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Abstract

The problem of increasing the centrality of a net-
work node arises in many practical applications. In
this paper, we study the optimization problem of
maximizing the information centrality I, of a given
node v in a network with n nodes and m edges, by
creating k£ new edges incident to v. Since I, is the
reciprocal of the sum of resistance distance R, be-
tween v and all nodes, we alternatively consider the
problem of minimizing R, by adding k£ new edges
linked to v. We show that the objective function
is monotone and supermodular. We provide a sim-
ple greedy algorithm with an approximation factor
(1= 1) and O(n®) running time. To speed up the
computation, we also present an algorithm to com-
pute (1 — % — e) -approximate resistance distance
R, after iteratively adding %k edges, the running

time of which is O(mke=2) for any € > 0, where

the O(-) notation suppresses the poly(logn) fac-
tors. We experimentally demonstrate the effective-
ness and efficiency of our proposed algorithms.

1 Introduction

Centrality metrics refer to indicators identifying the vary-
ing importance of nodes in complex networks [Lii et al.,
2016], which have become a powerful tool in network anal-
ysis and found wide applications in network science [New-
man, 2010]. Over the past years, a great number of cen-
trality indices and corresponding algorithms have been pro-
posed to analyze and understand the roles of nodes in net-
works [White and Smyth, 2003; Boldi and Vigna, 2014].
Among various centrality indices, betweennees centrality and
closeness centrality are probably the two most frequently
used ones, especially in social network analysis. How-
ever, both indicators only consider the shortest paths, ex-
cluding the contributions from other longer paths. In or-
der to overcome the drawback of these two measures, cur-
rent flow closeness centrality [Brandes and Fleischer, 2005;
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Newman, 2005] was introduced and proved to be exactly the
information centrality [Stephenson and Zelen, 1989], which
counts all possible paths between nodes and has a better
discriminating power than betweennees centrality [Newman,
2005] and closeness centrality [Bergamini et al., 2016].

It is recognized that centrality measures have proved of
great significance in complex networks. Having high cen-
trality can have positive consequences on the node itself. In
this paper, we consider the problem of adding a given number
of edges incident to a designated node v so as to maximize
the centrality of v. Our main motivation or justification for
studying this problem is that it has several application scenar-
ios, including airport networks [Ishakian et al., 2012], rec-
ommendation systems [Parotsidis et al., 2016], among oth-
ers. For example, in airport networks, a node (airport) has
the incentive to improve as much as possible its centrality
(transportation capacity) by adding edges (directing flights)
connecting itself and other nodes (airports) [Ishakian e al.,
2012]. Another example is the link recommendation problem
of recommending to a user v a given number of links from a
set of candidate inexistent links incident to v in order to min-
imize the shortest distance from v to other nodes [Parotsidis
etal.,2016].

The problem of maximizing the centrality of a specific tar-
get node through adding edges incident to it has been widely
studied. For examples, some authors have studied the prob-
lem of creating k edges linked to a node v so that the cen-
trality value for v with respect to concerned centrality mea-
sures is maximized, e.g., betweenness centrality [Crescenzi
et al., 2015; D’ Angelo et al., 2016; Crescenzi et al., 2016;
Hoffmann et al., 2018] and closeness centrality [Crescenzi
et al., 2015; Hoffmann er al., 2018]. Similar optimization
problems for a predefined node v were also addressed for
other node centrality metrics, including average shortest dis-
tance between v and remaining nodes [Meyerson and Tagiku,
2009; Parotsidis et al., 2016], largest distance from v to
other nodes [Demaine and Zadimoghaddam, 20101, PageR-
ank [Avrachenkov and Litvak, 2006; Olsen, 2010], and the
number of different paths containing v [Ishakian et al., 2012].
However, previous works do not consider improving infor-
mation centrality of a node by adding new edges linked to it,
despite the fact that it can better distinguish different nodes,
compared with betweennees [Newman, 2005] and closeness
centrality [Bergamini et al., 2016].
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In this paper, we study the following problem: Given a
graph with n nodes and m edges, how to create k£ new edges
incident to a designated node v, so that the information cen-
trality I, of v is maximized. Since I, equals the recipro-
cal of the sum of resistance distance R, between v and all
nodes, we reduce the problem to minimizing R, by intro-
ducing k edges connecting v. We demonstrate that the opti-
mization function is monotone and supermodular. To mini-
mize resistance distance R,,, we present two greedy approx-
imation algorithms by iteratively introducing k edges one by
one. The former is a (1 - %)-approximation algorithm with
O(n®) time complexity, while the latter is a (1 — 2 —¢)-
approximation algorithm with O(mke=?2) time complexity,

where the O(-) notation hides poly(logn) factors. We test
the performance of our algorithms on several model and real
networks, which substantially increase information centrality
score of a given node and outperform several other adding
edge strategies.

2 Preliminary

Consider a connected undirected weighted network G =
(V, E,w) where V is the set of nodes, £ C V x V is the
set of edges, and w : E — R, is the edge weight func-
tion. We use w4z to denote the maximum edge weight. Let
n = |V| denote the number of nodes and m = |E| denote
the number of edges. For a pair of adjacent nodes u and v,
we write u ~ v to denote (u,v) € E. The Laplacian matrix
of G is the symmetric matrix L = D — A, where A is the
weighted adjacency matrix of the graph and D is the degree
diagonal matrix.

Let e; denote the ith standard basis vector, and b, , =
e, — e,. We fix an arbitrary orientation for all edges in G.
For each edge ¢ € F, we define b, = b, ,, where v and v
are head and tail of e, respectively. It is easy to verify that
L=> g w(e)beb, , where w(e)b.b, is the Laplacian of
e. L is singular and positive semidefinite. Its pseudoinverse
Lhis (L+17)7" — LJ, where J is the matrix with all
entries being ones.

For network G = (V, E, w), the resistance distance [Klein
and Randié, 1993] between two nodes u,v is Ryp =
bleTbuyv. The resistance distance R, of a node v is the
sum of resistance distances between v and all nodes in V,
that is, R, = ZuEV R.v, Which can be expressed in terms

of the entries of L' as [Bozzo and Franceschet, 2013]
R, =nLi, + Tr (LT) . 1)

Let L, denote the submatrix of Laplacian L, which is ob-
tained from L by deleting the row and column corresponding
to node v. For a connected graph G, L, is invertible for any
node v, and the resistance distance R, between v and an-
other node w is equal to (L l)uu [Izmailian et al., 2013].
Thus, we have

R, =Tr(L;"). )

The resistance distance R, can be used as a measure of
the efficiency for node v in transmitting information to other
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nodes, and is closely related to information centrality intro-
duced by Stephenson and Zelen to measure the importance of
nodes in social networks [Stephenson and Zelen, 1989]. The
information I, transmitted between u and v is defined as

1
B~ ' (u,u) + B~ *(v,v) — 2B *(u,v)’
where B = L+ J. The information centrality I,, of node v is

the harmonic mean of I, over all nodes u [Stephenson and
Zelen, 1989].

Definition 2.1 For a connected graph G = (V, E,w), the
information centrality I, of a node v € V is defined as

Iuv =

n
Iy = ———.
Z 1/Iuv

ueV

1t was shown [Brandes and Fleischer, 2005] that

n
I, R 3)

We continue to introduce some useful notations and tools
for the convenience of description for our algorithms, includ-
ing e-approximation and supermodular function.

Let a,b > 0 be two nonnegative scalars. We say a
is an e-approximation [Peng and Spielman, 2014] of b if
exp(—e)a < b < exp(e)a. Hereafter, we use a ~, b to
represent that a is an e-approximation of b.

Let X be a finite set, and 2% be the set of all subsets of
X. Let f : 2% — R be a set function on X. For any subsets
S C T C X and any element a € X \ T, we say func-
tion f(-) is supermodular if it satisfies f(S) — f(SU{a}) >
f(T) — f(T'U{a}). A function f(-) is submodular if — f(+)
is supermodular. A set function f : 2X — R is called mono-
tone decreasing if for any subsets S C T' C X, f(S) > f(T)
holds.

3 Problem Formulation

For a connected undirected weighted network G(V, E, w),
given a set S of weighted edges not in E, we use G + S
to denote the network augmented by adding the edges in S to
G,ie. G+ S = (V,EUS,w'),where w' : EUS — R, is
the new weight function. Let L(S) denote the Laplacian ma-
trix for G + S. Note that the information centrality of a node
depends on the graph topology. If we augment a graph by
adding a set of edges .S, the information centrality of a node
will change. Moreover, adding edges incident to some node v
can only increase its information centrality [Doyle and Snell,
1984].

Assume that there is a set of nonexistent edges incident to
a particular node v, each with a given weight. We denote this
candidate edge set as F,. Consider choosing a subset S of &k
edges from the candidate set E, to augment the network so
that the information centrality of node v is maximized. Let
I,,(S) denote the information centrality of the node v in aug-
mented network. We define the following set function opti-
mization problem:

maximize

SCE,, |S|=k Lo(9). @)
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Since the information centrality I,, of a node v is proportional
to the reciprocal of R, the optimization problem (4) is equiv-
alent to the following problem:

Ro(5), (5)

minimize
SCE,, |S|=k

where R, (.5) is the resistance distance of v in the augmented
network G + S.

4 Supermodularity of Objective Function

Let 25 denote all subsets of E,. Then the resistance dis-
tance of node v in the augmented network can be represented
as a set function R, : 2F» — R. To provide effective algo-
rithms for the above-defined problems, we next prove that the
resistance distance of v is a supermodular function.

Rayleigh’s monotonicity law [Doyle and Snell, 1984]
shows that the resistance distance between any pair of nodes
can only decrease when edges are added. Then, we have the
following theorem.

Theorem 4.1 R, (.S) is a monotonically decreasing function
of the set of edges S. That is, for any subsets S C T C E,,

Ru(T) < Ry(S).
We then prove the supermodularity of the objective func-
tion R, (S).
Theorem 4.2 R, (S) is supermodular. For any set S C T C
E, and any edge e € E,\ T,

Ro(T) — Ro(T U {e}) < Ry(S) — Ro(S U {e}).

Proof. Suppose that edge e connects two nodes v and v,
then L(S U {e}), = L(S), + w(e)E .y, where E,,, is a
square matrix with the uth diagonal entry being one, and all
other entries being zeros. By (2), it suffices to prove that

Tr (L(T), ") — Tr (K(T)o +w(e) Euu) ")
<Tr (L(S), ") — Tr ((L(S)v +w(e) Euu) ")
Since S is a subset of T, L(T'),, = L(S), + P, where P is a
nonnegative diagonal matrix. For simplicity, in the following
proof, we use M to denote matrix L(S),. Then, we only
need to prove
Tr(M+P) ") —Tr (M)
<Tr (M + P +w(e)Euu)™") — Tr (M + w(e)Euu) ") .

Define function f(t), t € [0, 0), as

f®) =Tr (M + P +tEyw) ") = Tr (M +tEuw) ).

Then, the above inequality holds if f(t) takes the minimum
value at £ = 0. We next show that f(¢) is an increasing func-

tion by proving o (t) > 0. Using the matrix derivative for-
mula
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we can differentiate function f(t) as

df ( —Tr

(M +P+tEy.,
i + P+ )~

Euu(M+ P +tEu.)"")

((
+Tr (M + o)™ Buu (M + tEy) ")
=Tt (Buu (M + P+ tEy,)"?)

+ Tt (Buuw (M + tEuy)~?)

— (M + P +1tEyu.)""), + (M +tEu.) ")

uu

Let N = M +tE,,, and let @ be a nonnegative diagonal
matrix with exactly one positive diagonal entry @, > 0 and
all other entries being zeros. We now prove that N 1>
(N + Q) for1 <+¢,j <mn — 1. Using Sherman- Morrlson
formula [Meyer, 19731, we have

1
-1 thN ehehN

N'— (N
(N+Q) 14+ Qure, N 'es

Since N is an M-matrix, every entry of N ' is posi-
tive [Plemmons, 1977], it is the same with every entry
of N _1eh e;N ~! In addition, the denominator 1 +
Qe N~ 'ey is also positive, because N is positive defi-
nite. Therefore, N ™! — (N + Q)71 is a positive matrix, the
entries of which are all greater than zero.

By repeatedly applying the above process, we conclude
that N~ > (N + P)f1 is a positive matrix. Thus,

which completes the proof. O

+(N7?) >0,

uu —
uuw

5 Simple Greedy Algorithm

Theorems 4.1 and 4.2 indicate that the objective function (5)
is monotone and supermodular. Thus, a simple greedy algo-
rithm is sufficient to approximate problem (5) with provable
optimality bounds. In the greedy algorithm, the augmented
edge set S is initially empty. Then k edges are iteratively
added to the augmented edge set from the set F,, of candidate
edges. At each iteration, an edge e; in the candidate edge set
is selected to maximize R, (S) — R, (S U {e;}). The algo-
rithm terminates when |S| = k.

According to (1), the effective resistance R, is equal to
nLi, +Tr(L"). A naive algorithm requires O (k| E,|n®) time
complexity, which is prohibitively expense. Below we show

that the computation cost can be reduced to O(n?) by using
Sherman-Morrison formula [Meyer, 1973].
Lemma 5.1 For a connected weighted graph G = (V, E, w)

with weighted Laplacian matrix L, let e be a nonexistent edge
with given weight w(e) connecting node v. Then,

w(e)LTb.b] LT

(B(eD)' = (L4 wieppebl ) = 17 = POER2e

For a candidate edge not added to S, let R2*(e) = R, (S)—
R,(SU{e}). Lemma 5.1 and (1) lead to the following result.
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Lemma 5.2 Let G = (V,E,w) be a connected weighted
graph with weighted Laplacian matrix L. Let e ¢ E be a
candidate edge with given weight w(e) incident to node v.
Then,

w(e) (n (L'bebl LY)  + Tr (L'b.b. L))
1+w(e)bl LTb. '

Lemma 5.2 yields a simple greedy algorithm
EXACTSM(G, v, E,, k), as outlined in Algorithm 1. The
first step of this algorithm is to compute the pseudoinverse
of L, the time complexity of which is O(n?®) time. Then
this algorithm works in & rounds, each involving operations
of computations and updates with time complexity O(n?).
Thus, the total running time of Algorithm 1 is O(n?).

R (e) = (6)

Algorithm 1: EXACTSM(G, v, E,, k)
Input

: A connected graph G;anodev € V; a
candidate edge set F,; an integer k < |E, |
Output : A subsetof S C E, and |S| =k

1 Initialize solution S = ()

2 Compute Lf

s fori=11r0kdo

4 Compute R% (e) foreache € E, \ S

5 Select e; s.t. e; < arg maxeeEU\SRvA (e)

6 Update solution S + S U {e;}

7 Update the graph G «— G(V, E U {e;})

w(ei)L]L be, b; Lt

T T WRCE Deile;
8 Update L' < L Tru(end] L1b.,

9 return S

Moreover, due to the result in [Nemhauser et al., 1978], Al-
gorithm 1 is able to achieve a (1 — 1) approximation factor,
as given in the following theorem.

Theorem 5.3 The set S returned by Algorithm 1 satisfies

RU(Q) —Rv(s) > (1 - é) (Rv(@) - RU(S*)):

where S* is the optimal solution to (5), i.e.,

def .
S* = argmin

scv,|S|=k

R (S).

6 Fast Greedy Algorithm

Although Algorithm 1 is faster than the naive algorithm, it
is still computationally infeasible for large networks, since
it involves the computation of the pseudoinverse for L. In
this section, in order to avoid inverting the matrix L, we
give an efficient approximation algorithm, which achieves
a (1— 1 —¢) approximation factor of optimal solution to

problem (5) in time O (kme=2).

6.1 Approximating R2'(e)

In order to solve problem (5), one need to compute the key
quantity R (e) in (6). Here, we provide an efficient algo-
rithm to approximate R (e) properly.

We first consider the denominator in (6). Assume that the
new added edge e connects nodes v and v. Note that the
term r, = b;,rLTbe in the denominator is in fact the resis-
tance distance R, between u and v in the network exclud-
ing e. It can be computed by the following approximation
algorithm [Spielman and Srivastava, 2011].

Lemma 6.1 Let G = (V,E,w) be a weighted connected
graph. There is an algorithm APPROXIER(G, E,,, ¢) that re-
turns an estimate 7, of v for all e € B, in O(me~2) time.
With probability at least 1 — 1/n, 7. =, 1 holds for all
e € FE,.

For the numerator of (6), it includes two terms,
(LT bcszT) and Tr (LT bebZLT) . The first term can be
VU

calculated by (LTbebJLT — el L'b.b] L'e,. The sec-
ond term is the trace of an iUI;ipliCit matrix which can be ap-
proximated by Hutchinson’s Monte-Carlo method [Hutchin-
son, 1989]. By generating M independent random =+1 vec-
tors &1, x2, -+ ,xy € R™ (i.e., independent Bernoulli en-
tries), 47 S0 @, Az; can be used to estimate the trace of
matrix A. Since E [z, Az;| = Tr(A), by the law of large
numbers, 1 Zf\il x,] Az; should be close to Tr (A) when
M is large. The following lemma [Avron and Toledo, 2011]
provides a good estimation of Tr (A).

Lemma 6.2 Let A be a positive semidefinite matrix with

rank rank(A). Let @1, ..., x s be independent random +1
vectors. Let €,0 be scalars such that 0 < ¢ < 1/2 and
0 <8 <1 Forany M > 24¢ 2In(2rank(A)/§), the fol-
lowing statement holds with probability at least 1 — §:

M
Z x] Az; ~. Tr (A).

=1

1
M
Thus, we have reduced the estimation of the numerator
of (6) to the calculation of the quadratic form of Ls, bZLT.
If we directly compute the quadratic form, we must first eval-
uvate L, the time complexity is high. To avoid inverting L,
we will utilize the nearly-linear time solver for Laplacian sys-
tems from [Kyng and Sachdeva, 2016], whose performance
can be characterized in the following lemma.
Lemma 6.3 The algorithm y = LAPLSOLVE(L, z, €) takes
a Laplacian matrix L of a graph G with n nodes and m edges,
a vector z € R" and a scalar ¢ > 0 as input, and returns a
vector y € R™ such that with probability 1 — 1/poly(n) the
following statement holds:

o = 24], < ]2
L L

where |||, = Va T Lx. The algorithm runs in expected
time O(m).

Lemmas 6.1, 6.2 and 6.3 result in the following algo-
rithm VREFFCOMP(G, v, E,,¢) for computing R% (e) for
all e € E,, as depicted in Algorithm 2. The algorithm has
a total running time O(me~2), and returns a set of pairs
{(e,R2(e))|e € E,}, satisfying that R> (e) ~. R2(e) for
alle € E,,.
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Algorithm 2: VREFFCOMP(G, v, E,,, €)

Input : A graph G anode v € V; a candidate edge set F,;
areal number 0 < e < 1/2
Output : {(e,R%(e))|e € Ey}
1 Let z1,..., znm be independent random +1 vectors, where

M = {432672111(271)—‘.
fori=1to M do
y; < LAPLSOLVE(L, z;, =5 €n”
for each e € E, do
5 L Compute t;(e) def y; bebly,

(8]

SWas)

Bw

a

T

@ < LAPLSOLVE(L, e,, 5 €n~
for each e € E, do
L Compute «a(e) 2 Tbb. x
9 7. < APPROXIER(G, €¢/3)
M
na(e)+ 3y 3 ti(e)

K2
1+w(e)fe

=

®

10 Compute 7@3 (e) = w(e) for each e

u return {(e, R5 (e))|e € E,}

6.2 Fast Algorithm for Objective Function

By using Algorithm 2 to approximate R%(e), we give a
fast greedy algorithm APPROXISM(G, v, E,, k, €) for solv-
ing problem (5), as outlined in Algorithm 3.

Algorithm 3: APPROXISM(G, v, E,, k, €)

: A graph G; anode v € V; a candidate edge set E.;
an integer k < |E,|; areal number 0 < e < 1/2
Output : S: asubsetof E, and |S| = k

1 Initialize solution S = ()

2 fori =1to k do

3 | {e,R%(e)|e € E,\S} < VREFFCOMP(G, v, E,\ S, 3e).

Input

4 Select e; s.t. e; <— arg maxeeEU\S"léf(e)
5 Update solution S <— S U {e;}
6 Update the graph G < G(V, E U {e;})

7 return S

Algorithm 3 works in k rounds (Lines 2-6). In every round,
the call of VREFFCOMP and updates take time O(me?2).
Then, the total running time of Algorithm 3 is O(kme2).

The following theorem shows that the output S of Algo-
rithm 3 gives a (1 — 1 — ¢) approximate solution to prob-
lem (5).

Theorem 6.4 Forany 0 < € < 1/2, the set S returned by the
greedy algorithm above satisfies

Ro(0) — Ru(S) > (1 . ) (Ro(0) — Ru(S")),

(&

where S* is the optimal solution to problem (5), i.e.,

Ru(S).

def .
S* = argmin
SCV,|S|=k

We omit the proof, since it is similar to that in [Badani-
diyuru and Vondrak, 2014].
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Network n m n' m’
BA network 50 94 50 94
WS network 50 100 50 100

Zachary karate club 34 78 34 78
Windsufers 43 336 43 336
Jazz musicians 198 2742 195 1814
Virgili 1,133 5451 1,133 5,451

Euroroad 1,174 1,417 1,039 1,305
Hamster full 2,426 16,631 2,000 16,098

Facebook 2,888 2,981 2,888 2,981

Powergrid 4,941 6,594 4,941 6,594

ca-GrQc 5,242 14,496 4,158 13,422

ca-HepPh 12,008 118,521 11,204 117,619
com-DBLP 317,080 1,049,866 317,080 1,049,866
roadNet-TX 1,379,917 1,921,660 1,351,137 1,879,201

Table 1: Statistics of datasets. For a network with n nodes and m
edges, we denote the number of nodes and edges in its largest con-
nected component by n” and m’, respectively.

7 Experiments

In this section, we experimentally evaluate the effective-
ness and efficiency of our two greedy algorithms on some
model and real networks. All algorithms in our experiments
are implemented in Julia. In our algorithms, we use the
LAPLSOLVE [Kyng and Sachdeva, 2016], the implementa-
tion (in Julia) of which is available on website!. All experi-
ments were conducted on a machine with 4.2 GHz Intel i7-
7700 CPU and 32G RAM.

We execute our experiments on two popular model net-
works, Barabdsi-Albert (BA) network and Watts—Strogatz
(WS) network, and a large connection of realistic networks
from KONECT [Kunegis, 2013] and SNAP?. Table 1 pro-
vides the information of these networks, where real-world
networks are shown in increasing size of the number of nodes
in original networks.

7.1 Effectiveness of Greedy Algorithms

To show the effectiveness of our algorithms, we compare the
results of our algorithms with the optimum solutions on two
small model networks, BA network and WS network, and two
small real-world networks, Zachary karate club network and
Windsufers contact network. Since these networks are small,
we are able to compute the optimal edge set.

For each network, we randomly choose 20 target nodes.
For each target node v, the candidate edge set is composed of
all nonexistent edges incident to it with unit weight w = 1.
And for each designated k = 1,2,--- .6, we add k edges
linked to v and other k£ non-neighboring nodes of v. We then
compute the average information centrality of the 20 target
nodes for each k. Also, we compute the solutions for the
random scheme, by adding k edges from randomly selected
k non-neighboring nodes. The results are reported in Fig-
ure 1. We observe that there is little difference between the
solutions of our greedy algorithms and the optimal solutions,
since their approximation ratio is always greater than 0.98,
which is far better than the theoretical guarantees. Moreover,
our greedy schemes outperform the random scheme in these
four networks.

"https://github.com/danspielman/Laplacians.jl
*https://snap.stanford.edu
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Figure 1: Average information centrality of target nodes as a func-
tion of the number k of inserted edges for EXACTSM, APPROXISM,
random and the optimum solution on four networks: BA (a), WS (b),
Karate club (c), and Windsufers (d).

To further demonstrate the effectiveness of our algorithms,
we compare the results of our methods with the random
scheme and other two baseline schemes, Top-degree and
Top-cent, on four other real-world networks. In Top-degree
scheme, the added edges are simply the k edges connecting
target node v and its nonadjacent nodes with the highest de-
gree in the original network; while in Top-cent scheme, the
added edges are simply those k edges connecting target node
v and its nonadjacent nodes with the largest information cen-
trality in the original network.

Since the results may vary depending on the initial infor-
mation centrality of the target node v, for each of the four
real networks, we select 10 different target nodes at random.
For each target node, we first compute its original informa-
tion centrality and increase it by adding up to £ = 20 new
edges, using our two greedy algorithms and the three base-
lines. Then, we compute and record the information central-
ity of the target node after insertion of every edge. Finally,
we compute the average information centrality of all the 10
target nodes for each k = 1,2,...,20, which is plotted in
Figure 2. We observe that for all the four real-world networks
our greedy algorithms outperform the three baselines.

7.2 Efficiency Comparison of Greedy Algorithms

Although both of our greedy algorithms are effective, we will
show that their efficiency greatly differs. To this end, we com-
pare the efficiency of the greedy algorithms on several real-
world networks. For each network, we choose stochastically
20 target nodes, for each of which, we create k = 10 new
edges incident to it to maximize its information centrality ac-
cording to Algorithms 1 and 3. We compute the average in-
formation centrality of 10 target nodes for each network and
record the average running times. In Table 2 we provide the
results of average information centrality and average running
time of our greedy algorithms. We observe that APPROXISM
algorithm are faster than EXACTSM algorithm, especially for
large networks, while their final information centrality score
are close. More interestingly, APPROXISM applies to mas-
sive networks. For example, for com-DBLP and roadNet-TX
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Figure 2: Average information centrality of target nodes as a func-
tion of the number k of inserted edges for the five heuristics on Jazz
musicians (a), Euroroad (b), Facebook (c), Powergrid (d).

Time (seconds) Information centrality

Network
ASM ESM Ratio ASM ESM Ratio
Virgili 1.3996 0.9172 1.5259 2.5005 2.5037 0.9987
Euroroad 0.6563 0.7593 0.8643 0.4003 0.4069 0.9838
Hamster full 3.0785 4.8528 0.6344 29904 29944  0.9987
Facebook 1.7151 12.9203 0.1327 0.7937 0.7947 0.9987
Powergrid 5.8727 58.3359 0.1006 0.4327 0.4369 0.9904
ca-GrQc 5.3023 34.0228 0.1558 1.2118 1.2136  0.9985
ca-HepPh 28.7462 620.4557 0.0463 2.2569 2.2592 0.9990
com-DBLP 697.1835 - - 1.1327 - -
roadNet-TX 1569.5059 - - 0.0556

Table 2: The average running times and results of APPROXISM
(ASM) and EXACTSM (ESM) algorithms on several real-world
networks, as well as the ratios for times and results of APPROXISM
to those of EXACTSM.

networks, APPROXISM computes their information central-
ity in half an hour, while APPROXISM fails due to its high
time complexity.

8 Conclusions

In this paper, we considered the problem of maximizing the
information centrality of a designated node v by adding k£ new
edges incident to it. This problem is equivalent to minimiz-
ing the resistance distance R, of node v. We proposed two
approximation algorithms for computing R,, when k edges
are repeatedly inserted in a greedy way. The first one gives a
(1 — 1) approximation of the optimum in time O(n?). While
the second one returns a (1 — < — €) approximation in time

O(mke=2). Since the considered problem has never been ad-
dressed before, we have no other algorithms to compare with,
but compare our algorithms with potential alternative algo-
rithms. Extensive experimental results on model and realis-
tic networks show that our algorithms can often compute an
approximate optimal solution. Particularly, our second algo-
rithm can achieve a good approximate solution very quickly,
making it applicable to massive networks.
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