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Abstract
Recent advances in video surveillance systems en-
able a new paradigm for intelligent urban traffic
management systems. Since surveillance cameras
are usually sparsely located to cover key regions of
the road under surveillance, it is a big challenge to
perform a complete real-time traffic pattern anal-
ysis based on incomplete sparse surveillance in-
formation. As a result, existing works mostly fo-
cus on predicting traffic volumes with historical
records available at a particular location and may
not provide a complete picture of real-time traffic
patterns. To this end, in this paper, we go beyond
existing works and tackle the challenges of traf-
fic flow analysis from three perspectives. First, we
train the transition probabilities to capture vehicles’
movement patterns. The transition probabilities are
trained from third-party vehicle GPS data, and thus
can work in the area even if there is no camera.
Second, we exploit the Multivariate Normal Dis-
tribution model together with the transferred prob-
abilities to estimate the unobserved traffic patterns.
Third, we propose an algorithm for real-time traffic
inference with surveillance as a complement source
of information. Finally, experiments on real-world
data show the effectiveness of our approach.

1 Introduction
The proliferation of urban video surveillance systems gives
prominence to advanced traffic services, from personalized
route optimization to macrolevel traffic administration. Such
surveillance data applications include urban vehicle driving
optimization [Gonzalez et al., 2007; Schmitt and Jula, 2006;
Leduc, 2008], road network traffic flow analysis [Bas et
al., 2007; Liu et al., 2013; Suzuki and Nakamura, 2006],
and intelligent transportation realization [Zhang et al., 2011;
Wang, 2010; Lu et al., 2009].

Most traffic analysis with such surveillance systems as-
sumes a dense camera distributions and so as a full coverage
of road network traffic surveillance. However, the sparsity of
camera distribution can hardly be avoided in real scenarios,
due to the high deployment overheads and the dynamic na-
ture of urban road networks. On the other hand, there is an

increasing need for utilizing such camera surveillance data
for traffic inference, especially for most small and medium-
sized cities of China, where floating vehicles are not well em-
ployed and therefore the solutions with historical trajectory
collections are not applicable. For instance, in Suzhou, a lead-
ing city in deploying urban traffic monitoring systems, there
are 107 intersections in the industrial park while only 41.1%
intersections are equipped with traffic surveillance systems.

There also exist extensive studies on forecasting traffic
conditions with time series analysis. However, such seeming-
ly related techniques fall short in making predictions with
the incomplete information caused by the partial coverage
of traffic surveillance. We can summarize existing works of
this field into two categories, neural network based methods
[Yasdi, 1999; Dia, 2001] and spatial topology based method-
s [De Fabritiis et al., 2008; Min and Wynter, 2011].

Neural network based methods predict a road segment’s
traffic flow by matching the real time information with his-
torical patterns. In particular, Yasdi et al. [Yasdi, 1999] utilize
Jordan architecture based neural networks and Dia et al. [Dia,
2001] develop time-lag recurrent neural networks. Neverthe-
less, such predictions are done based on the long-term data
accumulation of the target road segment. Therefore, it is not
clear how to extend them to support road networks that are
only partially surveilled.

Spatial topology based methods mostly consider the cor-
relation between interconnected road segments. Particularly,
Fabritiis et al. [De Fabritiis et al., 2008] predict short-term (15
to 30 minutes) road travel speeds of the Italian motorway net-
work with historical and real-time floating-car-collected traf-
fic speed information, and Min et al. [Min and Wynter, 2011]
define a time lag function to describe the spatiotemporal cor-
relations of a road segment and its counterparts in the neigh-
borhood. Without exception, these spatial topology methods
cannot abstract the correlations between road segments which
are not surveilled either.

In summary, previous works on traffic volume prediction
take the completeness of the road network surveillance as
an essential ingredient. It is not clear how prediction can be
made if the some parts of the surveillance is missing. In this
work, we tackle the challenge in three folds. First, we mod-
el the traffic volume of the entire road network with trans-
ferred transition probabilities from a third-party GPS dataset.
Second, we use a model that takes transition probabilities as
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Figure 1: Examples (I. Surveillance Camera Distribution; II. Before-
/After Camera Data Processing of Vehicles)

inputs to make the incomplete surveillance space approxi-
mately complemented. The model follows multivariate nor-
mal distributions, which are considered as a general stochas-
tic method for capturing travel behaviours on road network-
s [Lam and Xu, 1999]. Also, with extensive data analysis,
we observe that the transferred probabilities rest with time
varying traffic contexts, e.g., workdays and weekends, rush
and non-rush hours. It means that the utilization of the prob-
abilities has to contend with specific spatiotemporal contexts.
Third, we propose a novel approach to accurately infer the
real-time traffic volume with only partially camera-equipped
road networks. The results are cross-validated with real data.

Our work is based on a real project, SkyEye, in collab-
oration with Suzhou Traffic Police Department. To our best
knowledge, this is the first work on inferring real-time traf-
fic volumes with sparse road video cameras. The distribution
of traffic surveillance cameras and exemplified surveillance
information is shown in Figure 1. The GPS data is collected
from 4,303 taxicabs of a year, i.e., from May, 2015 to June,
2016. We also collected all the video surveillance information
with 44 camera-equipped road intersections of two-month,
including the April and May of 2016. Experiments show that
our proposal can improve the estimation accuracy by up to
30%.

The rest of this paper is organized as follows. Section II in-
troduces preliminaries and formalizes the problem. Section I-
II investigates our technical proposals including the inference
algorithm. Section IV presents empirical studies and Section
V concludes the paper.

2 Problem Definition
In this section, we formally define basic concepts as well as
the problem studied in the work.

Definition 1 (Road Network.) A road network can be mod-
eled as a directed graph G(V, E), where the vertex set V de-
notes all the road intersections and the edge set E refers to
all road segments. Given two road intersections vi, vj ∈ V ,
eij ∈ E is the road segment between vi and vj .

In SkyEye, traffic surveillance is implemented by cameras
that equipped on the road intersections. The captured image
and videos are then analyzed and parsed, as shown in Figure
1. Accordingly, the traffic volume statistics can be obtained.
The intersections can thus be classified into two sets, camera-
equipped intersections Vc and camera-free intersections Vc,
satisfying Vc ∪ Vc = V and Vc ∩ Vc = ∅.

Definition 2 (Intersection Traffic Volume.) Regarding in-
tersection vj , its traffic volume information in a specific time
interval ∆t can be formulated by Vj(∆t), meaning the traffic
volume of the intersection vj during ∆t is Vj vehicles per
time unit.

Definition 3 (Trajectories.) Considering a moving objec-
t o, e.g., a taxicab, the trajectory of o within a giv-
en time interval ∆t can be formulated by To(∆t) =
{v1(t1), v2(t2), · · · , vk(tk)}ti∈∆t, which means object o s-
tarts its journey at intersection v1 of time t1 and ends at in-
tersection vk of time tk. Here, vi(ti) refers to the snapshot of
time ti that trajectory To moving across intersection vi.

Notice that trajectories and traffic flows vary with different
settings of time intervals ∆t. We define trajectories and traffic
volume in accordance with the time-varying urban traffic fea-
tures, because it is commonly accepted that the traffic flows
change regularly over time in practice [Wang et al., 2014;
2016; Zheng et al., 2010; Yuan et al., 2013; 2012] 1.

Definition 4 (Inference with Incomplete Surveillance.)
Given road network G(V, E) and intersections under surveil-
lance Vc, for any given time interval ∆t, our purpose is
to design a method such that the traffic volume Vi(∆t) of
intersection (vi ∈ Vc) without surveillance can be estimated.

The quality of the estimation or inference is measured by
Equation (1). Here, V̂i denotes the estimated value of traffic
volume by our method. For a camera-equipped intersection,
the accuracy is equal to 100%. For a camera-free case, the
accuracy measure the ratio of the real value to the estimat-
ed value and is normalized to 1 by setting the dominator as
summation of real value and the estimation error.

Inference Accuracy =
Vi(∆t)

Vi(∆t) + |V̂i(∆t)− Vi(∆t)|
(1)

3 Real-time Traffic Volume Inferring
Algorithm

In this section, we propose the solution framework for the
traffic analysis and inference problem. Figure 2 illustrates
the architecture of our solution which consists of three major
components: 1) training transition probabilities from third-
party datasets; 2) unobserved traffic pattern completion with
model-based approximations; 3) read-time traffic inference
algorithms. We detail each step in the following subsections.

3.1 Time-varying Traffic Influence Models
Between Neighboring Intersections

Now we model the transition probability between road inter-
sections. Suppose intersection vi is a m-way road intersec-
tions. To find the probability distribution of an incoming ve-
hicle of vi to other m− 1 directions within a specific period,

1The setting of ∆t should balance the tradeoff between the accu-
racies and temporal granularity. In our implementation, we slice the
temporal information into slots of 30 minutes following the common
settings. Notice that such a setting may be related to the results of
inference accuracy but is orthogonal to the generalities of our pro-
posals
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Figure 2: Algorithm overview

e.g., ∆t, helps to infer the traffic patterns of vi’s neighboring
intersections.

Let vi and vj be two adjacent intersections. The transition
probability from vi to vj , denoted as p∆t(vi, vj), represents
the probability of a vehicle moving from intersection vi to
vj within time interval ∆t, and thus enables quantifying the
traffic volume of vj , given that all vj’s neighboring intersec-
tions are known. In our implementation, we adopt an order-1
Markov transition probability matrix, B∆t, for summarizing
transition probabilities of all pairs of road intersections in the
urban road network, as shown in Equation (2).

B∆t =

p∆t(v1, v1) · · · p∆t(v1, vk) · · · p∆t(v1, v|V|)

.

.

.
. . .

.

.

. . . . .
.
.

p∆t(vj , v1) · · · p∆t(vj , vk) · · · p∆t(vj , v|V|)

.

.

. . . . .
.
.

. . .
.
.
.

p∆t(v|V|, v1) · · · p∆t(v|V|, vk) · · · p∆t(v|V|, v|V|)


(2)

We assume an acyclic road network such that the transi-
tion probability from an intersection to itself equals 0, i.e.,
p∆t(vj , vj) = 0. Also, for two intersection vj and vk, if they
are not adjacent, the corresponding transition probabilities e-
qual to 0, i.e., p∆t(vj , vk) = p∆t(vk, vj) = 0. According to
our analysis, the traffic patterns in weekdays and weekends
are significantly different. So, the traffic influence is modeled
for them separately.

The transition probabilities are trained with third-party G-
PS datasets in our implementation. With transition probabil-
ities, the mutual influence between road intersections are es-
tablished. In the sequel, we study how the trained probabili-
ties are further used for estimating unobserved intersections.

3.2 Traffic Volume Analysis of Entire Road
Network

As concluded in [Lam and Xu, 1999], the traffic volume of
road networks follows a MND (Multivariate Normal Distribu-
tion). Recall that earlier, we introduce the time-varying prop-
erties of traffic volumes. So, we assume, for ∆t and vj , the

traffic volume is V̂j(∆t), j = 1 · · · |V|, where Vj can be cal-
culated by:

V̂j(∆t) =

 µvj (∆t) + εvj (∆t)+∑
vk∈N (vj)

p∆t(vk, vj) ∗ Vk(∆t)

 (3)

where εvj
(∆t) ∼ N(0, (σ∆t

vj
)2), and N (vj) is the neighbor

intersection set of intersection vj .
For the entire road network and ∆t, we use a vector TV

to denote the traffic volumes of all intersections. After substi-
tuting elements with Equation (3), we have:

TV(∆t) = M(∆t) + B∆t ∗TV(∆t) + E(∆t) (4)
where M(∆t) = [µv1

(∆t), µv2
(∆t), · · · , µv|V|(∆t)]

T , and
E(∆t) = [εv1(∆t), εv2(∆t), · · · , εv|V|(∆t)]

T . Based on the
definition of MND, we can have:

TV(∆t) ∼ N


(1−B∆t)

−1
M(∆t),(

(1−B∆t)
−1∗

Υ(∆t)((1−B∆t)
T

)
−1

)
 (5)

where Υ(∆t) is the diagonal matrix with elements of
(σ∆t

vj
)2’s:

Υ(∆t) =


(σ∆t

v1
)
2

0 · · · 0

0 (σ∆t
v2

)
2 · · · 0

...
...

. . .
...

0 0 · · · (σ∆t
v|V|

)
2

 (6)

Note that we have already calculated the matrix B∆t in
the last subsection. So far, we have derived the equation of
TV (∆t) whose input parameters can be calculated by Equa-
tions (2) and (6).

As we have analyzed, the road intersections can be with or
without camera surveillance. Let the number of intersections
with camera be K. We use a K × |V| indicator matrix P to
indicate the existence of camera surveillance. The equation of
P is as follows.

P =


a11 a12 · · · a1|V|
a21 a22 · · · a2|V|

...
...

...
...

aK1 aK2 · · · aK|V|

 (7)

If an intersection vj is camera-equipped, the element ajj is
set to 1. In total, K columns are set to 1 because there are K
intersections are camera-equipped. Defining as such, we can
denote the observed traffic volume as below.

TVOBS (∆t) = P×TV(∆t)

∼ N


P(1−B∆t)

−1M(∆t),(
P(1−B∆t)

−1∗
Υ(∆t)((1−B∆t)

T )
−1

PT

)

(8)

Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)

3573



The purpose here is to estimate the unknown parameters
µvi(∆t) and (σ∆t

vi
)2. To do that, we utilize maximum likeli-

hood estimation:

L(TV OBS (∆t)) ∝

∣∣∣∣ P(1−B∆t)
−1∗

Υ(∆t)((1−B∆t)
T )
−1

PT

∣∣∣∣−
1
2

∗

exp


− 1

2
(TVOBS (∆t)−P(1−BTP )−1M(∆t))

T ∗(
P(1−B∆t)

−1∗
Υ(∆t)((1−B∆t)

T )
−1

PT

)−1

∗(TVOBS (∆t)−P(1−B∆t)
−1M(∆t))


(9)

Very likely, we cannot estimate all unknown µvi
(∆t) and

(σ∆t
vi

)2 since the number of unknown parameters is more than
the number of observations. Therefore, we group the intersec-
tions in nearby regions and make those camera-free intersec-
tions have the same µvi(∆t) and (σ∆t

vi
)2 value to the nearest

camera-equipped intersections to them. By solving the max-
imum likelihood in Equation (9), we can have the estimation
results M̂(∆t) and Υ̂(∆t).

3.3 Inferring Real-time Traffic Volumes of
Camera-free Intersections

We have shown how unknown parameters can be estimated
and how the MND for the road network traffic volume can be
modeled. Now, we describe the mechanism which can infer
real-time traffic volumes of camera-free intersections with the
approximated MND. We first show how to use the calculated
TV (∆t) to infer the real-time traffic volumes of camera-free
intersections. For simplicity, we formally define r and Γ:

r(∆t) = (1−B∆t)
−1

M̂(∆t)

Γ(∆t) = (1−B∆t)
−1

Υ̂(∆t)((1−B∆t)
T

)
−1

)

(10)

then we have TV(∆t) ∼ N(r(∆t),Γ(∆t)). After generat-
ing the MND, we can proceed to calculate the real-time traffic
volumes of intersections without fixed video cameras by com-
puting conditional expectation of MND. We first re-arrange
the matrix TV(∆t) as:

TVRE (∆t) =

[
TVMISSING(∆t)

TVOBS (∆t)

]
(11)

where there are |V| −K and K elements in
TVMISSING(∆t) and TVOBS (∆t) respectively, and
the goal is to compute E[TVMISSING(∆t) |TVOBS (∆t) ].
According to the re-arranged matrix TVRE (∆t), we
also re-arrange matrix M(∆t) and Υ(∆t) as MRE (∆t)
and ΥRE (∆t) respectively, then partition rRE (∆t) and
ΓRE (∆t) as:

rRE(∆t) =

[
r1(∆t)

r2(∆t)

]
(12)

ΓRE(∆t) =

[
Γ11(∆t) Γ12(∆t)

Γ21(∆t) Γ22(∆t)

]
(13)

where there are |V| −K and K elements in r1(∆t) and
r2(∆t), and Γ11(∆t), Γ12(∆t), Γ21(∆t) and Γ22(∆t) are
(|V| −K) ∗ (|V| −K), (|V| −K) ∗K, K ∗ (|V| −K) and
K ∗ K sub-matrices respectively. Based on the definition of
conditional expectation of MND, we have:

E[TVMISSING(∆t) |TVOBS (∆t) ]

= r1(∆t) +

 Γ12(∆t) ∗ (Γ22(∆t))
−1∗

(TVOBS (∆t)− r2(∆t))


(14)

3.4 TISV Algorithm
Now, we present the solution that consists of two parts.

The first part is to extract the time-varying traffic influence
models between neighboring intersections and to extract the
holistic time-varying traffic patterns of the entire road net-
work. The travel patterns are obtained by mining the histor-
ical trajectory dataset of taxicabs and by mining the dataset
of fixed road surveillance cameras. This part only needs to be
executed once and the results can be used to infer the traffic
volumes of urban camera-free intersections in real-time in the
second part. Note that the first part should be executed for all
time slots of a day.

Algorithm 1 The TISV Algorithm
1: procedure TRAFFICVOLUMEINFERRING(∆t)

Initialization: Real-time observed traffic volume dataset Θ of
camera-equipped intersection set Ψ

2: TVOBS (∆t)← Θ
3: rRE (∆t)← rearrange r(∆t) with Ψ
4: ΓRE (∆t)← rearrange Γ(∆t) with Ψ
5: K ← |Ψ|

6:
(

r1(∆t)
r2(∆t)

)
← Divide rRE (∆t) with K

7:
(

Γ11(∆t) Γ12(∆t)
Γ21(∆t) Γ22(∆t)

)
← Divide ΓRE (∆t)

with K

8: a← (Γ22(∆t))−1

9: b← TVOBS (∆t)− r2(∆t)
10: TVMISSING(∆t)← r1(∆t) + Γ12(∆t) ∗ a ∗ b
11: for i = 1 to |V| −K do
12: Return V̂j(∆t)
13: end for
14: end procedure

The second part is the Traffic Volume Inferring with S-
parse Video Surveillance Cameras algorithm (TISV in short),
which is triggered if the real-time traffic volume information
is to be inferred. In particular, to infer the traffic volumes
of camera-free intersections, we first obtain the traffic vol-
ume information of all camera-equipped intersections, then
re-arrange and re-calculate the corresponding sub-matrices of
the MND on-the-fly. Finally, the expected traffic volume val-
ues for all camera-free intersections can be calculated. The
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pseudo code of the TISV algorithm is given in Algorithm 1.
The parameters in Algorithm 1 are as defined previously.

4 Experiments
We present the experimental setup in Section 4.1 and show
the results in Section 4.2.

4.1 Experimental Setup
Road Networks. Our experiment is carried out on the main

urban area of Suzhou Industrial Park covering 45.5 square k-
ilometers with a road network of 107 road intersections and
298 road segments. Among the 107 intersections, 44 are e-
quipped with fixed video surveillance systems.

Taxicab Systems. Historical records of 4,303 taxicabs are
collected for training transition probabilities. All taxicabs are
equipped with a GPS-based navigation system and 3G/4G
network and upload their ID, location, speed, direction, etc.
in every two minutes.

Verification. The inference performance is measured by
cross-validation. We randomly choose 35% camera-equipped
intersections as verifying intersections. Assuming the surveil-
lance results of the chosen intersections are missing, we can
infer them by the information of other camera-equipped inter-
sections and then compare with the ground truth. An example
region is shown in Figure 3, where camera-equipped intersec-
tions are marked by red dots, and the verifying intersections
are illustrated by blue dots. We use the dataset of taxicab-
s from May 1, 2015 to April 30, 2016 to train the transition
probabilities, then use the surveillance data of the same peri-
od to build the holistic traffic estimation models. We then ran-
domly select another 10 days, including both workdays and
weekends, to test the accuracy of inference of the real-time
traffic volumes for the verifying intersections. In all testing
cases, we consider time slots from 7 am to 8 pm, for each
day.

Competitors. We evaluate the performance of our TISV al-
gorithm by comparing it with the OKA (One Kilometer Av-
erage), LR (Linear Regression), K-means and LSTM (Long
Short-Term Memory) strategies. The OKA strategy assumes
the real-time traffic volume of a camera-free intersection e-
quals to the average traffic volume of all camera-equipped in-
tersections within one kilometer. The LR strategy establishes

Figure 3: An example region with verifying intersections

an linear regression model for each camera-equipped inter-
section, and assumes its nearest camera-free intersection fol-
lows the same linear regression model. The K-means strategy
partitions all intersections into clusters and assume the traf-
fic volume of a camera-free intersection equals to the one of
its cluster center. The LSTM strategy approximates the traf-
fic flow of a camera-free intersection by its nearest camera-
equipped intersection.

4.2 Results
We first evaluate the effectiveness of our proposed TISV al-
gorithm by comparing its accuracy with several competitors.
Then, we made detailed testing to show how the proposal per-
forms with varying factors. In the sequel, we use AR to denote
inference accuracy for brevity.

Effectiveness
Impact of day type. We show the effectiveness of our pro-

posal in Figure 4. It can be observed that the accuracy of TISV
method is steadily above 70%. Compared with the base-
line methods, i.e., OKA, LR, K-means and LSTM, our so-
lution can increase the accuracy by 31.19%, 29.36%, 31.62%
and 8.68%, respectively. The LSTM method performs bet-
ter than other baselines. But the performance is unstable, i.e.,
for weekends. By contrast, our method is stable towards day
types. The reason behind is that our method addresses the in-
fluences of traffic volumes in a global view, whereas other
methods only consider the local effect of the traffic volume,
e.g., on the neighborhood camera-equipped intersections.

Impact of time period. We examine the performance with
respect to the effect of time slots in Figures 5 and 6, respec-
tively. In particular, we show the results on weekdays in Fig-
ure 5, and the results on weekends in Figure 6.

From the two figures, we can observe that our solution out-
performs all competitors and achieves an accuracy as high as
75%. For traffic volume estimation, different predicability is
achieved due to the different travel patterns, which is con-
sistent with the observations of Figure 4. More, we find that
the inference accuracy works better in rush hours. For exam-
ple, in Figure 5, the accuracy can be as high as about 80% at
17pm. It is because that during rush hours the travel patterns
are with more regularities. Thus, it enables a better estima-
tion on traffic volume inference. Finally, we discover the per-
formances of five solutions in morning rush hours are much
better than those of afternoon. It is because of the centralized
distribution of traffic flows during rush hours. Also, this is
consistent with the skewed distribution of business districts
and factories where a large population work in a relatively s-
mall region. However, the traffic flow during afternoon rush
hours are more decentralized due to the more evenly distribut-
ed residential regions.

Analysis
We test the accuracy of our proposed TISV algorithm with
varying factors for the real-time intersection traffic volume
inference. In particular, we investigate: i) the impact of the
number of camera-equipped intersections; ii) the impact of
the traffic volume; and iii) the impact of the density of
camera-equipped intersections.
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Figure 4: Impacts of weekdays and
weekends
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Figure 5: Impacts of time periods in
weekdays
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Figure 6: Impacts of time periods in
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Figure 7: Impacts of percentages of
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Figure 8: Impacts of traffic vol-
umes
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Figure 9: Impacts of densities of
camera-equipped intersections

Impact of percentage of camera-equipped intersection-
s. We investigate the effect of the percentages of camera-
equipped intersections by varying the percentage of camera-
equipped intersections from 15% to 30%. The results are re-
ported in Figure 7. It can be observed that the accuracy ra-
tio of our solution increases roughly with the increase of the
percentage of camera-equipped intersections. Because the M-
ND can be better modelled if with larger number of camera-
equipped intersections. Also, it reflects that the performances
of our solution for weekdays and weekends are close, which
means our solution is general to the day types.

Impact of traffic volume. We study the effect of real time
volume of camera-free intersections on the prediction accura-
cy in Figure 8. It can be observed that the performance of our
solution increases in accordance with the increase of actual
traffic volumes of camera-free intersections and that our so-
lution outperforms the other four in all settings. In particular,
the accuracy ratio of our algorithm has an increase of more
than 25% while the actual traffic volumes of camera-free in-
tersections increase from 0-20 vehicles per minute to 180-200
vehicles per minute. Also, we can observe that the perfor-
mances of the OKA, K-means, LR and LSTM strategies are
relatively better while the actual traffic volumes of camera-
free intersections are between 20 and 60 vehicles per minute.
For most urban intersections, the traffic volume is within such
a range during the day time, and the traffic flows follow stable
patterns as well. Compare with the competitors, our solution
considers the mutual influence between intersections which
results in a better estimation.

Impact of density of camera-equipped intersections. Final-
ly, we evaluate the performances of our method as well as
competitors while changing the density of camera-equipped
intersections. To do that, we partition the road network into
equal-sized squares, as exemplified in Figure 3. The density
of camera-equipped intersections is classified into five levels,
i.e., 2, 3, 4, 5, 9 per square, respectively. The results are re-
ported in Figure 9. We can observe that with the increase of
the number of camera-equipped intersections, the inference
accuracy increases accordingly. By contrast, the competitors’
performance does not change. This is because our solution
approximates the traffic volume model from a global view,
whereas all others only consider intersections in the neigh-
borhood.

5 Conclusion
Recent technology advances provide us new opportunities to
improve traditional real-time traffic surveillance system. In
this paper, we model the time-varying traffic influence model
between neighboring intersections with transition probabili-
ties, then use MNDs to approximate the traffic volumes of
the entire road network. We further propose a novel method
to infer the possible real-time traffic volume of a camera-
free intersection with the real-time traffic volume information
of sparsely distributed camera-equipped intersections. Perfor-
mance evaluations from real datasets demonstrate the effec-
tiveness of our proposal.
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