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Abstract

A deep residual network, built by stacking a se-
quence of residual blocks, is easy to train, be-
cause identity mappings skip residual branches and
thus improve information flow. To further reduce
the training difficulty, we present a simple net-
work architecture, deep merge-and-run neural net-
works. The novelty lies in a modularized build-
ing block, merge-and-run block, which assembles
residual branches in parallel through a merge-and-
run mapping: average the inputs of these residual
branches (Merge), and add the average to the output
of each residual branch as the input of the subse-
quent residual branch (Run), respectively. We show
that the merge-and-run mapping is a linear idem-
potent function in which the transformation matrix
is idempotent, and thus improves information flow,
making training easy. In comparison with resid-
ual networks, our networks enjoy compelling ad-
vantages: they contain much shorter paths and the
width, i.e., the number of channels, is increased,
and the time complexity remains unchanged. We
evaluate the performance on the standard recogni-
tion tasks. Our approach demonstrates consistent
improvements over ResNets with the comparable
setup, and achieves competitive results (e.g., 3.06%
testing error on CIFAR-10, 17.55% on CIFAR-100,
1.51% on SVHN) !.

1 Introduction

Deep convolutional neural networks have been widely stud-
ied, and surprising performances have been achieved in many
computer vision tasks, including object detection [Girshick
et al., 2014], semantic segmentation [Long et al., 2015], edge
detection [Xie and Tu, 2015], and so on.
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Figure 1: Illustrating the building blocks: (a) Two residual blocks;
(b) A Vanilla-assembly block; (c) A merge-and-run block. (a)
corresponds to two blocks in ResNets and assembles two residual
branches sequentially while (b) and (c) both assemble the same two
residual branches in parallel. (b) and (c) adopt two different skip
connections: identity mappings and our proposed merge-and-run
mappings. The dot circle denotes the average operation, and the
solid circle denotes the sum operation.

Residual networks (ResNets) [He et al., 2016a] have been
attracting a lot of attentions since it won the ImageNet chal-
lenge and various extensions have been studied [Zagoruyko
and Komodakis, 2016; Zhang et al., 2017a). The basic unit is
a residual block consisting of a residual branch and an iden-
tity mapping. Identity mappings introduce short paths from
the input to the intermediate layers and then to the output lay-
ers [Veit et al., 2016], and thus reduce the training difficulty.

In this paper, we are interested in further reducing the
training difficulty and present a simple network architecture,
called deep merge-and-run neural networks, which assem-
ble residual branches more effectively. The key point is a
novel building block, the merge-and-run block, which assem-
bles residual branches in parallel with a merge-and-run map-
ping: average the inputs of these residual branches (Merge),
and add the average to the output of each residual branch as
the input of the subsequent residual branch (Run), respec-
tively. Figure 1 depicts the architectures by taking two resid-
ual branches as an example: (a) two residual blocks (4 paths),
(b) a Vanilla-assembly block (3 paths) and (c) a merge-and-
run block (6 paths).

Obviously, the resulting network contains shorter paths as
the parallel assembly of residual branches directly reduces

(©)

3170



Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)

the network depth. We give a straightforward verification:
the average length of two residual blocks is 2, while the av-
erage lengths of the corresponding Vanilla-assembly block
and merge-and-run block are % and %, respectively. Our net-
works, built by stacking merge-and-run blocks, are less deep
and thus easier to train.

We show that the merge-and-run mapping is a linear idem-
potent function, where the transformation matrix is idempo-
tent. This implies that the information from the early blocks
can quickly flow to the later blocks, and the gradient can be
quickly back-propagated to the early blocks from the later
blocks. This provides a theoretic counterpart of short paths,
showing the training difficulty is reduced.

We further show that merge-and-run blocks are wider than
residual blocks. Empirical results validate that for very deep
networks, as a way to increase the number of layers, increas-
ing the width is more effective than increasing the depth.

The experimental results demonstrate that the perfor-
mances of our networks are superior to the corresponding
ResNets with comparable setup on CIFAR-10, CIFAR-100,
SVHN and ImageNet. Our networks achieve competitive re-
sults compared with state-of-the-arts (e.g., 3.06% testing er-
ror on CIFAR-10, 17.55% on CIFAR-100, 1.51% on SVHN).

2 Related Works

Recently, network architecture design has been attract-
ing a lot of attention. Highway networks [Srivastava
et al., 2015], residual networks [He et al., 2016al, and
GoogLeNet [Szegedy er al., 2015] are shown to be able to
effectively train a very deep (over 40 and even hundreds or
thousands) network. The identity mapping or the bypass path
are thought as the key factor to make the training easy. En-
semble view [Veit et al., 2016] observes that ResNets behave
like an exponential ensemble of relatively shallow networks,
and shows that introducing short paths helps ResNets to avoid
the vanishing gradient problem, which is similar to the anal-
ysis in deeply-fused networks [Wang et al., 2016] and Frac-
talNet [Larsson et al., 2017].

The architecture of our approach is closely related to
IGC [Zhang et al., 2017b; Xie et al., 2018al, Decou-
pled Convolution [Xie ef al., 2018b], Inception [Szegedy et
al., 2015], Xception [Chollet, 2017] and Inception-ResNet
blocks [Szegedy et al., 2017], multi-residual networks [Abdi
and Nahavandi, 2016] and ResNeXt [Xie et al., 2017], which
also contain multiple branches in each block. One notable
point is that we introduce merge-and-run mappings, which
are linear idempotent functions, to improve information flow
for building blocks consisting of parallel residual branches.

In comparison with contemporary work, ResNeXts [Xie
et al., 2017] also assemble residual branches in parallel,
our approach [Zhao et al., 2016] adopts parallel assembly
to directly reduce the depth and does not modify residual
branches, while ResNeXts [Xie et al., 2017] transform a
residual branch to many small residual branches. Compared
with Inception [Szegedy et al., 2015] and Inception-ResNet
blocks [Szegedy et al., 2017] that are highly customized, our
approach requires less efforts to design and more flexible.
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Figure 2: (a) a deep residual network; (b) a network built by stack-
ing Vanilla-assembly blocks; (c) our deep merge-and-run neural net-
work built by stacking merge-and-run blocks. The trapezoid shape
indicates that down-sampling occurs in the corresponding layer, and
the dashed line denotes a projection shortcut.

3 Deep Merge-and-Run Neural Networks

3.1 Architectures

We introduce the architectures by considering a simple real-
isation, assembling two residual branches in parallel to form
the building blocks. We first introduce the building blocks in
ResNets, then a straightforward manner to assemble residual
branches in parallel, and finally our building blocks.

The three building blocks are illustrated in Figure 1. Ex-

amples of the corresponding network structures, ResNets,
DVANets (deep vanilla-assembly neural networks), and DM-
RNets (deep merge-and-run neural networks), are illustrated
in Figure 2. The descriptions of network structures used in
this paper are given in Table 1.
Residual blocks. A residual network is composed of a se-
quence of residual blocks. Each residual block contains two
branches: identity mapping and residual branch. The corre-
sponding function is given as,

Xop1 = Hy(xq) + x4 (D

Here, x; denotes the input of the ¢-th residual block. Hy(-)
is a transition function, corresponding to the residual branch
composed of a few stacked layers.

Vanilla-assembly blocks. We assemble two residual
branches in parallel and sum up the outputs from the two
residual branches and the identity mapping. The functions,
corresponding to the (2¢)-th and (2¢t+1)-th residual branches,
are as follows,

Xo(t41) = Hot(Xat) + Hopy1(Xae) + Xat, 2

where xo; and x5(;41) are the input and the output of the ¢-th
Vanilla-assembly block. This structure resembles the build-
ing block in the concurrently-developed ResNeXt [Xie et al.,
20171, but the purposes are different: our purpose is to re-
duce the depth through assembling residual branches in par-
allel while the purpose of ResNeXt is to transform a single
residual branch to many small residual branches.
Merge-and-run. A merge-and-run block is formed by as-
sembling two residual branches in parallel with a merge-and-
run mapping: average the inputs of two residual branches
(Merge), and add the average to the output of each residual
branch as the input of the subsequent residual branch (Run),
respectively. It is formulated as below,
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Layers | Output size ResNets ‘ DMRNets/DVANets
conv( 32 x 32 3 X 3 conv
. . 3 X 3 conv 21 3 x 3conv 3 X 3conv L
conl.x 32 32 3x3conv| 3 |[3x3conv 3x3conv| <3
X . 3 X 3conv or | |3 X 3conv 3 X 3conv L
conv2.z | 16 x 16 3x3conv| 3 | [3x3conv 3x3conv| <3
3 x 3 conv ar | [3 X 3conv 3 X 3conv L
conv3. B8 3x3conv| 3 | [3x3conv 3x3conv| <3
Classifier 1x1 average pool, FC, softmax

Table 1: Network architectures. Inside the brackets are the shape of
the residual, Vanilla-assembly and merge-and-run blocks, and out-
side the brackets is the number of stacked blocks on a stage. Down-
sampling is performed in conv2_1, and conv3_1 with stride 2.

1
Xo(t41) = Hor(Xa2t) + §(X2t + Xo141),

1
§(X2t +x2t41), (3)

where X2, and Xo;41 (Xa(441) and Xo(¢41)41) are the inputs
(outputs) of two residual branches of the ¢-th block. There is a
clear difference from Vanilla-assembly blocks in Equation 2:
the inputs of two residual branches are different, and their
outputs are also separated.

3.2 Analysis

Information flow improvement.
into the matrix form,

Xo(en) | _ | Hor(xar) L1 I I|| xo N
X2(t4+1)+1 Hoy1(X2041) 2T I||X2t41 ’

where I is an d x d identity matrix and d is the dimension of

Xot41)+1 = Hopy1(Xort1) +

We transform Equation 3

I 1
X (and Xg411). M = % [I I} is the transformation matrix

of the merge-and-run mapping.

It is easy to show that like the identity matrix I, M is
an idempotent matrix, i.e., M"™ = M, where n is an arbi-
trary positive integer (% in M is necessary). Thus, we have

Xo(t+1) | _ Hy(x2¢) n
X2(t+1)+1 Haty1(X2t41)

H21 X2i

t—1
Xot/
M +M , (9
Z [H27+1 X21+1)] |}Qf/+;|

i=t’

where ¢’ < t corresponds to an earlier block. This shows that
during the forward flow there are quick paths directly send-
ing the input and the intermediate outputs to the later block.
We have a similar conclusion for gradient back-propagation.
Consequently, merge-and-run mappings can improve both
forward and backward information flow.

Shorter paths. All the three networks are mixtures of
paths, where a path is defined as a sequence of connected
residual branches, identity mappings, and possibly other lay-
ers (e.g., the first convolution layer, the FC layer) from the
input to the output. Suppose each residual branch contains B
layers (there are 2 layers for the example shown in Figure 1),
and the ResNet, DVANet and DMRNet contain 2L, L, and
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——DMRNet: 18.0+4.62
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Figure 3: Comparing the distributions of the path lengths for three
networks. Different networks: (avg length &+ std). Left: L = 9.

Right: L = 24.
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Figure 4: Illustrating the two residual branches shown in (a) are
transformed to a single residual branch shown in (b). (a) All
4 convolutions are (16,3 x 3,16). (b) The 2 convolutions are
(16,3 x 3,32) and (32, 3 x 3, 16), from narrow (16) to wide (32),
and then from wide (32) back to narrow (16).

L building blocks, the average lengths (without counting pro-
jections in short-cut connections) are BL + 2, %L + 2, and

gL—i— 2, respectively. Figure 3 shows the distributions of path
lengths of the three networks. Refer to Table 1 for the details
of the network structures.

It is shown in [He et al., 2016a; Srivastava et al., 2015] that
for very deep networks the training becomes hard and that
a shorter (but still very deep) plain network performs even
better than a longer plain network. According to Figure 3
showing that the lengths of the paths in our proposed network
are distributed in the range of lower lengths, the proposed
deep merge-and-run network potentially performs better.

Vanilla-assembly blocks are wider. We rewrite Equation 2
in a matrix form,

(6)

Ho(x2:) Lx
H2t+1(X2t) 2

Xoan) = [I 1] [

Considering the two parallel residual branches, i.e., the first
term of the right-hand side, we have several observations.
(1) The intermediate representation, Hat(xat) is (2d)-
Hapy1(x2t)
dimensional and wider. (2) The output becomes narrower af-
ter multiplication by [I IJ, and the width is back to d. (3)
The block is indeed wider except some trivial cases, e.g., each
residual branch does not contain nonlinear activations.

Figure 4 presents an example to illustrate that Vanilla-
assembly block is wider. There are two layers in each branch.
We have that the two residual branches are equivalent to a
single residual branch containing two layers: the first layer
increases the width from d (d = 16 in Figure 4) to 2d, and
the second layer reduces the width back to d. There is no
such simple transformation for residual branches with more
than two layers, but we have similar observations.
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G=2,(16,3%3, 16)
G=2,(16,3X3, 16)

+

[16,3M3,16
RGN

[16,3><3,16‘\ ’[16,3><3,16
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Figure 5: Transform the merge-and-run block shown in (a) to a two-
branch block shown in (b). (b) The 2 convolutions are group convo-
lutions. A group convolution contains two (G = 2) convolutions of
(16,3 x 3,16): each receives a different 16-channel input and the
two outputs are concatenated with 32 channels. The width is greater
than 16. The skip connection (dot line) is a linear transformation,
where the transformation matrix of size 32 x 32 is idempotent.

Merge-and-run blocks are much wider. Consider Equa-
tion 4, we can see that the widths of the input, the interme-
diate representation, and the output are all 2d. The block is
wider than a Vanilla-assembly block because the outputs of
two residual branches in the merge-and-run block are sep-
arated and the outputs for the Vanilla-assembly block are
aggregated. The two residual branches are not indepen-
dent as the merge-and-run mapping adds the input of one
residual branch to the output of the other residual branch.
Besides, merge-and-run blocks haven’t introduces other op-
erations than Residual blocks and Vanilla-assembly blocks,
which means the computing complexity remains unchanged.

Figure 5 shows that the merge-and-run block is trans-
formed to a two-branch block. The dot line corresponds to
the merge-and-run mapping, and becomes an integrated lin-
ear transformation receiving a single (2d)-dimensional vector
as the input. The residual branch consists of two group con-
volutions, each with two partitions. A group convolution is
equivalent to a single convolution with larger kernel, being a
block-diagonal matrix with each block corresponding to the
kernel of each partition in the group convolution.

4 Experiments

4.1 Datasets

CIFAR-10 and CIFAR-100. The two datasets are drawn
from the 80-million tiny image database [Krizhevsky, 2009].
CIFAR-10 consists of 60000 32 x 32 colour images in 10
classes, with 6000 images per class. There are 50000 training
images and 10000 test images. CIFAR-100 is like CIFAR-10,
except that it has 100 classes each containing 600 images. We
use a standard data augmentation scheme widely adopted for
these datasets [He et al., 2016a; Huang et al., 2017].

SVHN. The SVHN (street view house numbers) dataset
consists of digit images of size 32 x 32. There are 73,257
images as the training set, 531, 131 images as a additional
training set, and 26,032 images as the testing set. We use

the same training strategy as [Lee er al., 2015; Huang et al.,
2016].

4.2 Setup

Networks. As shown in Table 1, we follow ResNets to de-
sign our layers: use three stages of merge-and-run blocks with
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Figure 6: Illustrating how the testing errors of ResNets change as the
average path length increases. The results are tested on CIFAR-10.

comparative number of channels to achieve the same param-
eter number with the opponent models in the following com-
parison, respectively, and use a Conv-BN-ReLU as a basic
layer with kernel size 3 x 3. The image is fed into the first
convolutional layer (conv0) with the same output channels as
the convl_z, which then go to the subsequent merge-and-run
blocks. In the experiments, we implement our approach by
taking two parallel residual branches as an example. At the
end of the last merge-and-run block, a global average pooling
is performed and then a soft-max classifier is attached. All
the + operations in Figures 1 are between BN and ReLU.

Training. We use SGD with the Nesterov momentum to
train all the models for 400 epochs on CIFAR-10/CIFAR-100
and 40 epochs on SVHN, both with a total mini-batch size
64 on two GPUs. The learning rate starts with 0.1 and is
reduced by a factor 10 at the 1/2, 3/4 and 7/8 fractions of
the number of training epochs. Similar to [He ef al., 2016al,
the weight decay is 0.0001, the momentum is 0.9, and the
weights are initialized as in [He er al., 2015]. Our implemen-
tation is based on MXNet [Chen et al., 2015].

4.3 Empirical Study

Shorter paths. We study how the performance changes as
the average length of the paths changes, based on two kinds
of residual networks. They are formed from the same plain
network of depth 2142, whose structure is like the one form-
ing ResNets given in Table 1: (i) Each residual branch is of
length %L and corresponds to one stage. There are totally

3 residual blocks. (ii) Each residual branch is of length %L.
There are totally 6 residual blocks (like Figure 2 (a)). The
averages of the depths of the paths are both (L + 2 + 1), with
counting two projection layers in the shortcut connections.

We vary L and record the classification errors for each kind
of residual network. Figure 6 shows the curves in terms of the
average depth of all the paths vs. classification error over the
example dataset CIFAR-10. We have the following observa-
tions. When the network is not very deep and the average
length is small (< 15 for 3 blocks, < 21 for 6 block), the
testing error becomes smaller as the average length increases,
and when the length is large, the testing error becomes larger
as the length increases. This indicates that shorter paths re-
sult in the higher accuracy for very deep networks.

Comparison with ResNets and wide ResNets. We com-
pare DVANets and DMRNets, and the baseline ResNets al-
gorithm. They are formed with the same number of layers,



Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)

Params. L CIFAR-10

CIFAR-100 SVHN

ResNets ~ Wide-ResNets  DVANets DMRNets ResNets Wide-ResNets ~ DVANets DMRNets ResNets Wide-ResNets  DVANets DMRNets

04M 12(6.62+0.24 6.62+0.20 6.53+0.12 6.48 £0.04|29.69 £0.15 29.59 +0.31 29.754+0.27 29.62+0.08 [{1.90+0.08 2.25+0.03 2.13+0.09 2.00+0.04

0.6M 18|593+0.17 6.12+£0.13 5.83£0.09 5.79£0.13|27.90 £0.26 27.95+0.26 27.874+0.22 27.80+0.26| 1.97+0.09 2.10+£0.06 1.964+0.10 1.87 % 0.09

1.2M  36|5.354+0.14 54740.18 5.26+0.20 5.18 £0.20|26.00+0.48 25.99+0.28 25.98+0.23 2541 +0.19| 1.90+0.04 2.05+0.02 1.81+0.11 1.77+0.11

1.5M  48|5.26+0.09 5.554+0.13 5.054+0.20 4.99 +0.13|25.44+0.20 25.38+0.37 24.76 £0.33 24.73+0.40| 1.91+0.03 2.08+0.06 1.84+0.06 1.84+0.15

Table 2: Empirical comparison of ResNets, wide ResNets, DVANets and DMRNets. The average classification error from 5 runs and the
standard deviation (mean =+ std.) are reported. The best results are in bold. Refer to Table 1 for network structure descriptions.

CIFAR-10 CIFAR-100
ResNeXt  DMRNeXt ResNeXt DMRNeXt
20 |6.79+£0.38 6.70£0.19|26.64 = 0.48 26.61 =0.19
29 |5.77+£0.22 5.62£0.21|25.45+0.18 25.12+0.23
38 |5.61+0.19 5.45+0.19(25.01 £0.36 24.52 £ 0.42

Table 3: Comparison of ResNeXt and our DMRNeXt with different
depth. The results (mean = std.) are reported from 5 runs.

Depth

and each block in a DVANet and a DMRNet corresponds to
two residual blocks in a ResNet. Table 1 depicts the network
structures. We also report the results of wide ResNets: Its
depth is the same to DMRNet; It contains three stages similar
to the ResNets as shown in Table 1, with the widths 23, 46
and 92 (slightly more parameters than DMRNets).

The comparison on CIFAR-10 is given in Table 2. One
can see that compared with ResNets, DVANets and DMR-
Nets consistently perform better, and DMRNets perform the
best. The superiority of DVANets over ResNets stems from
the less long paths and greater width. The additional advan-
tages of a DMRNet are much greater width than a DVANet.
Compared with wide ResNets with the depth same to ours
which increases the width by adding more channels, our ap-
proach performs better.

The comparisons over CIFAR-100 and SVHN shown in
Table 2 are consistent. One exception is that on CIFAR-100
the wide ResNet of depth 26 (L = 12) performs the best,
and on SVHN the ResNet of depth 26 performs better than
the DVANet and DMRNet but our DMRNet is better than
the wide ResNet. The reason might be that the paths in the
DVANet and DMRNet are not very long and too many short
paths lower down the performance for networks of such a
depth, the benefit from increasing the width is less than the
benefit from increasing the depth.

Combination with ResNeXt. We study one kind of merge-
and-run building block, where the parallel branch is a
ResNeXt block. The ResNeXt approach [Xie et al., 2017]
transforms the bottleneck branch into a set of K bottle-
neck branches which are aggregated into a ResNeXt build-
ing block. We exploit such a transformation, but aggregate
the bottleneck branches into two parallel branches, where
each branch is a ResNeXt building block formed by % trans-
formed bottleneck branches. The two parallel branches are
then equipped with the merge-and-run mapping, forming a
merge-and-run block. We compare ResNeXt and our net-
work, named DMRNeXt, by stacking the same numbers of
building blocks.

The comparisons on CIFAR-10 and CIFAR-100 are pre-
sented in Table 3. We observe that our approach consistently
outperforms ResNeXt on both CIFAR-10 and CIFAR-100.
This demonstrates the effectiveness of our approach even in
the case the parallel branch is a ResNeXt building block.

CIFAR-10 CIFAR-100
Xception DMRNets Xception DMRNets
14 |8.16+0.54 8.00+0.18|30.84 £0.44 30.40 = 0.09
20 |7.87+£0.14 7.83+0.2 [30.584+0.98 29.71 £+ 0.20
38 | 7.85+0.6 7.77+0.08|30.394+0.94 29.52+0.31

Depth

Table 4: Comparison between Xception, and DMRNets where the
parallel branch contains two Xception blocks. The results (mean +
std.) are reported from 5 runs.

Depth | Params. | CIFAR-10 | CIFAR-100 | SVHN
Swapout [Singh ez al., 2016] 20 1.IM 6.85 25.86 -
32 7.4M 4.76 22.72
DFN [Wang et al., 2016] 50 3.™ 6.40 27.61
50 | 3.9M 6.24 27.52 -
FractalNet [Larsson et al., 20171 21 | 38.6M 5.22 23.30 2.01
W/ dropout & droppath 21 | 38.6M 4.60 23.73 1.87
ResNet [He et al., 2016a] 110 | 1.7M 6.61 - -
ResNet [Huang et al., 2016] 110 | 1.7™M 6.41 27.22 2.01
ResNet (pre-act) [He er al., 2016b] | 164 | 1.7M 5.46 24.33 -
1001 | 10.2M 4.62 22.71 -
ResNet stochastic depth 110 | 1.7TM 5.23 24.58 1.75
[Huang et al., 2016] 1202 | 10.2M 4.91 - -
Wide ResNet 16 | 11.0M 4.81 22.07
[Zagoruyko and Komodakis, 2016] | 28 | 36.5M 4.17 20.50 -
W/ dropout 16 | 2.7TM - - 1.64
DenseNet [Huang et al., 20171 100 | 27.2M 3.74 19.25 1.59
DenseNet-BC (k = 24) 250 | 15.3M 3.62 17.6 1.74
DenseNet-BC (k = 40) 190 | 25.6M 3.46 -
ResNeXt-29 [Xie et al., 20171 29 | 34.4M 3.65 17.77
PyramidNet [Han e al., 20171 272 | 26.0M 3.31 16.35
IGC-L450M2 [Zhang et al., 2017b] | 20 | 19.3M 19.25 -
IGC-L32M26 [Zhang et al., 2017b] | 20 | 24.1M 3.31 18.75 1.56
DMRNet (ours) 56 1.7M 4.96 24.41 1.68
DMRNet-Wide (ours) 32 | 14.9M 3.94 19.25 1.51
DMRNet-Wide (ours) 50 | 24.8M 3.57 19.00
DMRNeXt (ours) 29 | 26.T™M 3.06 17.55

Table 5: Classification error comparison with state-of-the-arts. The
DMRNet-Wide is the wide version of a DMRNet, 4 x wider, i.e., the
widths of the threes stages are 64, 128, and 256, respectively.

Combination with Xception. We study our merge-and-run
building block with two branches, where each branch con-
tains two Xception blocks [Chollet, 2017]. We build the
Xception network with 3 stages by stacking (e.g., M) Xcep-
tion blocks, where there is an identity connection for two
Xception blocks. and our DMRNets with 3 stages by stacking
% blocks so that the depths are the same.

The widths of the three stages are set as 88, 176, and 352
for our net and 64, 128, and 256 for Xception, so that the
parameter complexities are also the same.

The comparisons on CIFAR-10 and CIFAR-100 are pre-
sented in Table 4. We can see that our approach consistently
outperforms better both on CIFAR-10 and CIFAR-100, which
shows the effectiveness of our approach in the case the paral-
lel branch is an Xception building block.

4.4 Comparison with State-of-the-Arts

The comparison is reported in Table 5. We report the re-
sults of DMRNets and wide DMRNets (denoted by DMRNet-
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ResNet-98 | DMRNet-50
#parameters 45.0M 46.4M
Top-1 validation error | 23.38 23.16
Top-5 validation error 6.79 6.64
Top-1 training error 15.09 14.46
Top-5 training error 3.25 3.16

Table 6: The validation (single 224 x 224 center crop) and training
errors (%) of ResNet-98 (45.0M) and our DMRNet-50 (46.4M) on
ImageNet.

Wide), 4x wider, i.e., the widths of the threes stages are
64, 128, and 256, respectively. Refer to Table 1 for net-
work architecture descriptions. We also report the results
of the merge-and-run block with the branch formed by 2
ResNeXt building blocks, denoted by DMRNeXt, trans-
formed by ResNeXt-29 (6 x 64d) (see Section 4.3). The best,
second-best and the third-best accuracies are highlighted in
red, green and blue.

One can see that our DMRNeXt outperforms existing state-
of-the-art results and achieves the best results on CIFAR-10.
and that achieves the third-best results on CIFAR-100. Com-
pared with the ResNeXt-29 (8 x 64d), the improvement is
very signification on CIFAR-10 and CIFAR-100 with smaller
parameter complexity. DMRNet-Wide (depth = 32) is very
competitive: outperform all existing state-of-the-art results
on SVHN. It contains only 14.9M parameters, only two third
of the parameters (24.1M) of the competitive IGC-L32M26.
These results show that our networks are parameter-efficient.

Compared with the FractalNet with depth 21, DMRNets-
Wide with depths 32, 50 are much deeper and contain fewer
parameters (14.9M, 24.8M vs. 38.6M). Our networks achieve
superior performances on all the three datasets. This is be-
cause merge-and-run mappings improve information flow for
both forward and backward propagation and are less difficult
to train even though our networks are much deeper.

We also compare our DMRNet-50 against the ResNet-98
with the same experimental settings on the ImageNet 2012
classification dataset [Deng er al., 2009]. We train mod-
els for 95 epochs with extra 25 epochs for retraining on
MXNet [Chen et al., 2015]. The training and validation errors
of ResNet-98 and our DMRNet-50 are given in Table 6. It can
be observed that our approach performs better for both train-
ing and validation errors, which also suggests that the gains
are not from regularization but from richer representation.

5 Discussions

Merge-and-run mappings for K branches. The merge-
and-run mapping studied in this paper is the case that contains
two residual branches. It can be easily extended to more (K)
branches, and accordingly merge-and-run mappings become
a linear transformation where the corresponding transforma-
tion matrix is of K x K blocks, with each block being %I.
We empirically study how K affects the performance by
conducting two experiments: (i) fix the depth as 50, and
adjust the width of each branch: (23,46,92), (16,32,64),
(12,24,48), and (8,16, 32) for K = 1, 2, 4, and 8, guaran-
teeing the same number of parameters ; and (ii) fix the width
of each branch: (16,32,64) for the three stages, and adjust
the depth: 98, 50, 26, and 14 for K = 1, 2, 4, and 8, guaran-
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Figure 7: The effect of #branches with the same #parameters for
the same depth (setting 1) or the same branch width (setting 2): (a)
CIFAR-10, and (b) CIFAR-100. It can be seen that fewer or more
branches do not lead to better performance and that 2 branches result
in overall good performance.

700 setting 2

CIFAR-10 CIFAR-100
L | Identity | Merge-and-run | Identity | Merge-and-run
w/ sharing 48| 5.21 4.99 25.31 24.73
96| 5.10 4.84 24.16 23.98
wio sharing 48| 4.67 4.41 23.96 23.75
96| 4.51 4.37 22.23 22.62

Table 7: Comparison between merge-and-run mappings and identity
mappings. Sharing = share the first conv. and the last FC.

teeing the same number of parameters. The results are given
in Figure 7, which empirically suggests to choose K = 2.

Idempotent mappings. A merge-and-run mapping is a lin-
ear idempotent mapping, and other idempotent mappings can
also be applied to improve information flow. For examples,
the identity matrix I is also idempotent and can be an alter-
native to the merge-and-run mappings. Compared with iden-
tity mappings, an additional advantage is that merge-and-run
mappings introduce interactions between residual branches.

We conducted experiments using a simple identity map-
ping, I, for which there is no interaction between the two
residual branches and accordingly the resulting network con-
sists of two ResNets that are separate except only sharing the
first convolution layer and the last FC layer. We also compare
the performances of the two schemes without sharing those
two layers. The overall superior results of our approach, from
Table 7, show that the interactions introduced by merge-and-
run mappings are helpful.

Deeper or wider. Numerous studies have been conducted
on going deeper, learning very deep networks, even of depth
1000+4. Our work can be regarded as a way to going wider
and less deep, which is also discussed in [Wu er al., 2016;
Zagoruyko and Komodakis, 2016]. The manner of increasing
the width in our method is different from Inception [Szegedy
et al., 2015], where the outputs of the branches are concate-
nated for width increase and then a convolution/pooling layer
for each branch in the subsequent Inception block is con-
ducted but for width decrease. Our merge-and-run mapping
suggests a novel and cheap way of increasing the width.

6 Conclusions

In this paper, we propose deep merge-and-run neural net-
works, which improve residual networks by assembling resid-
ual branches in parallel with merge-and-run mappings for
easing the training without the introduction of extra model
and time complexities. The superior performance stems from
several factors: information flow is improved; the paths are
shorter; the width is increased.
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