assumption that the tasks are completely re-
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lated, i.e., they transfer knowledge among the tasks without
considering the task relatedness. LSSMTC [Gu and Zhou,
2009] learns a subspace where the related tasks have the same
centroids. LNKMTC and LSKMTC [Gu et al., 2011] learn a
kernel space where the task distributions are close to each oth-
er. MCDA [Zhang and Zhou, 2012] learns a subspace where
the task distributions are close to each other. ITCC [Xie et
al., 2012] learns the feature relatedness among the related
tasks by information theoretic co-clustering. MBC [Zhang
and Zhang, 2010] and its improved methods (S-MBC and S-
MKC) [Zhang et al., 2015] alternatively update the clusters
and learn the relationship between clusters of different tasks.
SMT-NMF [Al-Stouhi and Reddy, 2014] introduces an inter-
task bias to reweight the distance between any two samples
in different tasks. DMTFC [Zhang, 2015] learns the feature
relatedness through Gaussian prior. MTCTKI [Zhang et al.,
2017] transfers instance knowledge among the tasks under a
shared subspace where the task distributions are close to each
other. MTSC [Yang et al., 2015] learns a lower dimension-
al feature space by incorporating an l2,p-norm regularization
term over the model parameters. However, in the real world,
the tasks are usually partially related. Transferring knowl-
edge among partially related tasks without considering the
task relatedness may cause negative transfer [Pan and Yang,
2010], which degrades the clustering performance.

To our knowledge, in the multi-task clustering literatures,
only DMTRC [Zhang, 2015] and SAMTC [Zhang et al.,
2016] can automatically assess the task relatedness, but they
have some limitations. DMTRC formulates the task related-
ness as the covariance matrix by the Gaussian prior. But it
assumes that the tasks have the same cluster number and the
label marginal distribution in each task is evenly distributed,
which limits its applicability. SAMTC first finds the related
clusters between each pair of tasks and obtains a pair of sub-
tasks, then it further learns the relatedness between each pair
of subtasks, finally it constructs the similarity matrix for each
task by exploiting the instances from the other subtasks. But
it only transfers the instance knowledge between each pair of
subtasks, which may lose the useful instance knowledge not
in the subtasks.

Besides the multi-task clustering (unsupervised multi-task
learning) methods which can automatically assess the task re-
latedness, many supervised multi-task learning methods are
proposed for learning the task relatedness [Zhang and Yang,
2017]. A recent method in [Murugesan et al., 2017] learns
both the task relationship matrix and feature relationship ma-
trix by co-clustering the tasks and features. But it requires
true labels to learn the task cluster matrix. In this paper, we
concentrate on learning the task relatedness without labels.

Multi-View Learning: Different from multi-task learn-
ing which deals with the data from multiple tasks, multi-
view learning [Zhao et al., 2017] deals with the data which
have the features from different views. Multi-view learn-
ing improves the learning performance by maximizing the
agreement on multiple distinct views. There are main-
ly three representative ways for multi-view learning. Co-
training [Blum and Mitchell, 1998; Appice and Malerba,
2016] uses the most confident predictions in each view to
iteratively train the learning model for all the views. Co-

regularization [Kumar et al., 2011; Minh et al., 2016] takes
the disagreement between the classification or clustering re-
sults of any two views as a regularization term in the objective
function. Canonical correlation analysis [Hotelling, 1936;
Podosinnikova et al., 2016] aims to find the linear projections
which have maximum correlation among different views. Re-
cently, multi-view learning has been successfully applied to
the gene network reconstruction [Ceci et al., 2015].

3 The Proposed Method
3.1 Problem Formulation
We are given T clustering tasks, each with a set of data points,
i.e., Xt = {xt1, xt2, . . . , xtnt} ∈ Rd×nt

(t = 1, . . . , T ), where
nt is the number of data points in the t-th task, d is the di-
mensionality of the feature vectors. The similarity matrix of
the t-th task is M t ∈ Rnt×nt

. Each data set Xt is to be par-
titioned into ht clusters, i.e., Ct = {Ct1, Ct2, . . . , Ctht}. The
cluster indicator of the t-th task is Y t ∈ Rnt×ht

.

3.2 Within-Task Clustering
This component is to find the clusters within each task and up-
date the clusters by knowledge transfer from the other tasks.
We introduce linear regression model (LRM) into symmetric
nonnegative matrix factorization (SNMF) to accomplish this
goal. SNMF partitions the data points of each task into clus-
ters, LRM provides a condition for transferring the knowl-
edge of model parameters across the tasks.

Denote the parameter of the linear regression model in the
t-th task as W t ∈ Rd×ht

, the objective function of within-
task clustering for the t-th task is

min
Y t,W t

J tin =
1

2
||M t − Y t(Y t)T ||2F

+ λ||Y t − (Xt)TW t||2F + µ||W t||2F ,
s.t.Y t ≥ 0.

(1)

where M t is the similarity matrix of the t-th task, which can
be computed by the similarity metric that accommodates to
the data set. For example, we would use cosine similarity for
document data sets, and adopt the Itakura-Saito divergence
for music data sets. λ is a trade-off parameter to control the
importance of LRM. µ is a regularization parameter for LRM.

In Eq.(1), the first term clusters the data points in the t-th
task by SNMF. SNMF is a clustering technique based on the
similarity matrix, which has the following advantages. (1)
The cluster indicator Y t computed by SNMF is nonnegative,
thus we can directly get the clustering results without post-
clustering on Y t. (2) SNMF retains the near-orthogonality
of columns of the cluster indicator Y t, i.e., (Y t)TY t = I ,
which is important for data clustering. The second term uses
LRM to refine the cluster indicator Y t by learning a model
parameter W t on the data Xt. LRM is a predictive approach
which fits the output variable by using the linear combination
of the features of the input sample. By updating the mod-
el parameter W t through cross-task relatedness learning, the
cluster indicator Y t will be improved. The third term is a
regularization term for the model parameter W t of LRM.
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3.3 Cross-Task Relatedness Learning
This component is to learn the cross-task relatedness. Specif-
ically, we learn the task relatedness by computing the model
parameter relatedness between any two clusters in each pair
of tasks. The basic intuition is that if the tasks are related,
there are some clusters related to each other among these
tasks. Therefore, we explore the relation of the clusters in dif-
ferent tasks by learning the relatedness of the model parame-
ters corresponding to these clusters, then the model parameter
of each task can be updated by those of the other tasks.

Denote the cluster model parameter relatedness between
the t-th task and the s-th task as G(t,s) ∈ Rht×hs

, the objec-
tive of learning G(t,s) is

min
G(t,s)

J tscross =
ht∑
i=1

hs∑
j=1

||W t
i −W s

j ||22G
(t,s)
ij + β||G(t,s)||2F ,

s.t.
ht∑
i=1

hs∑
j=1

G
(t,s)
ij = 1, 0 ≤ G(t,s)

ij ≤ 1(t 6= s),

(2)

whereW t
i ∈ Rd×1 is the i-th column ofW t, which is a model

parameter corresponding to the i-th cluster of the t-th task.
G

(t,s)
ij is the similarity between the i-th cluster of the t-th task

and the j-th cluster of the s-th task. The first term means that
the smaller the squared Euclidean distance between W t

i and
W s
j is, the higher the similarity between them is. The second

term is to avoid the trivial solution that only the parameters
W t
i and W s

j with the minimum squared Euclidean distance
have the similarity 1, otherwise they have the similarity 0. β
is a regularization parameter.

In Eq.(2), a larger G(t,s)
ij means that the model parameters

between the i-th cluster in the t-th task and the j-th cluster in
the s-th task have a higher relatedness. If G(t,s)

ij equals to 0,
the model parameters between the i-th cluster in the t-th task
and the j-th cluster in the s-th task have no relatedness, thus
no model parameter knowledge will be transferred between
these two clusters.

3.4 The Overall Objective Function
We integrate within-task clustering and cross-task relatedness
learning into the overall objective function as follows.

min
Y t,W t,G(t,s)

Jall =

T∑
t=1

(
1

2
||M t − Y t(Y t)T ||2F

+ λ||Y t − (Xt)TW t||2F + µ||W t||2F )

+ α
T∑
t=1

T∑
s6=t

(
ht∑
i=1

hs∑
j=1

||W t
i −W s

j ||22G
(t,s)
ij + β||G(t,s)||2F ),

s.t.Y t ≥ 0,
ht∑
i=1

hs∑
j=1

G
(t,s)
ij = 1, 0 ≤ G(t,s)

ij ≤ 1(t 6= s),

(3)

where α is a trade-off parameter to control the importance
of cross-task relatedness learning. According to Theorem

2 in [Ding and He, 2005], the orthogonality constrain-
t (Y t)TY t = I is retained in SNMF, thus we do not need
to incorporate this constraint into optimization.

3.5 Optimization
Optimizing Eq.(3) is with respect to variables Y t, W t and
G(t,s). We alternatively optimize each variable by fixing the
other variables.

Optimizing G(t,s): Given Y t and W t, optimizing Eq.(3)
with respect to G(t,s) is equivalent to optimize

min
G(t,s)

J tscross =
ht∑
i=1

hs∑
j=1

||W t
i −W s

j ||22G
(t,s)
ij + β||G(t,s)||2F ,

s.t.
ht∑
i=1

hs∑
j=1

G
(t,s)
ij = 1, 0 ≤ G(t,s)

ij ≤ 1(t 6= s),

(4)

Eq.(4) can be rewritten as

min
G(t,s)

J tscross = min
g

1

2
gTPg + fT g,

s.t.
ht×hs∑
i=1

gi = 1, 0 ≤ gi ≤ 1,

(5)

where g = (G
(t,s)
1,: , G

(t,s)
2,: , . . . , G

(t,s)
ht,: )T , where G(t,s)

i,: is the

i-th row of G(t,s). f = (A
(t,s)
1,: , A

(t,s)
2,: , . . . , A

(t,s)
ht,: )T , where

A
(t,s)
ij = ||W t

i − W s
j ||22, A(t,s)

i,: is the i-th row of A(t,s). g
and f are both ht × hs dimensional vectors. P = 2βI ∈
R(ht×hs)×(ht×hs). Eq.(5) is a convex quadratic programming
problem, which can be solved by the quadratic programming
optimizer such as the QUAD function in MATLAB.

Optimizing W t: Given Y t and G(t,s), optimizing Eq.(3)
with respect to W t is equivalent to optimize

min
W t

λ||Y t − (Xt)TW t||2F + µ||W t||2F

+ α
T∑
s6=t

(
ht∑
i=1

hs∑
j=1

||W t
i −W s

j ||22G
(t,s)
ij ).

(6)

By omitting the constant, Eq.(6) can be rewritten as

min
W t

λ||Y t − (Xt)TW t||2F + µtr(W t(W t)T )

+ α
T∑
s6=t

tr(W tH(t,s)(W t)T − 2W tG(t,s)(W s)T ),
(7)

whereH(t,s) is a diagonal matrix withH(t,s)
ii =

∑hs

j=1G
(t,s)
ij .

Eq.(7) can be transformed to a convex formula with con-
straint.

min
W t

JW t = λtr(ξt(ξt)T ) + µtr(W t(W t)T )

+ α
T∑
s6=t

tr(W tH(t,s)(W t)T − 2W tG(t,s)(W s)T ),

s.t.Y t − (Xt)TW t = ξt.

(8)
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The Lagrangian function of Eq.(8) is

L(W t, ξt) = λtr(ξt(ξt)T ) + µtr(W t(W t)T )

+ α
T∑
s6=t

tr(W tH(t,s)(W t)T − 2W tG(t,s)(W s)T )

+ tr(Γt(Y t − (Xt)TW t − ξt)T ),

(9)

where Γt ∈ Rnt×ht

is a Lagrangian multiplier. Eq.(9) is con-
vex with respect to W t and ξt. According to Karush-Kuhn-
Tucker (KKT) condition ∂L(W t,ξt)

∂W t = 0 and ∂L(W t,ξt)
∂ξt = 0

[Boyd and Vandenberghe, 2004], we have

W t = (2α
T∑
s6=t

W s(G(t,s))T+XtΓt)(2µI+2α
T∑
s6=t

H(t,s))−1.

(10)

ξt =
1

2λ
Γt. (11)

By introducing Eq.(10) and Eq.(11) into Eq.(9), we get the
dual problem [Boyd and Vandenberghe, 2004] of Eq.(8).

max
Γt

JΓt = − 1

4λ
tr(Γt(Γt)T ) + tr(Γt(Y t)T )

− 1

2
tr(XtΓt(2µI + 2α

T∑
s6=t

H(t,s))−1(Γt)T (Xt)T )

− tr(Γt(2µI + 2α

T∑
s6=t

H(t,s))−1(2α

T∑
s6=t

G(t,s)(W s)T )Xt).

(12)

Setting ∂JΓt

∂Γt = 0, we have

Γt
1

2λ
(2µI + 2α

T∑
s6=t

H(t,s)) + (Xt)TXtΓt

= Y t(2µI + 2α

T∑
s6=t

H(t,s))− 2α

T∑
s6=t

(Xt)TW s(G(t,s))T .

(13)

Eq.(13) is the Sylvester equation, which can be solved by the
off-the-shelf LYAP function in MATLAB.

Optimizing Y t: Given W t and G(t,s), optimizing Eq.(3)
with respect to Y t is equivalent to optimize

min
Y t

JY t =
1

2
||M t − Y t(Y t)T ||2F + λ||Y t − (Xt)TW t||2F ,

s.t.Y t ≥ 0.
(14)

The Lagrangian function of Eq.(14) is

L(Y t) =
1

2
||M t − Y t(Y t)T ||2F + λ||Y t − (Xt)TW t||2F

− tr(4(Y t)T ),
(15)

Algorithm 1 MTCMRL
Input: T tasks {Xt}Tt=1, cluster number of each task {ht}Tt=1. The parameters
λ, µ, α and β. Initializing Mt(t = 1, . . . , T ) by the similarity metric which
accommodates to the data set. Initializing Y t(t = 1, . . . , T ) by the k-means
method, then setting Y t = Y t + 0.2. Initializing W t(t = 1, . . . , T ) as an
nt × ht matrix of ones.
Output: Partitions {Ct}Tt=1.
repeat

for t = 1 to T do
for s = 1 to T do

if s 6= t then
Compute the parameter relatednessG(t,s) by Eq.(5).

end if
end for
Compute the model parameterW t by Eq.(10).
Compute the cluster indicator Y t by Eq.(19).

end for
until Eq.(3) is convergent.

where 4 ∈ Rnt×ht

is a Lagrangian multiplier. Setting
∂L(Y t)
∂Y t = 0, we have

4 = −2M tY t+2Y t(Y t)TY t+2λY t−2λ(Xt)TW t. (16)

According to KKT condition4ijY tij = 0, we get

(−M tY t + Y t(Y t)TY t + λY t − λ(Xt)TW t)ijY
t
ij = 0.

(17)
By introducing Q = (Xt)TW t and Q = Q+ −Q− [Ding et
al., 2010], whereQ+ = (|Q|+Q)/2 andQ− = (|Q|−Q)/2.
Eq.(17) can be rewritten as

(−M tY t − λQ+ + Y t(Y t)TY t + λY t + λQ−)ijY
t
ij = 0.

(18)
Eq.(18) leads to the following multiplicative update formula

Y tij ← Y tij

√
[M tY t + λQ+]ij

[Y t(Y t)TY t + λY t + λQ−]ij
. (19)

When initializing the cluster indicator Y t, we follow the tra-
ditional nonnegative matrix factorization methods, i.e., ini-
tializing Y t by the k-means method, then setting Y t =
Y t + 0.2 [Ding et al., 2006].

The overall optimizing process of MTCMRL is listed in
Algorithm 1. The clustering performance will be affected by
different initializations of W t. Generally we can initialize it
as a fixed matrix which is an nt × ht matrix of ones.

3.6 Time Complexity Analysis
Denote n as the sample number in each task, d as the fea-
ture number, ht and hs as the cluster numbers of the t-th task
and the s-th task, T as the task number, Ĩ as the iterations
of k-means, Î as the iterations of MTCMRL. The time com-
plexity of the initialization process for running k-means and
computing the similarity matrix M t is O(T Ĩhtdn+ T n2d).
The time complexity of computing G(t,s) is O(ÎT 2(hths)3)
through quadratic programming, but since the cluster num-
bers of the tasks are usually much smaller compared with the
sample number n and feature number d, optimizing G(t,s)

usually does not cost too much time. If the cluster number
becomes very larger, we can use the Frank-Wolfe method
[Wen et al., 2015] instead of using the quadratic program-
ming. Then the time complexity of computing G(t,s) can be

Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)

3135



Data set Task id Categories(#Sample) #Feature

WebKB4

Task 1 C1: Cornell.course(44) C2: Cornell.faculty(34) C3: Cornell.project(20) C4: Cornell.student(127) 2500
Task 2 C1: Texas.course(38) C2: Texas.faculty(46) C3: Texas.project(20) C4: Texas.student(146) 2500
Task 3 C1: Washington.course(77) C2: Washington.faculty(31) C3: Washington.project(21) C4: Washington.student(126) 2500
Task 4 C1: Wisconsin.course(85) C2: Wisconsin.faculty(42) C3: Wisconsin.project(25) C4: Wisconsin.student(154) 2500

20NewsGroups

Task 1 C1: Comp.graphics(387) C2: Rec.auto(395) C3: Sci.crypt(395) 3000
Task 2 C1: Comp.os.ms-win.misc(391) C2: Rec.motocycle(397) C3: Sci.electronics(393) C4: Talk.politic.mideast(376) 3000
Task 3 C1: Comp.sys.ibm.pc.hw(392) C2: Rec.sport.baseball(396) C3: Sci.med(392) 3000
Task 4 C1: Comp.sys.mac.hw (383) C2: Rec.sport.hockey(399) C3: Sci.space(392) C4: Talk.religion.misc(250) 3000

Reuters
Task 1 C1: Economic index.gnp(63) C2: Metal.gold(90) C3: Food.cocoa(53) 6439
Task 2 C1: Economic index.cpi(60) C2: Energy.nat gas(33) C3: Metal.iron steel(37) 6439
Task 3 C1: Economic index.ipi(36) C2: Metal.copper(44) C3: Food.coffee(110) 6439

Table 1: Data sets.
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Figure 1: The average Acc and NMI of MTCMRL under each parameter λ, µ, α and β.

reduced to O(ÎT 2hths). The time complexity of comput-
ing W t is O(ÎT (dhths + dnht)). The time complexity of
computing Y t is O(ÎT (n2ht + ndht)). Since ht, hs, T , Ĩ, Î
are usually much smaller than n and d, the overall time com-
plexity of MTCMRL by omitting them is O(n2d). This time
complexity is the same as that of the traditional clustering
method kernel k-means [Dhillon et al., 2004].

4 Experiments
4.1 Methods and Evaluation Metrics
We compare MTCMRL with the single-task clustering meth-
ods k-means, symmetric nonnegative matrix factorization
(SNMF) [Kuang et al., 2012], constrained Laplacian rank
graph-based clustering (CLR) [Nie et al., 2016] and sym-

metric nonnegative matrix factorization with linear regres-
sion model (SNMF+LR), which is a single-task version of
MTCMRL with α = 0, β = 0. We also compare MTCM-
RL with the multi-task clustering methods: the shared sub-
space learning multi-task clustering (LSSMTC) method [Gu
and Zhou, 2009], the smart multi-task Bregman and Ker-
nel clustering (S-MBC and S-MKC) methods [Zhang et al.,
2015], the convex discriminative multi-task feature cluster-
ing (DMTFC) method [Zhang, 2015], the convex discrim-
inative multi-task relationship clustering (DMTRC) method
[Zhang, 2015], the multi-task spectral clustering (MTSC)
method [Yang et al., 2015], and the self-adapted multi-task
clustering (SAMTC) method [Zhang et al., 2016].

We use two performance measures in [Xu et al., 2003]:
clustering accuracy (Acc) and normalized mutual information
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Method Task 1 Task 2 Task 3 Task 4
Acc(%) NMI(%) Acc(%) NMI(%) Acc(%) NMI(%) Acc(%) NMI(%)

k-means 64.00±0.00 18.49±0.01 58.00±5.64 12.11±1.11 51.57±2.67 6.74±3.65 58.27±0.80 20.04±3.24
SNMF 72.89±0.00 37.11±0.00 65.04±3.61 30.55±2.09 71.18±3.34 39.25±2.47 75.42±3.14 46.65±2.25
CLR 58.67 19.35 44.80 15.78 56.47 16.71 66.67 30.56
SNMF+LR 73.33±0.00 37.66±0.00 67.68±0.77 30.18±0.47 71.57±3.64 39.92±3.05 75.39±2.98 46.52±2.13
LSSMTC 63.38±5.18 28.16±4.17 64.36±4.46 23.30±6.97 61.02±5.41 27.74±3.61 65.88±10.16 37.78±6.53
S-MBC 57.91±8.43 24.95±2.80 63.84±7.37 26.97±2.23 57.80±5.38 26.72±3.36 70.85±6.56 39.38±5.45
S-MKC 46.98±2.15 19.81±4.10 45.08±4.51 22.82±4.29 49.25±5.85 23.72±7.21 52.94±3.65 31.38±3.12
DMTFC 75.11 38.31 68.80 36.80 62.35 30.00 71.24 49.38
DMTRC 40.89 13.56 45.60 16.96 60.01 46.55 55.88 36.91
MTSC 53.82±0.99 25.84±2.15 58.40±0.00 26.10±0.00 58.20±6.28 28.40±0.22 66.99±0.00 45.22±0.00
SAMTC 66.27±6.04 35.12±6.51 62.96±5.36 32.64±4.97 58.04±6.39 28.65±5.46 72.43±6.80 42.51±5.19
MTCMRL 73.78±0.00 39.29±0.00 68.48±0.17 31.99±1.51 73.45±0.93 41.53±2.03 79.67±2.89 49.57±2.10

Table 2: Clustering results on WebKB4.

Method Task 1 Task 2 Task 3 Task 4
Acc(%) NMI(%) Acc(%) NMI(%) Acc(%) NMI(%) Acc(%) NMI(%)

k-means 33.90±0.00 2.90±0.00 27.26±0.58 7.00±1.58 33.93±0.11 2.89±0.09 28.15±0.14 2.23±0.40
SNMF 80.99±0.00 48.78±0.00 61.84±2.77 41.04±1.11 59.58±0.00 30.02±0.00 83.64±7.55 61.54±10.14
CLR 36.53 7.50 27.42 7.59 34.49 4.81 28.72 5.83
SNMF+LR 81.05±0.13 48.70±0.52 62.94±0.33 41.46±0.65 60.15±2.89 29.94±1.20 83.68±7.61 61.83±10.40
S-MBC 44.06±4.46 14.61±11.98 46.64±5.75 22.51±5.52 43.93±0.89 19.45±3.52 70.88±9.52 40.61±8.56
S-MKC 74.26±1.97 38.53±3.32 63.45±1.98 41.70±3.43 62.83±3.16 30.63±3.44 64.47±5.30 37.19±5.05
MTSC 76.72±0.00 45.44±0.00 62.48±0.08 42.29±0.21 61.53±0.24 38.62±4.44 60.06±0.03 43.87±0.01
SAMTC 68.21±10.29 40.10±7.61 58.16±6.55 41.55±3.22 67.14±9.64 45.54±9.33 68.18±9.04 50.16±8.12
MTCMRL 82.07±0.00 49.80±0.00 65.52±0.10 43.42±0.15 77.97±0.00 45.94±0.00 85.96±0.00 63.19±0.00

Table 3: Clustering results on 20NewsGroups.

Method Task 1 Task 2 Task 3
Acc(%) NMI(%) Acc(%) NMI(%) Acc(%) NMI(%)

k-means 73.16±0.46 44.70±0.78 64.62±3.42 41.59±5.71 45.89±1.33 21.48±1.27
SNMF 97.57±0.00 89.49±0.00 94.77±8.17 85.74±10.83 93.21±3.16 77.86±5.00
CLR 79.61 64.31 69.23 51.97 75.79 54.62
SNMF+LR 97.57±0.00 89.49±0.00 94.08±8.80 84.23±10.49 93.32±2.83 77.98±4.64
LSSMTC 91.55±6.87 79.32±9.58 90.31±6.13 75.79±9.48 72.53±6.66 53.93±4.11
S-MBC 89.47±9.99 76.48±13.64 92.54±5.89 79.71±7.48 75.58±7.64 55.66±6.16
S-MKC 95.49±1.73 83.85±4.50 91.23±2.06 75.58±5.58 76.21±4.88 53.69±6.05
DMTFC 94.66 83.69 92.31 73.25 72.63 38.99
DMTRC 72.82 30.50 81.54 64.08 61.05 53.17
MTSC 97.57±0.00 89.49±0.00 96.15±0.00 85.00±0.00 90.16±8.55 74.04±11.05
SAMTC 96.94±3.38 89.45±7.35 96.69±0.73 86.35±2.54 90.21±9.27 76.05±13.12
MTCMRL 97.57±0.00 89.49±0.00 97.00±1.93 88.67±5.21 94.74±0.00 80.58±0.00

Table 4: Clustering results on Reuters.

(NMI) to evaluate the clustering performance.

4.2 Data Sets
WebKB41: This data set contains web pages collected from
computer science department websites at 4 universities: Cor-
nell, Texas, Washington and Wisconsin. They are divided into
7 categories, we choose 4 most populous categories such as
course, faculty, project and student for clustering.

20NewsGroups2: This data set consists of the news docu-
ments under 20 categories, we choose 4 most populous root
categories such as comp, rec, sci and talk for clustering.

Reuters3: This data set is composed of the news documents
under 135 categories from the Reuters newswire, we choose
4 most populous root categories such as economic index, en-
ergy, food and metal for clustering.

There are three typical cases for multi-task data setting.
The first case is that the tasks are completely related (i.e., the
tasks share the same categories), we use the WebKB4 data
set to represent this case. The second case is that the tasks

1http://www.cs.cmu.edu/afs/cs.cmu.edu/project/theo-20/www/data/
2http://qwone.com/∼jason/20Newsgroups/
3http://www.cad.zju.edu.cn/home/dengcai/Data/TextData.html

are partially related (i.e., the tasks share parts of categories)
and the cluster numbers in all the tasks are not the same, we
use the 20NewsGroups data set to represent this case. The
third case is that the tasks are partially related and the cluster
numbers in all the tasks are the same, we use the Reuters data
set to represent this case. The details of constitutions of these
data sets are shown in Table 1.

4.3 Parameter Investigation
We investigate the impact of the parameters λ, µ, α and β
on the clustering performance for MTCMRL. For each data
set, we repeat the MTCMRL method 10 times by setting one
parameter to search the grid and fixing the other parameters,
then compute the average Acc and NMI of all the tasks un-
der this parameter. More specifically, we successively set one
parameter to search the grid {2−2, 2−1, 20, 21, 22} by fixing
λ, α = 22 and µ, β = 2−1. From the parameter investi-
gation in Figure 1, it can be seen that MTCMRL is more
sensitive to the linear regression model trade-off parameter
λ and the cross-task relatedness learning trade-off parameter
α than their corresponding regularization parameters µ and
β. The span of clustering performance with respect to λ and
α is 2% ∼ 5%, whereas the span of clustering performance
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with respect to µ and β is less than 2%. λ and α control the
main body of the linear regression model and the cross-task
relatedness learning, thus playing major roles in optimizing
the variables.

4.4 Parameter Setting
We exploit the grid searching method which is common-
ly used in multi-task clustering [Gu and Zhou, 2009] to
identify the optimal parameters. Based on the parame-
ter investigation, for MTCMRL, we set λ and α to search
the grid {2−2, 2−1, 20, 21, 22}, µ = 2−1, β = 2−1, and
we choose cosine similarity to compute the similarity ma-
trix. For CLR, the neighborhood size is searched from
{10, 20, . . . , 100}. For LSSMTC, λ is set by searching the
grid {0.1, 0.2, . . . , 0.9}, the dimensionality of the shared sub-
space is set by searching the grid {2, 4, 6, 8, 10}. For S-MBC
and S-MKC, λ is set by searching the grid {0.1, 0.2, . . . , 1}.
For DMTFC and DMTRC, λ1 and λ2 are both set by search-
ing the grid {2−10, 2−8, . . . , 2−2}. For MTSC, α and β are
both searched from {2−2, 2−1, 20, 21, 22}. For SAMTC, the
number of nearest neighbors within each task and across the
other tasks are both searched from {30, 60, 90, 120}, and we
choose cosine similarity to compute the nearest neighbors.

4.5 Clustering Results
As CLR, DMTFC and DMTRC are convex optimization
methods, we perform them once under each parameter set-
ting, and show the clustering results under the best param-
eter setting. For the other methods, we repeat each method
10 times under each parameter setting, and show the mean
clustering results and the standard deviations under the best
parameter setting. As LSSMTC, DMTFC and DMTRC can
only apply to the case that the cluster numbers of all the tasks
are the same, we perform them on WebKB4 and Reuters. We
report the clustering results in Table 2, Table 3 and Table 4,
and it can be seen that:

1. MTCMRL performs better than the single-task cluster-
ing methods, since MTCMRL exploits the information from
the related tasks, whereas the single-task clustering meth-
ods only utilize the information within each task. SNMF
and SNMF+LR have the same clustering performance with
MTCMRL on the Task 1 of Reuters, but they perform worse
than MTCMRL on the Task 2 and Task 3 of Reuters. Be-
cause SNMF and SNMF+LR perform the same on the Task
1 of Reuters, showing that the linear regression model can
not affect the clustering performance. Therefore, updating
the model parameter by cross-task relatedness learning does
not help improve the clustering performance on the Task 1 of
Reuters.

2. LSSMTC performs worse than MTCMRL, because it
assumes that there exists a shared subspace in which all the
tasks share the same centroids, which is too idealized and
restrictive. Moreover, LSSMTC may suffer from negative
transfer when the tasks do not share the same categories like
the tested data set Reuters.

3. S-MBC and S-MKC perform worse than MTCMRL,
because they require the distributions of the tasks to be the
same or similar, but the task distributions in the tested data
sets do not show very high similarity.

4. DMTFC performs worse than MTCMRL in most cas-
es, because DMTFC requires that the tasks share the same
categories, which is seldom satisfied. As the tested data set
WebKB4 meets this requirement and DMTFC is a convex op-
timization method, DMTFC performs the best on the Task 2
of WebKB4, whereas MTCMRL performs the second best.

5. Although DMTRC can automatically learn the task re-
latedness, its clustering performance is not so good as we ex-
pected. Because it assumes that the label marginal distribu-
tion in each task is evenly distributed, which is too strict.

6. MTSC performs worse than MTCMRL, except for the
Task 1 of Reuters on which MTSC and MTCMRL show the
same clustering performance. Because it manually controls
the degree of sharing the lower dimensional feature space a-
mong the tasks, and it does not explicitly consider how to set
the intertask correlation from the tasks themselves.

7. SAMTC performs worse than MTCMRL, because it on-
ly transfers the instance knowledge between each pair of sub-
tasks, which may lose the useful instance knowledge not in
the subtasks.

8. The reasons stated above are also why LSSMTC,
S-MBC, S-MKC, DMTFC, DMTRC, MTSC and SAMTC
sometimes even perform worse than the single-task cluster-
ing methods.

9. MTCMRL performs much better than the compared
multi-task clustering methods in most cases, because MTCM-
RL can automatically learn the model parameter relatedness
between each pair of tasks, which can exploit the positive re-
latedness among the tasks and avoid negative transfer. An
exception is that for the Task 2 of WebKB4, MTCMRL per-
forms the second best, whereas DMTFC performs the best,
because DMTFC is a convex optimization method, and the
WebKB4 data set happens to meet the requirement of DMT-
FC that the tasks share the same categories. Among the ex-
isting methods, DMTRC and SAMTC can also automatically
learn the task relatedness. But DMTRC is based on a strict
assumption that the label marginal distribution in each task
distributes evenly and the tasks have the same cluster num-
ber, which is seldom satisfied. SAMTC only transfers the in-
stance knowledge between each pair of subtasks, which may
miss some potentially useful information that are not in the
subtasks. These limitations will degrade their clustering per-
formance.

Summarizing the above discussions, it can be concluded
that MTCMRL performs the best among the compared meth-
ods.

4.6 Cluster Model Parameter Relatedness
For each data set with T tasks, there are T (T − 1)
cluster model parameter relatedness matrices G(t,s)(t, s =
1, . . . , T , s 6= t). We show the cluster model parameter relat-
edness matrix G(1,2) between Task 1 and Task 2 in the We-
bKB4, 20NewsGroups and Reuters data sets, respectively.

For WebKB4, the learnt cluster model parameter related-
ness matrix G(1,2) is

G(1,2) =

 0.0816 0.0675 0.0823 0.0000
0.0860 0.1231 0.0907 0.0305
0.1002 0.0903 0.1404 0.0000
0.0000 0.0201 0.0203 0.0670

.
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Figure 2: The convergence curves of the WebKB4, 20NewsGroups and Reuters data sets.

For 20NewsGroups, the learnt cluster model parameter re-
latedness matrix G(1,2) is

G(1,2) =

[
0.1730 0.0000 0.1236 0.0699
0.0000 0.1507 0.1321 0.0000
0.1365 0.0000 0.1923 0.0219

]
.

For Reuters, the learnt cluster model parameter relatedness
matrix G(1,2) is

G(1,2) =

[
0.1957 0.1005 0.0899
0.0788 0.1259 0.2013
0.0000 0.1075 0.1004

]
.

A larger G(1,2)
ij means that cluster i in Task 1 and cluster

j in Task 2 have a higher relatedness. Note that the clus-
ter labels have been mapped to their true labels in the test-
ed data sets through the permutation mapping function in the
clustering accuracy performance measure [Gu et al., 2011].
Generally the clusters with the same label between Task 1
and Task 2 have the highest relatedness, e.g., for the 20News-
Groups data set, cluster 1 with the label ”Comp.graphics” in
Task 1 has the highest relatedness with cluster 1 with the la-
bel ”Comp.os.ms-win.misc” in Task 2 (0.1730 is the biggest
value in the first row of G(1,2)). The same phenomenon can
be observed for the clusters with the same label between the
other pairs of tasks, we omitted these matrices due to space
limitation.

4.7 Convergence Curves
The convergence criterion of the MTCMRL algorithm is to
set a convergence threshold, which is 1 in the experiments.
Once the objective value of Eq.(3) in the previous step minus
that in the current step is smaller than 1, Algorithm 1 will
converge. In the tested data sets, Algorithm 1 will converge
after 99, 100 and 28 iterations for WebKB4, 20NewsGroups
and Reuters, respectively. The convergence curves are shown
in Figure 2.

4.8 Running Time of Cluster Model Parameter
Relatedness Learning

In this section, we investigate the running time of learning
the cluster model parameter relatednessG(t,s) under different
cluster number settings. More specifically, we select Task 1
and Task 2 in 20NewsGroups as the tested data set, and set the
cluster numbers h1 and h2 (h1 = h2) in Task 1 and Task 2 by
searching the grid {5, 15, 25, 35, 45, 55, 65, 75, 85, 95}. Then
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Figure 3: The running time of learningG(1,2) by using the quadratic
programming method and the Frank-Wolfe method.

we use the quadratic programming method and the Frank-
Wolfe method to learn G(1,2), respectively. The running time
of learning G(1,2) under different cluster number settings is
shown in Figure 3.

From Figure 3, it can be seen that the running time of learn-
ing G(1,2) by quadratic programming rises sharply when the
cluster number is larger than 35. Whereas the running time
of learning G(1,2) by the Frank-Wolfe method rises slowly
with the increase of cluster number. Based on this observa-
tion, when the cluster number is smaller than 35, we can use
quadratic programming to learn the cluster model parame-
ter relatedness G(t,s), otherwise we will use the Frank-Wolfe
method to learn G(t,s).

5 Conclusion
In this paper, we have proposed a multi-task clustering with
model relation learning (MTCMRL) method, which automat-
ically learns the model parameter relatedness between each
pair of tasks. MTCMRL first introduces the linear regression
model into symmetric nonnegative matrix factorization, then
learns the model parameter relatedness between the cluster-
s in each pair of tasks by constructing a similarity matrix.
We further present an effective alternating algorithm to solve
the non-convex optimization problem. Experimental result-
s on several real data sets show the superiority of the pro-
posed method over traditional single-task clustering methods
and existing multi-task clustering methods.
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