Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)

Discrete Network Embedding

Xiaobo Shen'*, Shirui Pan’*, Weiwei Liu’, Yew-Soon Ong?, Quan-Sen Sun®
*School of Computer Science and Engineering, Nanyang Technological University
!Centre for Artificial Intelligence, FEIT, University of Technology Sydney
“School of Computer Science and Engineering, The University of New South Wales
§School of Computer and Engineering, Nanjing University of Science and Technology
{njust.shenxiaobo,shiruipan,liuweiwei863 } @ gmail.com, asysong @ntu.edu.sg, sunquansen @njust.edu.cn

Abstract

Network embedding aims to seek low-dimensional
vector representations for network nodes, by pre-
serving the network structure. The network em-
bedding is typically represented in continuous vec-
tor, which imposes formidable challenges in stor-
age and computation costs, particularly in large-
scale applications. To address the issue, this pa-
per proposes a novel discrete network embedding
(DNE) for more compact representations. In par-
ticular, DNE learns short binary codes to represen-
t each node. The Hamming similarity between t-
wo binary embeddings is then employed to well
approximate the ground-truth similarity. A novel
discrete multi-class classifier is also developed to
expedite classification. Moreover, we propose to
jointly learn the discrete embedding and classifier
within a unified framework to improve the com-
pactness and discrimination of network embedding.
Extensive experiments on node classification con-
sistently demonstrate that DNE exhibits lower s-
torage and computational complexity than state-of-
the-art network embedding methods, while obtains
competitive classification results.

1 Introduction

Networks are natural tools to model pairwise relationships
and inter-dependence among data in a variety of applications
including communication networks, social networks, citation
networks, etc. It is well recognized that networks are highly
complicated and sparse which impose significant challenges
in many network analytic tasks, such as community detection,
node classification, and link prediction. For years researchers
have made efforts to solve each of these tasks separately until
recently network embedding emerged as a general way for
many of these problems.

Network embedding aims to transfer the graph representa-
tion into continuous feature values, where each node corre-
sponding to a low dimensional vector. The key idea behind

*indicates equal contribution.

3549

is to preserve the structure relationship of the network so that
nodes with links are close to each other in the vector space.
After learning the new representations, any network analyt-
ic tasks can be easily carried out by using off-the-shelf ma-
chine learning algorithms based on the new representations.
Due to its effectiveness in many tasks, such as graph cluster-
ing [Tian er al., 2014], link prediction [Dai ez al., 20171, and
personalized recommendation [Zhang er al., 2017], network
embedding has attracted increasing attention in recent years.

Network embedding can be roughly categorized into three
groups: (1) random walk-based algorithms, (2) matrix
factorization-based methods, and (3) deep learning-based ap-
proaches. The random walk-based algorithms generate a
large number of truncated random paths over a network and
preserve the neighborhood relationship of nodes in the paths.
By borrowing the idea of word representation in NLP, Deep-
Walk [Perozzi et al., 2014] becomes the first elegant frame-
work for network embedding in an online manner. Node2Vec
[Grover and Leskovec, 2016] further exploits the biased ran-
dom walks to capture the global structure information. Oth-
er methods either learn asymmetric proximity [Zhou et al.,
2017] or capture multiple sources of information in the net-
work to learn network embedding [Pan et al., 2016].

Matrix factorization-based aims to decompose a matrix in-
to low dimensional latent factors which can be considered as
the new representation of nodes. They vary in the objec-
tive functions. Early approaches such as modularity maxi-
mization and eigen-decomposition, aim to learn community
indicative functions, while TADW [Yang et al., 2015] ex-
ploits two-step of the transition probability matrix via in-
ductive matrix factorization. Recently, it has been proven
in [Qiu erf al., 2018] that many approaches, including LINE
[Tang et al., 2015b], PTE [Tang et al., 2015a], DeepWalk
and Node2Vec, are equivalent to matrix factorization meth-
ods. Recently, deep learning approaches [Cao ef al., 2016;
Wang et al., 2016] have been proposed to learn non-linear
representations for nodes.

Despite the success of current network embedding ap-
proaches, the network embedding is learned in a continu-
ous space, which in practice imposes severe challenges in
the storage and computation cost, particular on large-scale
datasets. Therefore, it is imperative to develop a compact

Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)

Similarity Matrix Discrete Network Embedding

1234 ..n 123 . m 123 - mh
2 : (I | m
2 2 2 -1
3 sH 0N el I |
4 — 1 + TN . 4+ ENETEE
. . Matrix
: : - Factorization : : : :
nlTT] | i mEE] EEe |
. Classification in
2-order Proximity Hamming Space
Preser\/atic:)n1 123 - C 123 . m
o ;
& W IR 2
: : - - : —
g’@) : Discrete Multi-
o), I TT] class Classifier g EEN
Network Label Set Discrete Weight

Figure 1: The Overview of the proposed DNE. DNE jointly learns
the discrete network embedding and discrete multi-class classifier.
The classification is conducted in the Hamming space.

network embedding framework, which has been less well s-
tudied and remains a very challenging area.

Binary code learning [Wang et al., 2018] has gained in-
creased interests in many large-scale applications. It encodes
the original high-dimensional data into a set of short binary
codes with similarity preservation. Thus the calculation and
storage in Hamming space are both at very low cost. This
triggers us to propose a novel discrete network embedding
(DNE). DNE aims to learn the short binary code to represent
each node. The advantages of DNE over conventional embed-
ding methods lie in the low cost of computation and storage.
As shown in the experiments, DNE reduces the storage of the
embedding and model size to 64 times on the three datasets;
meanwhile, it dramatically improves the efficiency of train-
ing and classification. The overview of the proposed DNE is
illustrated in Figure 1. The main contributions of this work
are summarized below:

e We propose a novel discrete network embedding (DNE)
for compact representations. DNE represents each n-
ode using binary codes, which can significantly reduce
the computational and storage costs. To the best of our
knowledge, DNE is the first work that learns a discrete
representation for networks.

e DNE leverages Hamming similarity between two binary
embeddings to well approximate the ground-truth sim-
ilarity. To improve discrimination of embedding, DNE
jointly learns the discrete embedding and classifier. The
proposed discrete multi-class classifier is able to expe-
dite classification.

e Extensive experiments demonstrate that DNE achieves
lower storage and computational complexity than state-
of-the-art network embedding methods, while achieving
comparable accuracy.

The rest of this paper is arranged as follows. In Sections 2
and 3, we discuss related work and background. Section 4
presents the proposed DNE method. The experiment is out-
lined in Section 5. The conclusion is drawn in Section 6.

2 Related Work

Network Embedding Learning Network embedding has
become an effective method for many network analytic tasks,

3550

including node classification, clustering, and anomaly detec-
tion. Regarding the information they exploit for learning the
representation, network embedding can also be distinguished
into two groups (1) structure-preserving algorithms, and (2)
content augmented algorithms.

Structure-preserving algorithms take in a network as the
input and aim to preserve the structure relationship between
nodes. While capturing the structure relations, they typical-
ly employ random walks [Perozzi et al., 2014; Grover and
Leskovec, 2016], matrix factorization [Tang and Liu, 2009;
Zhou et al., 2017], or deep learning approaches [Cao et al.,
2016; Wang et al., 2016].

Content augmented algorithms assume that the node con-
tent is available on each node and aim to embed both net-
work structure and node content into a low dimensional s-
pace. These algorithms include TADW [Yang et al., 2015],
TriDNR [Pan et al., 20161, DANE [Li et al., 2017], MGAE
[Wang er al., 2017], GraphSAGE [Hamilton et al., 2017], and
the graph convolutional network (GCN) [Kipf and Welling,
2016], to name a few.

Unfortunately, all these works learn the continuous repre-
sentations, which impose serious challenges in the storage
and computation cost on large-scale datasets. To solve this
issue, this work aims to learn a discrete network embedding.

Binary Code Learning Binary coding technique, also
known as Hashing [Wang et al., 2018], has become a widely-
studied solution to approximate nearest neighbor search, due
to its great gains in storage and computation. The basic
idea of hashing [Wang er al., 2018; Weiss et al., 2009;
Gong et al., 2013; Shen et al., 2017b] is to map high-
dimensional data into a low-dimensional discrete code space
called Hamming space, while preserving similarity structure
in the original space. Accordingly, each data point is repre-
sented by a short binary code called hash code consisting of
a sequence of bits.

Existing hashing methods [Wang et al., 2018] learn bina-
ry code from images, texts, videos and retrieval tasks. This
work first investigates the binary coding technique in network
embedding.

3 Notation and Background

We use bold uppercase, lowercase letters, and italic letters to
denote matrices, vectors, and scalars, respectively. For any
matrix A, A;; denotes the (i, j)-element of A, and Tr(A)
is the trace of A if A is square, AT denotes the transposed
matrix of A. Let I, represent the identity matrix in R™*™,
We denote || - || as the Frobenius norm, and sgn(:) : R —
{+1, —1} as the round-off function.

Let G = (V,E) be a network with n interconnected n-
odes and e edges. It can be also represented by the adja-
cency matrix A € R"*", where A;; represents the link in-
formation from node ¢ and node j, and it is defined as O if
there is no edge. The goal is to learn representations of n-
odes U € R"*™ where m (m < n) is the dimension of the
representation.

Matrix Factorization is a powerful method for network em-
bedding. [Yang et al., 2015; Qiu et al., 2018] reveal that the

Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)

state-of-the-art DeepWalk is equivalent to matrix factoriza-
tion. It seeks a basis matrix V- € R™*™ and a representation
matrix U € R™*"™ to well approximate the similarity matrix
S. This gives the following objective function

. . T2
min S - VU |5 (1

U is viewed as the real-valued representation of nodes, and
can be used in many tasks, e.g., node clustering, classifica-
tion.

In this work, we consider the problem of classifying net-
work nodes into several categories. There are two main draw-
backs of existing network embedding techniques in this set-
ting: 1) The storage cost of the real-valued embedding ma-
trix U is expensive. In addition, the computation complexity
of classification is prohibitive when the network is large. 2)
The learned embedding is not optimal for classification. The
learning model, i.e., (1) does not optimize the classification
loss, and thus the learned embedding is not discriminative.
The following section presents a discrete network embedding
to overcome the limitations of existing approaches.

4 Discrete Network Embedding

In this section, we present a discrete network embedding
(DNE) which enforces the embedding as binary codes. The
proposed model considers both the embedding learning and
classification design within a unified framework.

4.1 Formulation

Discrete Matrix Factorization Existing research shows
that the state-of-the-art DeepWalk is equivalent to matrix fac-
torization on the similarity matrix S. The (3, j)-element of S
is defined as

[ei(A+A%+. -+ AY)]
t

where e; is an indicator vector, where the i-th element is 1,
and the others are 0, A? is the multiplication of A by ¢ times.
Following [Tu ef al., 2016], we set S = A+TA2.

We are interested in imposing the binary constrain-
t on the network embedding, i.e., B = [by,...,b,] €
{+1,—1}m*". Specifically, the Hamming similarity be-
tween b; and b is defined as

Si; =] ()

m

1
sim(i, j) = — > 1 (bir = bjx) 3)
k=1
1 m m
= 5 (Z U(bik =bj) +m— Y L(b # bjk))
k=1 h=1

1 i 1 1
= — birbjr | = =+ =—b, b;
2m<m+; ’”’“) 5 T oy i P

where 1(-) denotes the indicator function that returns 1 if the
element is true and 0 otherwise. Specifically, sim(é, j) = 0 if
all the bits between b; and b; are different and sim(z, j) = 1
if all the bits are the same.

3551

We use the inner product of binary network embedding to
well reconstruct the similarity matrix S. This leads to the
following discrete matrix factorization objective function:

min S - BB} 4)

st. Be{+1,-1}"*" BB' =nI,,,B1=0

where we enforce two additional constraints on B: the bit un-
correlated constraint remove the redundancy among the bits;
the bit balanced constraint splits the dataset as balanced as
possible in each bit.

Discrete Multi-class Classifier We focus the multi-class
classification problem in this work, while the setting can be
easily extended to multi-label classification. In addition, the
labels of a subset of nodes, i.e., 7 = {(by,c1), -+, (b,)}
are given for training the classifier. We assume that the
classifier is linear and parameterized with the weight matrix
W = [wy, - ,w¢], where C is the number of the classes.
For any embedding b, it is classified according to the maxi-
mum of the score vector

W'b=[w/b,...,wlb)

Particularly, we further impose the binary constraint on
weight matrix, i.e., w. € {+1,—1}™ (¢ = 1,...,C). The
binary constraint reduces the classification model size [Shen
et al., 2017al. In addition, due to the binary nature of b and
W, the inner product w b can be efficiently computed. The
classification efficiency can be greatly improved. Moreover,
we propose a simple yet effective loss function for multi-class
classification. Let b; be the embedding of the ¢-th node, and
belong to class c;. Ideally, we expect the large inner prod-
uct on w,,, and small inner products on w., ¢ # ¢;, such
that the classification error can be minimized. Formally, the
multi-class classification loss function can be defined as

l C
min >3 (wlbi—w/lby) (6)

i=1 c=1

}T

st We {+1,-1}mx¢

Note that we use the simplest linear loss in this work, and
other losses, such as square loss, hingle loss, and exponential
loss can be also explored in our proposed framework.

Joint Learning Framework We have introduced the dis-
crete network embedding and classification models. Next, we
propose to learn a classification-oriented network embedding,
such that the learned embedding is optimal for the classifica-
tion task. To this end, we propose to jointly learn the em-
bedding and classification within a unified framework, which
leads to the following objective function

I C
L B2 T T
min - [S-B BIIFHZ;;(WC bi —w/b;) (7)
st. Be{+1,-1}"*" BB =nl,,,B1 =0,
and W € {41, -1}"*x¢

where A\ is a nonnegative parameter to balance embedding
and classifier learning. In the next section, we propose a com-
putationally tractable optimization algorithm to solve (7).

Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)

4.2 Optimization

In essence, (7) is a nonlinear mixed-integer optimization
problem involving the discrete constraint on B, W and non-
convex orthogonal constraint on B, which is generally NP-
hard problem. We propose a tractable alternating algorithm
to iteratively optimize each variable. The flowchart of DNE
is described in Algorithm 1.

Embedding Learning Given W, we solve the sub-problem
with respect to B. We first rewritten (6) into a compact matrix
form, i.e., Tr(W°T B), where the i-th column of matrix W°
with size m x n is defined as w = chzl w, — Cwy,. Due
to the fact that BB = nl,,, the sub-problem with respect to
B can be rewritten as

. 1 o
min - — iTr (BSBT) + ATr (W TB))

S.t. B S {+1, _1}’m><n s BBT = ?’lIm, B1 = 0

We further transform the uncorrelated and balanced con-
straints into two regularization terms. With the fact | BB —

nL,||% = || BB'||% + const, we have

min ,C(B):—%Tr(BSBT)+ATr(W°TB) ©)

0 P
+LIBBT|E + £B1)3
st. Be{+1,-1}"*"

where 1 and p are two nonnegative regularization parameter-
s. (9) is challenging due to the discrete constraint, and has no
closed-form solution. Inspired by the recent advance in non-
convex optimization, we propose to optimize (9) with proxi-
mal gradient method. The main idea is to iteratively optimize
a surrogate function. In specific, we iteratively optimize a
local function £;(B) that linearizes £(B) at the point B,
and employ £;(B) as a surrogate of £(B). Given B, the
next discrete point B(+1) can be derived by optimizing the
following objective function
min £;(B) = £L(BY) +

(VL(BW), B —-BW)

T .
+ 5B -BY|% (10)

st. Be{-1,1}m"
where 7 > 0 is a constant, VL(B()) = —B®S 4+ \W° +

pBOBOTB® 4 pB(®117. Then the updating rule for
B(+1) can be defined as

B(+D = sgn (C(TB() _vL(BY), B@)) 11
z,x#0
y,x =0
in an element-wise manner in (11) to eliminate the zero en-
tries.

Note that the function C (x,y) = { , C is applied

Classifier Learning Given B, we solve the sub-problem
with respect to W, i.e., (6). We iteratively optimize the pro-

Algorithm 1 Discrete Network Embedding
Input: Network: G(V, E), embedding dimensionality: m,
the label of the training subset 7, parameter: \, i, p, iteration
number: T, Tout-
Output: embedding: B, classifier: W.
1: Initialize W and B randomly.
2: repeat
3: fori=1—T;, do > Embedding Learning
4 Update the embedding B via (11);
5 end for
6: forc=1— Cdo > Classifier Learning
7
8
9

Update the weight vector w via (13);
end for
: until converge or reach maximum iterations

jection weight of each class. The objective function with re-
spect to w, can be reduced to

Zb—(] Z b, (12)

i=1,ci=c
st. we € {+1,-1}"
Clearly, (12) has the optimal solution

mlIl W

l

=sgn | C Z b; —sz (13)

i=1,ci=c

4.3 Complexity Analysis

The computational complexity of training the proposed DNE
consists of the following two parts. For the embedding learn-
ing, calculating the gradient of B requires O(tm + m?n),
where ¢+ = nnZ(S), nnz denotes the number of non-zeros.
Updating B requires O(T}, (tvm + m?n)), where Tj, is the
number of iterations. For the classifier learning, updating W
requires O(ImC'). Suppose that the algorithm takes Ty, it-
erations to convergence. The overall complexity of DNE is
O (Tout(Tin (vm + m?n) + ImC)). In practice, Tj,, ¢, m,
and T,,,; are usually small, thus training DNE is fast. Given
a new binary embedding b, the classification reduces to re-
trieve its nearest neighbor from {w.}< ;. The search is very
fast via bit operations. The computational complexity of clas-
sification in DNE is faster than existing embedding methods,
which require O(mC).

In terms of space complexity, DNE needs to store the net-
work embedding B and the weight matrix W, which count
for the storage of O(mn) bits and O(mC) bits, respective-
ly. The existing network embedding methods, e.g., Deep-
Walk, need to store O(mn) and O(mC') real-valued number-
s. Therefore, DNE has lower space complexity than existing
network embedding methods.

S Experiments

In this section, we evaluate the proposed discrete network em-
bedding (DNE) on multi-class node classification tasks. Al-
1 the computations reported in this study are performed on
a Ubuntu 64-Bit Linux workstation with 24-core Intel Xeon
CPU ES5-2620 2.10 GHz and 128 GB memory.

3552

Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)

1 0.6
0.8
> >
306 g04
o 202
0.2
0 ——— 0
10% 30% 50% 70% 90% 10% 30%
Labeled Nodes

(a) DBLP

R g
w »

[
Il DeepWalk

Il DeepWalk
Il DWMF
CIUNE

Accuracy
o
N

o
o

[INode2Vec
I MMDW
HIDNE

0
50% 70% 90% 10% 30% 50% 70% 90%
Labeled Nodes
(b) YOUTUBE

Labeled Nodes
(c¢) FLICKR

Figure 2: Accuracy (%) of node classification on three datasets, (a) DBLP, (b) YOUTUBE, (c) FLICKR.

5.1 Datasets

We conduct experiments on three datasets, whose details are
as follows.

e DBLP!: is a citation network in computer science. Each
paper may cite or be cited by other papers, which nat-
urally forms a citation network. In this experiment, the
citation network is collected from 4 research areas, e.g.,
database, data mining, artificial intelligent and comput-
er vision. It consists of 60,744 papers (nodes), 52,890
edges in total, and each node is associated with its title
information.

e YOUTUBE?: is a social network of Youtube users. It
contains 1,157,827 nodes and 4,945,382 edges. The la-
bels represent groups of users who enjoy common video
genres.

e FLICKR?: is a social network of Flickr users. It con-
tains 80,513 users from a photo sharing website and
5,899,882 friendships between them. The labels repre-
sent the group membership of users. The network has
195 labels and a user may have multiple labels.

For constructing multi-class datasets, we remove the nodes
that have multiple labels in YOUTUBE and FLICKR dataset-
s. In addition, the isolated nodes are removed in the three
datasets.

5.2 Comparison Methods

To demonstrate the effectiveness of the proposed DNE,
we compare it with five state-of-the-art network embedding
methods. The details of these methods are given below.

e DeepWalk [Perozzi et al., 2014]: DeepWalk performs
random walks over networks and employs Skip-Gram
model to learn node embeddings.

e DWMF [Yang er al., 2015]: DeepWalk has been shown
to be equivalent to matrix factorization [Yang et al.,
2015; Qiu et al., 2018]. DWMEF is trained on the simi-
larity matrix (A + A?2)/2 to obtain node representation.

e LINE [Tang et al., 2015b]: LINE is the embed-
ding method for large-scale networks. We employ the
second-order proximity LINE (2nd-LINE) to learn rep-
resentations.

Uhttp://arnetminer.org/citation
*http://socialnetworks.mpi-sws.org/data-imc2007.html

3553

[Method | DBLP _YOUTUBE _FLICKR
— T DecpWalk | 4KB I7KB T95KB
Model Size | "H\yp 64B 752B 3KB
Time (ms) DeepWalk | 0.98 248 39.46
DNE 0.53 0.91 21.92

Table 2: Testing time (in milliseconds) and model size of classifica-
tion in DeepWalk and DNE on three datasets.

o Node2Vec [Grover and Leskovec, 2016]: Node2Vec is
a biased random walk algorithm based on DeepWalk to
efficiently explore neighborhood architecture.

e MMDW [Tu et al., 2016]: Max-Margin DeepWalk (M-
MDW) is a discriminative network embedding model
that obtains discrimination characteristic via the max-
margin classifier.

5.3 Experiment Setup

In this work, we set the dimension of network embedding as
128 for all the methods for fair comparison. For DeepWalk,
window size, walk length, and walks per node are set as 10,
40, 40, respectively. For LINE, the number of negative sam-
ples is set to 5. For Node2Vec, window size, walk length and
walks per node are set the same with DeepWalk, and return
parameter p and in-out parameter ¢ are set as 1 and 2, respec-
tively. For the proposed DNE, p and p are set as 0.01, 0.01,
and 0.5, respectively; 7 and A are selected from the range of
[1,10] and [0, 1] by cross validation respectively.

For node classification, the representations for the nodes
are first obtained from the network embedding methods and
then used as features to train a classifier. We randomly sam-
ple a portion of the labeled nodes for training classifier and
the rest nodes are used for testing. The training ratio increas-
es from 10% to 90% for the three datasets. For DeepWalk, D-
WMEF, LINE, and Node2Vec, the multi-class SVM by Cram-
mer and Singer [Crammer and Singer, 2001] is employed as
the classifier, which is implemented by LIBLINEAR pack-
age [Fan er al., 2008]. For MMDW and DNE, the classifiers
are learned on labeled nodes only and they are jointly learned
with network embedding.

5.4 Results

Accuracy Figure 2 shows the accuracy results of all the
methods on three datasets. We find some interesting points:

Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)

Dataset DeepWalk DWMF LINE Node2Vec MMDW DNE
Time(s) Speedup | Time(s) Speedup | Time(s) Speedup | Time(s) Speedup | Time(s) Speedup | Time(s)
DBLP 646 46 % 256 18 170 12x 428 30x 1624 116 % 14
YOUTUBE 416 52% 149 19x 151 19x 356 45x% 693 86 8
FLICKR | 3689 24x 4473 29x 3776 24 x 9027 58x 12780 83 x 154

Table 1: Training time (in seconds) of network embedding methods on three datasets, including the time of embedding and classifier learning.
‘Speedup’ indicates the speedup (x) of DNE over baselines.

DeepWalk DNE

Dataset Mem. Red. Mem.
DBLP | 17.30MB 64x | 276.81KB
YOUTUBE | 11.34MB 64x | 181.39KB
FLICKR | 60.40MB 64x | 966.42KB

—©—DBLP

Table 3: Memory usage of network embedding in DeepWalk and
DNE on three datasets. ‘Mem.” denotes memory usage. ‘Red.’ de-
notes memory reduction (x) of DNE over DeepWalk.

e As training ratio increases, the accuracies of all the
methods generally rise.

e Among the comparisons, MMDW has the best perfor-
mance due to its discrimination, but it is slower than
other methods. DWMEF outperforms DeepWalk on Y-
OUTUBE, and DeepWalk outperforms DWMF on D-
BLP and FLICKR.

e The proposed DNE generally has comparable accuracy
with the comparison methods. DNE is better than most
unsupervised embedding methods in some cases of large
training ratios. It reveals that the discrete embedding ob-
tains high discrimination as DNE jointly learns the em-
bedding and classifier.

Time Table 1 shows the training time of all the methods
on three datasets. It includes the time of learning embed-
ding and classifier. As can seen from this table, the proposed
DNE is the fastest method among all the baselines. For ex-
ample, DNE is 46 and 116 times faster than DeepWalk and
MMDW, respectively. LINE takes the second place, which
is followed by DWMF, DeepWalk, and Node2Vec. MMDW
is the slowest among all the methods. The results verify our
computational analysis.

In addition, we evaluate the classification efficiency. The
time of classification for the comparison methods are quite
close, thus we only compare DeepWalk and DNE. Table 2 re-
ports the time of classification for DeepWalk and DNE. As
can be seen, DNE is clearly faster than DeepWalk for around
2 times among all the cases, which also verifies our complex-
ity analysis and motivation. DNE uses a discrete classifier
via binary code. The classification is calculated in the Ham-
ming metric, which is more efficient than the conventional
Euclidean calculation in DeepWalk.

Memory Usage Table 3 reports the memory usage of Deep-
Walk and DNE for the storage of network embedding. We
clearly observe that compared with DeepWalk, DNE signifi-
cantly reduces the memory storage of embedding for 64 times
within the same dimension. DNE only needs to store less
than 1M of binary codes to represent the three datasets, even

3554

—o— YOUTUBE
—&—FLICKR

Accuracy

Figure 3: Accuracy of node classification with respect to different A
on three datasets.

for the large-scale FLICKR dataset. In addition, the model
sizes of classifiers in DeepWalk and DNE are shown in Ta-
ble 2. Due to the discrete representation of classifier, we see
that the model sizes of DNE are much smaller than those of
DeepWalk. These results imply that DNE can work well in
some extreme scenarios, e.g., resource-scarce devices.

Parameter Analysis We study the sensitivity of the key pa-
rameter, i.e., A, in our proposed DNE. The training ratio is
fixed as 0.5, and A is ranged between [0, 1] with a step of
0.1, and classification accuracy with respect to different A is
shown in Figure 3. From Figure 3, we observe that the clas-
sification accuracy improves as A increases from 0, and re-
mains stable after A reaches to around 0.2. It shows that the
good performance can be achieved from the wide range be-
tween [0.2, 1]. The parameter analysis reveals that the joint
learning of classifier indeed enhances the discrimination of
the discrete embedding.

6 Conclusion

This work focuses on the challenging problem of seeking
compact representation for network embedding. We propose
a novel discrete network embedding (DNE) that leverages
short binary codes to represent each node. A discrete multi-
class classifier is jointly learned to improve the discrimina-
tion of embedding. Compared to existing network embed-
ding methods, DNE enjoys both computational and memo-
ry efficiency. Extensive experiments on node classification
demonstrate DNE exhibits lower storage and computational
complexity than state-of-the-art network embedding method-
s, while achieving satisfactory accuracy.

Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)

Acknowledgments

This research is supported by the National Science Founda-
tion of China (Grant No. 61673220), and partially supported
under the Data Science and Artificial Intelligence Center (D-
SAIR) at the Nanyang Technological University.

References

[Cao et al., 2016] Shaosheng Cao, Wei Lu, and Qiongkai X-
u. Deep neural networks for learning graph representation-
s. In AAAI pages 1145-1152, 2016.

[Crammer and Singer, 2001] Koby Crammer and Yoram
Singer. On the algorithmic implementation of multiclass
kernel-based vector machines. JMLR, 2:265-292, 2001.

[Dai et al., 2017] Quanyu Dai, Qiang Li, Jian Tang, and Dan
Wang. Adversarial network embedding. arXiv preprint
arXiv:1711.07838, 2017.

[Fan et al., 2008] Rong-En Fan, Kai-Wei Chang, Cho-Jui H-
sieh, Xiang-Rui Wang, and Chih-Jen Lin. LIBLINEAR: A
library for large linear classification. JMLR, 9:1871-1874,
2008.

[Gong et al., 2013] Yunchao Gong, Svetlana Lazebnik, Al-
bert Gordo, and Florent Perronnin. Iterative quantization:
A procrustean approach to learning binary codes for large-
scale image retrieval. TPAMI, 35(12):2916-2929, 2013.

[Grover and Leskovec, 2016] Aditya Grover and Jure
Leskovec. node2vec: Scalable feature learning for
networks. In KDD, pages 855-864, 2016.

[Hamilton et al., 2017] Will Hamilton, Zhitao Ying, and Ju-
re Leskovec. Inductive representation learning on large
graphs. In NIPS, pages 1025-1035, 2017.

[Kipf and Welling, 2016] Thomas N Kipf and Max Welling.
Semi-supervised classification with graph convolutional
networks. arXiv preprint arXiv:1609.02907, 2016.

[Li et al., 2017] Jundong Li, Harsh Dani, Xia Hu, Jiliang
Tang, Yi Chang, and Huan Liu. Attributed network em-
bedding for learning in a dynamic environment. In CIKM,
pages 387-396, 2017.

[Pan et al., 2016] Shirui Pan, Jia Wu, Xingquan Zhu,
Chengqi Zhang, and Yang Wang. Tridnr: Tri-party deep
network representation. In IJCAI, pages 1895-1901, 2016.

[Perozzi et al., 2014] Bryan Perozzi, Rami Al-Rfou, and
Steven Skiena. Deepwalk: online learning of social rep-
resentations. In KDD, pages 701-710, 2014.

[Qiu er al., 2018] Jiezhong Qiu, Yuxiao Dong, Hao Ma, Jian
Li, Kuansan Wang, and Jie Tang. Network embedding as
matrix factorization: Unifying deepwalk, line, pte, and n-
ode2vec. In WSDM, pages 459-467, 2018.

[Shen et al., 2017a]l Fumin Shen, Yadong Mu, Yang Yang,
Wei Liu, Li Liu, Jingkuan Song, and Heng Tao Shen. Clas-
sification by retrieval: Binarizing data and classifiers. In
SIGIR, pages 595-604, 2017.

[Shen et al., 2017b] Xiaobo Shen, Weiwei Liu, Ivor W. T-
sang, Fumin Shen, and Quan-Sen Sun. Compressed k-

means for large-scale clustering. In AAAI, pages 2527—
2533, 2017.

3555

[Tang and Liu, 2009] Lei Tang and Huan Liu. Relational
learning via latent social dimensions. In KDD, pages 817—
826, 20009.

[Tang et al., 2015a] Jian Tang, Meng Qu, and Qiaozhu Mei.
Pte: Predictive text embedding through large-scale hetero-
geneous text networks. In KDD, pages 1165-1174, 2015.

[Tang et al., 2015b] Jian Tang, Meng Qu, Mingzhe Wang,
Ming Zhang, Jun Yan, and Qiaozhu Mei. LINE: large-
scale information network embedding. In WWW, pages
1067-1077, 2015.

[Tian e al., 2014] Fei Tian, Bin Gao, Qing Cui, Enhong
Chen, and Tie-Yan Liu. Learning deep representations for
graph clustering. In AAAI, pages 1293-1299, 2014.

[Tu er al., 2016] Cunchao Tu, Weicheng Zhang, Zhiyuan Li-
u, and Maosong Sun. Max-margin deepwalk: Discrimina-
tive learning of network representation. In IJCAI, pages
3889-3895, 2016.

[Wang et al., 2016] Daixin Wang, Peng Cui, and Wenwu
Zhu. Structural deep network embedding. In KDD, pages
1225-1234, 2016.

[Wang et al., 2017] Chun Wang, Shirui Pan, Guodong Long,
Xingquan Zhu, and Jing Jiang. MGAE: marginalized
graph autoencoder for graph clustering. In CIKM, pages
889-898, 2017.

[Wang er al., 2018] Jingdong Wang, Ting Zhang, Jingkuan
Song, Nicu Sebe, and Heng Tao Shen. A survey on learn-
ing to hash. TPAMI, 40(4):769-790, 2018.

[Weiss et al., 2009] Yair Weiss, Antonio Torralba, and Rob
Fergus. Spectral hashing. In NIPS, pages 1753-1760,
20009.

[Yang er al., 2015] Cheng Yang, Zhiyuan Liu, Deli Zhao,
Maosong Sun, and Edward Y. Chang. Network represen-
tation learning with rich text information. In IJCAI, pages
2111-2117, 2015.

[Zhang ef al., 2017] Chuxu Zhang, Lu Yu, Yan Wang, Chi-
rag Shah, and Xiangliang Zhang. Collaborative user net-
work embedding for social recommender systems. In SD-
M, pages 381-389, 2017.

[Zhou et al., 2017] Chang Zhou, Yugiong Liu, Xiaofei Liu,
Zhongyi Liu, and Jun Gao. Scalable graph embedding for
asymmetric proximity. In AAAIL, pages 2942-2948, 2017.

