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Abstract
We study the problem of author-paper correlation
inference in big scholarly data, which is to ef-
fectively infer potential correlated works for re-
searchers using historical records. Unlike super-
vised learning algorithms that predict relevance
score of author-paper pair via time and memory
consuming feature engineering, network embed-
ding methods automatically learn nodes’ represen-
tations that can be further used to infer author-paper
correlation. However, most current models suffer
from two limitations: (1) they produce general pur-
pose embeddings that are independent of the spe-
cific task; (2) they are usually based on network
structure but out of content semantic awareness. To
address these drawbacks, we propose a task-guided
and semantic-aware ranking model. First, the his-
torical interactions among all correlated author-
paper pairs are formulated as a pairwise ranking
loss. Next, the paper’s semantic embedding en-
coded by gated recurrent neural network, together
with the author’s latent feature is used to score
each author-paper pair in ranking loss. Finally, a
heterogeneous relations integrative learning mod-
ule is designed to further augment the model. The
evaluation results of extensive experiments on the
well known AMiner dataset demonstrate that the
proposed model reaches significant better perfor-
mance, comparing to a number of baselines.

1 Introduction
Due to the growing evolution of scientific research and in-
creasing data collections by various online services such as
Google Scholar, Microsoft Academic or AMiner, the prob-
lems of mining big scholarly data have gained a lot of at-
tention in the past decade. Examples include scientific im-
pact modeling and prediction [Wang et al., 2013; Shen et
al., 2014; Dong et al., 2015], heterogeneous bibliographic
network analysis [Sun et al., 2012; Huang et al., 2016;
Chen and Sun, 2017], etc.

In this work, we consider the problem of author-paper cor-
relation inference in big scholarly data. Specifically, given
an author’s previous correlated papers (e.g., publications or

references), we would like to effectively infer the potential
relevant works for him/her, such that the author will interact
(e.g., cite) with those papers in the future. Solutions of the
problem bring important implications to researchers with dif-
ferent knowledgeable levels. For example, an effective algo-
rithm provides suitable academic paper reading lists for new
PhD students with little historical feedback in database, or
helps active scientists track the related or following works of
their previous publications. In addition, it can be a good refer-
ence for recommender system design in digital libraries such
as Elsevier or Springer.

As one of the representative solutions, supervised leaning
algorithms can be applied to predict the correlation score be-
tween author and paper, as they were used in 2013 KDD
cup author-paper pair identification challenge [Efimov et al.,
2013; Li et al., 2015]. However, such methods heavily rely
on time and memory consuming feature engineering, and the
extracted features may be too simple to capture complicated
relations. In recent years, unlike traditional supervised lean-
ing, several network embedding models [Perozzi et al., 2014;
Grover and Leskovec, 2016; Chen and Sun, 2017; Dong et al.,
2017] have been proposed to automatically learn nodes’ rep-
resentations that can be further used for various applications
in scholarly data such as author-paper correlation inference.
Although the proximity among nodes is preserved by dense
vectors, most of the existing embedding models suffer from
following two drawbacks:

• They produce general purpose embeddings that are inde-
pendent of task, no matter what kind (homogeneous or het-
erogeneous) of networked data is used. However, when it
comes to the author-paper correlation inference problem,
nodes should be embedded under the guidance of target
for generating task-specific representations.

• Even though they take account of the task for embed-
ding generation, e.g., TaskE [Chen and Sun, 2017], they
are purely based on network structure and out of content
awareness. Actually, content (e.g., abstract of paper) con-
tains useful semantic information that should be used for
encoding nodes into a better feature space.

To address the above issues and solve the given problem,
we propose a task-guided and semantic-aware ranking model.
First, we model the historical interactions among correlated
author-paper pairs via pairwise ranking according to the spe-
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cific task. Next, we introduce the gated recurrent neural net-
work to encode paper’s content, and combine the obtained se-
mantic embedding with author’s latent feature to score each
author-paper pair in ranking loss. Moreover, we design a het-
erogeneous relations integrative learning module to formulate
the indirect correlations among authors and papers, and fur-
ther augment the model. Finally, a relations sampling based
mini-batch gradient descent algorithm is designed for model
training. The main contributions of this paper are summa-
rized as follows:

• We study the author-paper correlation inference problem
in big scholarly data, which brings important implications
to academic community.

• To solve the problem, we propose a model by jointly con-
tent semantic encoding and heterogeneous relations aug-
mented ranking, and design the corresponding learning al-
gorithm.

• We conduct extensive experiments to evaluate the perfor-
mance of the proposed model on the well known AMiner
dataset. The results show that our model significantly out-
performs a number of baselines.

2 Problem
We introduce few notations that will be used throughout this
paper. Specifically, we denote the sets of authors and papers
as U and I , respectively. Let lu<T be the set of both author
u’s publications and references before a given timestamp T .
Similarly, lu≥T represents u’s papers and references after T . In
this work, the correlated papers of each author are assumed
as both publications and references in dataset. The problem
is formalized as:

Academic Author-Paper Correlation Inference. Given
lu<T of each author u ∈ U and the content (i.e., abstract) of
each paper v ∈ I , the goal is to learn a model to rank all
potential papers v′ ∈ I\lu<T for u, such that its top return
papers are in lu≥T .

Note that each author can cite previous works or write new
papers, thus the return papers can be published both before
and after T . In addition, the overlapping between lu<T and
lu≥T are removed from lu≥T , so that papers in lu≥T are never
cited by u before T .

3 Proposed Model
In this section, we present how to design task-guided and
semantic-aware ranking model for solving the problem, and
use historical academic data to construct a heterogeneous net-
work for capturing indirect author-paper relations which ben-
efit and augment the model.

3.1 Pairwise Ranking with Gated Recurrent
Neural Network

We model historical interactions among correlated author-
paper pairs via pairwise ranking optimization [Rendle et al.,
2009]. Specifically, for a given author u, the correlated paper
v ∈ lu<T should be ranked higher than the uncorrelated pa-
per v′ ∈ I\lu<T . In other words, the relevance score su,v of
〈u, v〉 pair should be larger than that of 〈u, v′〉 pair as much

as possible, leading to an author-paper pairwise ranking loss
as follows:

Lrank =
∑
u∈U

∑
v∈lu

<T

∑
v′ /∈lu

<T

[
− log σ(su,v − su,v′)

]
(1)

where σ is the sigmoid function. For each author-paper pair
〈u, v〉, we introduce author u’s latent feature qu ∈ Rd (d:
the embedding dimension) and represent paper v as semantic
embedding Epv ∈ Rd via content encoder f : Epv = f(pv),
where pv represents paper v’s content. The inner product of
qu and f(pv) is used to measure the relevance score, i.e.,
su,v = qu

T f(pv).
To encode papers’ contents to fixed size embeddings Ep ∈

R|I|×d, we use the gated recurrent units (GRU), a specific
type of recurrent neural network (RNN), which has been
widely adopted for many applications such as machine trans-
lation [Cho et al., 2014]. Specifically, a paper is represented
by a sequence of word embeddings: {x1,x2, · · · ,xtmax

},
where xt denotes the t-th word embedding pre-trained by
word2vec [Mikolov et al., 2013] and tmax is the maximum
length of paper’s abstract. For each step t with the in-
put of word embedding xt and hidden state vector ht−1,
GRU computes the updated hidden state vector via ht =
GRU(xt,ht−1), where GRU module is defined as:

zt = σ(Nzxt + Mzht−1)

rt = σ(Nrxt + Mrht−1)

ĥt = tanh[Nhxt + Mh(rt ◦ ht−1)]

ht = zt ◦ ht−1 + (1− zt) ◦ ĥt

(2)

where σ is the sigmoid function, the operator ◦ denotes
element-wise multiplication, N and M are parameter matri-
ces of GRU network, zt and rt are updated gate vector and
reset gate vector, respectively. We apply the above GRU net-
work to encode words’ contextual embeddings h ∈ Rtmax×d

and use a mean pooling layer to obtain the general seman-
tic embedding of each paper. All of these steps construct
the paper’s content encoder f , as illustrated by Figure 1(a).
Note that, we also explore other encoding architectures such
as LSTM or attention-based GRU but obtain similar result.
Thus we choose GRU since it has a concise structure for re-
ducing training time.

Using the above GRU encoder for papers’ embeddings and
the authors’ latent features, we further minimize the pairwise
ranking loss (i.e., Eq. (1)) via gradient descent approach, as
illustrated by Part-1 of Figure 1(b). The process leads to task-
guided and semantic-aware ranking and we name it TSR.

3.2 Heterogeneous Relations based Integrative
Learning Augmentation

TSR trains model by only using direct correlations, i.e., cor-
related author-paper pairs in lu<T for each author u. However,
there are multiple indirect author-paper relations, which can
be inferred from direct correlations and useful for improving
TSR. Inspired by DeepWalk [Perozzi et al., 2014], we ap-
ply random walk to collect those indirect correlations. Figure
1(b) Part-2 gives the illustration. First, we use the correlated
papers set lu<T (contains both author u’s publications and ref-
erences before T ) of each author u to create a heterogeneous
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Figure 1: Illustration of (a) GRU network for encoding paper’s semantic embedding and (b) heterogeneous relations integrative learning
module for augmenting TSR.

network (HetNet) with two kinds of nodes (author and pa-

per) and two kinds of undirected edges (author
write−−−−⇀↽−−−−

write−1
pa-

per and paper
cite−−−⇀↽−−−

cite−1
paper). Then we perform random walk

sampling over HetNet to generate a set of node sequences.
For example, in Figure (b) Part-2, a heterogeneous walk:
wa ≡ {a → 1 → b → 2 → c → 4 → 3 → 5} is generated
and the surrounding context of each node in wa implies dif-
ferent relations among authors and papers within wa. We use
sub-sequence ŵ1 ≡ {1→ b→ 2→ c→ 4→ 3→ 5} (win-
dow size equals to 3) centered at author c as an illustration.
Besides the direct connections, e.g., author c writes paper 2,
ŵ1 also captures multiple indirect relations. For example, au-
thor c has indirect citation relation with paper 5 since s/he has
citation relation with paper 3. Therefore, each heterogeneous
walk contains both direct correlations and indirectly transitive
relations among authors and papers.

To formulate indirect relations within each walk, we design
a heterogeneous relations integrative learning module (HRIL)
to augment TSR based on a reasonable assumption that the
relevance scores of indirectly correlated author-paper pairs
should be larger than those of uncorrelated pairs. Specifi-
cally, we introduce a hinge loss to formulate the difference
of author u’s correlations to indirectly correlated paper v and
uncorrelated paper v′:

H(u, v, v′) =
[
ξ + suv′ − suv

]
+

(3)

where {x}+ = max(x, 0) and ξ is a positive margin value.
A loss penalty will incur if the score of 〈u, v〉 is not at least ξ
larger than that of 〈u, v′〉. Such formulation has been widely
adopted in recent works [Chen and Sun, 2017; Zhang et al.,
2017; 2018] for modeling preference differences. Thus the
overall loss in each walk w is formulated as:
Lhinge(w) =

∑
u∈w

∑
v∈w[Iu−τ :Iu+τ ]

v/∈lu<T

∑
v′ /∈lu

<T

[
ξ + suv′ − suv

]
+

(4)
where τ is the window size of surrounding context used for
relations extraction, and Iu indicates the position of u in w.
Therefore constraining Lhinge obeys our assumption.

3.3 Model Training
We generate a plenty of walks rooted at each author node to
collect indirect correlations among authors and papers, and let

Algorithm 1: Learning Framework of TSR+
input : Crank in training data and Chinge collected by

random walk sampling on HetNet
output: authors’ latent features q, GRU encoder

parameter matrices N and M (for papers’
embeddings f(p))

1 while not converged do
2 sample a mini-batch of (u, v, v′) triples in Crank;
3 sample a mini-batch of (u, v, v′) triples in Chinge;
4 accumulate the loss by Equation (6) ;
5 update the parameters by Adam Optimizer
6 end

W be the set of all walks. The objective of augmented TSR
(TSR+) is defined as the combination of TSR and HRIL:

L = Lrank +
∑

w∈W

Lhinge(w) + Lreg (5)

where Lreg is the regularization term for avoiding over-
fitting. We denote all model parameters including GRU net-
work coefficients (for generating papers’ embeddings) and
authors’ latent features as Θ, and let Crank and Chinge be
the sets of (u, v, v′) triples in Lrank and (u, v, v′) triples in
Lhinge, respectively. Thereafter we can rewrite the objective
of TSR+ as:

L =
∑

(u,v,v′)∈Crank

{
− log σ

[
qu

T f(pv)− qu
T f(pv′)

]}
+

∑
(u,v,v′)∈Chinge

{
ξ + qu

T f(pv′)− qu
T f(pv)

}
+
+ λ ‖Θ‖2

(6)

where parameter λ controls regularization penalty. To mini-
mize the above objective function, we design a relations sam-
pling based mini-batch Adam Optimizer [Kingma and Ba,
2014], as illustrated by the pseudocode in Algorithm 1.

4 Experiments
In this section, we conduct extensive experiments to evaluate
the proposed model and various baselines. Case studies are
also provided.
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Statistics AMiner-T AMiner-F

# authors 28,646 571,563
# papers 21,044 483,319
# venues 18 492

# correlated papers of authors 271,777 4,646,671

Table 1: Statistics of datasets.

4.1 Experimental Design
Dataset.
We use the public available dataset1 AMiner [Tang et al.,
2008] between 2005 and 2015, and remove the papers pub-
lished in venues (e.g., workshop) with limited number of pub-
lications and the instances without content (i.e., abstract). Be-
sides, considering most of researchers pay attention to pa-
pers published in top venues and each research area has its
own community, we extract a subset data of six areas accord-
ing to Google Scholar Metrics2, namely Artificial Intelligence
(AI), Computer Vision (CV), Data Mining (DM), Databases
(DB), Computational Linguistics (CL) and Information Sys-
tem (IS). For each area, we choose three top venues3 that are
considered to have influential publications. The main statis-
tics of two datasets (AMiner-T and AMiner-F) are summa-
rized in Table 1. Note that, there are some missing citations
in the dataset. It makes the inference task more difficult due
to potential noise in model training.

Baselines.
We compare TSR and TSR+ with eight baseline methods that
span three categories: (1) feature-based supervised learning,
(2) content-based ranking and (3) network embedding.
• Feature-based supervised learning. It first extracts

author-paper paired features and then applies supervised
learning algorithms to predict the relevance score of
each author-paper pair. We extract 14 kinds of features
(as shown in Table 2) and choose Bayesian Regressor
(BayesR), Neural Network (NeuNet) and Random Forest
(RandomF) as learning algorithms. For each correlated
author-paper pair, we randomly sample 5 negative pairs to
train model.

• Content-based ranking. It first encodes each paper’s con-
tent (i.e., abstract) via language modeling and then ap-
plies pairwise ranking BPR [Rendle et al., 2009] to learn
each author’s latent feature. We employ two popular mod-
els word2vec [Mikolov et al., 2013] and paragraph vec-
tor (doc2vec) [Le and Mikolov, 2014] to learn papers’ em-
beddings. Note that word2vec encodes embedding of each
word in content, we connect the output of word2vec with
a mean pooling layer to obtain general embedding of each
paper.

• Network embedding. It learns embeddings of both au-
thors and papers based on the structure of author-paper
heterogeneous network (same as the HetNet in TSR+). We
use both homogeneous model Deepwalk [Perozzi et al.,
1https://aminer.org/citation
2https://scholar.google.com/citations?view op=metrics intro&hl=en
3AI: ICML, AAAI, IJCAI. CV: CVPR, ICCV, ECCV. DM: KDD, WSDM, ICDM.

DB: SIGMOD, VLDB, ICDE. CL: ACL, EMNLP, NAACL. IS: WWW, SIGIR, CIKM.

No. Feature description

1 # of the paper’s references being cited by the author before
2 ratio of the paper’s references being cited by the author before
3 ratio of the author’s citations in the paper’s references
4 # of paper’s references in the author’s previous publications
5 ratio of the paper’s references in the author’s previous publications
6 ratio of the author’s publications in the paper’s references
7 # of share keywords between author and paper
8 ratio of the author’s keywords in share keywords
9 ratio of the paper’s keywords in share keywords

10 whether the author attend the paper’s venue before
11 # of times the author attend the paper’s venue before
12 ratio of times the author attend the paper’s venue before
13 # of papers the author published in 3 years before the paper’s time
14 ratio of papers the author published in 3 years before the paper’s time

Table 2: Features selection of supervised learning baselines. Key-
words are extracted from title of each paper.

2014] and heterogeneous model metapath2vec [Dong et
al., 2017]. In addition, a task-guided network embedding
model (TaskE) [Chen and Sun, 2017] for author identifica-
tion is introduced for comparison.

Evaluation Metrics.
As described in problem definition, for each author u ∈ U ,
papers in lu<T are treated as training data and papers in lu≥T
are left for evaluation. The overlapping between lu<T and lu≥T
are removed from lu≥T . We use three popular metrics, i.e., Re-
call@k, Precision@k and AUC, to evaluate the performance
of each method. The Recall@k shows the ratio of true cor-
related papers returned in the top-k list, which is defined as:

Rec@k = 1
|U |

∑
u∈U

|l̂u≥T

⋂
lu≥T |

|lu≥T
| , where l̂u≥T denotes the set

of top-k papers for author u. The Precision@k reflects the
accuracy of top-k papers by a method and it can be computed

according to: Pre@k = 1
|U |

∑
u∈U

|l̂u≥T

⋂
lu≥T |

k . The AUC
measures the accuracy of pairwise orders between correlated
and uncorrelated papers of each author, which is formulated
as: AUC = 1

|U |
∑

u∈U
1

|E(u)|
∑

(v,v′)∈E(u) δ(suv > suv′),
where E(u) ≡ {(v, v′)|v ∈ lu≥T , v′ /∈ (lu<T ∪ lu≥T )} and δ is
indicator function which equals 1 when the condition holds
otherwise 0. The k is set to 10 and a larger Recall@k, Preci-
sion@k or AUC value means a better performance.

Experimental Settings.
All of information used for model training such as triple/pair
samples in our models or the selected features in supervised
learning baselines, are extracted from training data. We de-
sign two different training/test splits by setting T = 2012 and
2013. Besides, two key issues of the experiments are set as:

• Reproducibility. For the fair of comparison, we use the
same feature dimension d = 128 for all content-based
ranking and network embedding models. In the proposed
models, the regularization parameter λ equals to 0.001.
For HRIL module of TSR+, we set the number of walks
(start from each author node) as 10 and the walk length as
20. Besides, we fix window size τ = 5 and hinge loss
margin ξ = 0.1. In addition, we employ TensorFlow to
implement the proposed model and further conduct it via
NVIDIA TITAN X GPU.

Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)

3644



Dataset T Metric BayesR NeuNet RandomF word2vec doc2vec Deepwalk metapath2vec TaskE TSR TSR++BPR +BPR

AMiner-T

2012
Rec@10 0.211 0.220 0.288 0.267 0.224 0.230 0.305* 0.298 0.312 0.330
Pre@10 0.248 0.263 0.341 0.311 0.274 0.312 0.364* 0.355 0.350 0.374

AUC 0.674 0.663 0.705 0.801* 0.739 0.675 0.723 0.738 0.831 0.846

2013
Rec@10 0.224 0.255 0.301 0.272 0.228 0.189 0.302 0.303* 0.329 0.343
Pre@10 0.221 0.246 0.304 0.276 0.244 0.237 0.325* 0.321 0.320 0.341

AUC 0.694 0.693 0.730 0.785* 0.735 0.647 0.715 0.723 0.835 0.842

AMiner-F

2012
Rec@10 0.333 0.361 0.378* 0.372 0.341 0.245 0.365 0.351 0.444 0.461
Pre@10 0.344 0.375 0.379 0.377 0.357 0.327 0.419* 0.397 0.433 0.450

AUC 0.709 0.726 0.708 0.844* 0.808 0.698 0.740 0.721 0.869 0.878

2013
Rec@10 0.353 0.406 0.404 0.399 0.362 0.286 0.412* 0.398 0.475 0.496
Pre@10 0.331 0.383 0.368 0.366 0.344 0.331 0.423* 0.405 0.427 0.445

AUC 0.721 0.742 0.720 0.850* 0.817 0.726 0.774 0.739 0.880 0.883

Impv. over Baseline 37.7% 28.3% 18.1% 16.9% 28.9% 43.8% 13.0% 16.2% – –

Table 3: Performance comparisons of different models. The last row reports the average improvements (%) of TSR+ over baselines. The best
baseline of each case is indicated by star notation. TSR+ achieves the best results (highlighted in bold) in all cases.

• Evaluation candidates. It is time and memory consum-
ing to extract and store features for all author-paper pairs
(which amounts to over 2.7 × 1011 pairs in AMiner-F).
Thus the supervised learning baselines cannot scale up to
such large amount of data. To deal with this issue and re-
duce evaluation time, we follow the setting [Chen and Sun,
2017] that randomly samples a set of negative (uncorre-
lated) papers and combines it with the set of correlated pa-
pers to form a candidate set of total 200 papers for each
author. In addition, we eliminate the authors who have few
correlated papers (less than 3) in test set to avoid noise.
After that, the average sizes of authors’ correlated papers
sets respectively equal to 14.7 and 12.5 in AMiner-F test
data for T = 2012 and 2013, and the corresponding values
in AMiner-T test data are 15.7 and 12.7. Those relative
small values make the 200 candidates large enough for a
convincing evaluation. The reported results are averaged
over 10 experiments of such setting.

4.2 Result Comparison
The performances of all methods are reported in Table 3,
where the best results are highlighted in bold and the best
baselines are indicated by star notation. The last row re-
ports the average improvements (%) of TSR+ over different
baselines. Note that, the embeddings of out-of-matrix pa-
pers (published after T ) are missing in Deepwalk and metap-
ath2vec. Accordingly we use the average of their in-matrix
references’ (published before T ) embeddings to represent
them. The main takeaways from this table are summarized
as follows:

• The best content-based ranking method (word2vec+BPR)
and the best network embedding models (TaskE, metap-
ath2vec) have better average performances than the best
supervised learning baseline (RandomF), which suggests
that the vectorized representations generated by network
embedding or content embedding are better for captur-
ing the complicated correlations among author-paper pairs
than the simple features extracted from data.

• TSR achieves better results than all baselines in most cases,
showing that the joint model of deep semantic embedding
and task-guided ranking is better than supervised learn-

ing, content-based ranking and network embedding for the
given task.

• TSR+ performs best in all cases for both datasets. The
average improvements of TSR+ over different baselines
range from 13.0% to 43.8%. In addition, TSR+ outper-
forms TSR, which indicates that the heterogeneous rela-
tions integrative learning module further improves TSR.

4.3 Analysis and Discussion
Parameters Sensitivity.
The hyper-parameters play important roles in TSR+, as they
determine how the model will be trained. We conduct experi-
ments to analyze the impacts of two key parameters, i.e., win-
dow size τ for model augmentation module and embedding
dimension d. We investigate a specific parameter by changing
its value and fixing the others. The performances of TSR+ (in
terms of Rec@10 and Pre@10 on AMiner-T test data with
T = 2013) on various settings of τ and d are reported in
Figure 2. According to this figure:
• With the increment of τ , Rec@10 and Pre@10 increase

at first since a larger window means more useful indirect
correlations among authors and papers. But when τ goes
beyond a certain value, the results decrease with the further
increment of τ due to the possible involvement of uncorre-
lated noise. The best τ is around 5.

• Similar to τ , an appropriate value should be set for d
such that the best representations of authors and papers are
learned. The optimal value of d is around 128.

Besides d and τ , we also investigate the impacts of other
hyper-parameters such as regularization parameter λ, and re-
veal the similar point. Therefore the certain settings of the
hyper-parameters lead to the best performance of TSR+.

Performances on Different Author Groups.
As presented in introduction, an author-paper inference
model should be effective for researchers with different
knowledgeable levels. In order to validate the effectiveness
of TSR+ on different author groups (from “cold-start” to ac-
tive), we classify all authors into 6 groups (i.e., 1∼3, 4∼6,
7∼9, 10∼12, 13∼15 and >15) based on the number of ob-
served correlated papers they have in training data, then eval-
uate the performance in each group. The performances (in
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Author Rank Paper Year Venue Relation

1 Overlapping community detection at scale: a nonnegative matrix factorization approach. 2013 WSDM �
2 Predicting emerging social conventions in online social networks. 2012 CIKM 4

Jure Leskovec 3 No country for old members: user lifecycle and linguistic change in online communities. 2013 WWW �
(precision: 4/5) 4 Fast mining and forecasting of complex time-stamped events. 2012 KDD ×

5 Earthquake shakes Twitter users: real-time event detection by social sensors. 2010 WWW 4

1 Social influence analysis in large-scale networks. 2009 KDD 4
2 Confluence: conformity influence in large social networks. 2013 KDD 4

Yuxiao Dong 3 Mining topic-level influence in heterogeneous networks. 2010 CIKM 4
(precision: 4/5) 4 Yes, there is a correlation: from social networks to personal behavior on the web. 2008 WWW ×

5 Inferring user demographics and social strategies in mobile social networks. 2014 KDD �

Table 4: Two case studies of TSR+’s result. Notations �, 4 and × represent writing, citing and uncorrelated relations between author and
paper, respectively.
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Figure 2: The impacts of window size and embedding dimension on
TSR+. TSR+ performs best when τ is around 5 and d is around 128.

terms of Rec@10 and Pre@10 with T = 2013) of our mod-
els and three selected baselines (i.e., TaskE, metapath2vec
and word2vec+BPR) are shown by Figure 3. We can find
that TSR+ consistently outperforms TSR and the baselines
in all groups. The results indicate that TSR+ achieves robust
performance across different author groups and is convincible
for different purposes.

Case Study.
We present two case studies to show the details of TSR+’s re-
sult. Table 4 lists the top 5 ranked papers for two data mining
researchers of different groups in previous discussion, i.e.,
Jure Leskovec (in the last group) and Yuxiao Dong (in the
second group) in AMiner-T data (with T = 2013). It is easy
to know that all return papers for both researchers belong to
data mining or information system area. In addition, both of
them will interact (cite or write) with 4 papers (among 5) af-
ter T , which shows that TSR+ performs well for researchers
with different knowledgeable levels. As for papers rank at
4 for both cases, their topics or methods are quite similar
to those of the researchers’ correlated papers, which results
wrong predictions of TSR+. Moreover, there are some top
ranked papers published after T (publication year ≥ 2013,
highlighted in red), indicating that TSR+ can correctly return
not only previous works but also new papers.

5 Related Work
In the past decade, some works have devoted to academic data
mining problems, such as heterogeneous bibliographic net-
work analysis [Sun et al., 2012; Huang et al., 2016], citation
recommendation [He et al., 2010; Ren et al., 2014] or collab-
orator recommendation [Tang et al., 2012; Li et al., 2014]. In
this paper, we study the problem of author-paper correlation
inference in big scholarly data.
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Figure 3: Performances of our models and three selected baselines
in different author groups. TSR+ consistently reaches the best per-
formance in all groups.

The network embedding has attracted lots of attention in
recent years. Most of embedding models [Perozzi et al.,
2014; Grover and Leskovec, 2016; Dong et al., 2017] pre-
serve the proximities among nodes by learning vectorized
representations. Some of the extended studies have been ap-
plied to various applications in big scholarly data, like cor-
relation inference [Huang et al., 2016; Chen and Sun, 2017]
or node classification [Gui et al., 2016; Dong et al., 2017].
Unlike task-independent attribute or content unawareness of
these models, our model TSR+ is task-specific and incorpo-
rates both semantic content and heterogeneous relations.

Besides academic data mining and network embedding,
this paper is also related to pairwise ranking optimization
[Rendle et al., 2009] in recommender systems, gated re-
current neural network [Cho et al., 2014] in deep learn-
ing, word and document embedding [Mikolov et al., 2013;
Le and Mikolov, 2014] in natural language processing, etc.

6 Conclusion and Future Work
In this paper, we propose the author-paper correlation in-
ference problem in big scholarly data, and design a model
TSR+ to solve it. The model performs joint optimization of

Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)

3646



GRU-based content encoding and task-guided ranking, and
is further augmented by a heterogeneous relations integra-
tive learning module. The extensive experiments on the well
known AMiner data demonstrate that TSR+ achieves signif-
icant better performance, comparing to a number of base-
lines. Some potential future work includes: (1) TSR+ can
be extended by using more context information like publica-
tion venue of paper; (2) the dynamics of authors’ embeddings
should be considered for the task since authors keep publish-
ing new papers, and citing more papers.
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László Barabási. Quantifying long-term scientific impact. Sci-
ence, 342(6154):127–132, 2013.

[Zhang et al., 2017] Chuxu Zhang, Lu Yu, Xiangliang Zhang, and
Nitesh Chawla. ImWalkMF: Joint matrix factorization and im-
plicit walk integrative learning for recommendation. In IEEE Big
Data, pages 857–866, 2017.

[Zhang et al., 2018] Chuxu Zhang, Chao Huang, Lu Yu, Xian-
gliang Zhang, and Nitesh V Chawla. Camel: Content-aware and
meta-path augmented metric learning for author identification. In
WWW, pages 709–718, 2018.

Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)

3647


