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Abstract

We study the problem of extending the classic cen-
trality measures to weighted graphs. Unfortunately,
in the existing extensions, paths in the graph are
evaluated solely based on their weights, which is
a restrictive and undesirable assumption for a va-
riety of settings. Given this, we define a notion of
the path evaluation function that assesses a path be-
tween two nodes by looking not only on the sum of
edge weights, but also on the number of interme-
diaries. Using an axiomatic approach, we propose
three classes of path evaluation functions. Build-
ing upon this analysis, we present the first system-
atic study how classic centrality measures can be
extended to weighted graphs while taking into ac-
count an arbitrary path evaluation function. As an
application, we use the newly-defined measures to
identify the most well-linked districts in a sample
public transport network.

1 Introduction

The centrality analysis is one of the key research lines in net-
work science [Brandes and Erlebach, 2005]. While the stan-
dard centralities have been widely used, there is a growing
need to extend these concepts to more complex networks [Op-
sahl et al., 2010; Costa et al., 2007; Grando et al., 2016]. In
this paper, we consider such an extension to weighted graphs.

Depending on the application at hand, weights (of edges)
can represent various attributes [Barrat et al., 2004]. They can
represent a distance, travel time or a cost [Goel and Gruhn,
2008]. On the other hand, they can represent intensity of re-
lation, capacity, or a probability of the fact a given edge ex-
ists [Watts and Strogatz, 1998]. In result, a bigger weight can
represent either a weaker or a stronger connection. We focus
on the former settings, i.e., where a connection is stronger if
the weight is smaller.

Most well-known centrality measures are either, directly
or indirectly, based on the concept of the distance between
nodes in the graph [Koschiitzki ef al., 2005]. In fact, all three
standard centralities proposed by Freeman [1979] are based
on the notion of distance: the closeness centrality is defined
as the inverse of the sum of distances to other nodes; the be-
tweenness centrality counts how often a given node is on the
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shortest path between any two nodes; furthermore, the de-
gree centrality, arguably the most popular centrality measure,
counts the number of edges of a node—thus, it can be inter-
preted as the number of nodes at the distance 1. There are
also other distance-based centrality measures, e.g. the decay,
harmonic, and k-step reach centralities [Jackson, 2008].

In result, the key to extending such centrality measures lays
in the definition of a distance in weighted graphs. In un-
weighted graphs, the distance is simply defined as the size
of the shortest path, i.e., its number of edges. But how should
we evaluate a path in a weighted graph? Usually, a path
is assessed by the sum of weights of its edges and, based
on this assumption, many authors proposed their extensions
of centrality measures to weighted graphs [Brandes, 2001;
Barrat et al., 2004; Newman, 2001]. Nevertheless, this as-
sumption is undesirable in various settings. As argued by
[Opsahl et al., 20101, looking solely on the sum of weights
ignores the property that was originally most important—the
number of intermediaries.

As an example, consider the graph of a public transport in
a city. Here, nodes represent stops and edges represent the
direct connections between those nodes. Fix some starting
point and a destination. Now, imagine there are two routes
between them: one route is direct and takes 60 minutes; the
second one has one change, but takes 45 minutes. Obviously,
depending on the preferences, one can consider a longer route
better. The question is: which route should be suggested by a
route planner? In other words, how should a specific route be
evaluated?

To answer this question, we propose to use the axiomatic
approach. Specifically, first we propose two basic properties
that, in our opinion, should be satisfied by all path evaluation
functions: Normalization—for an unweighted graph, com-
monly interpreted as the graph with unit edge weights, the
value should be equal to the number of its edges, and Mono-
tonicity—the higher number of intermediaries or the larger
weights of edges increase the value. Second, we propose
three properties: Relocation—path value should depend only
on the sum of edge weights and the number of edges, Ho-
mogeneity—there exists a constant, «, such that multiplying
edge weights by c changes the value by ¢, and Additivity—
the value of two paths combined is equal to the sum of values
when these paths are considered separately. We show that Re-
location, Homogeneity, and Additivity, taken in pairs, charac-
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terize three classes of path evaluation functions. One of those
classes was proposed by [Opsahl et al., 2010]. Thus, as an
immediate implication, our work builds a theoretical founda-
tion for the class proposed by those authors.

For each class, the borderline cases are the number of
edges and the sum of weights. Specifically, each class is
parametrized by an o € [0, 1]; for « = 0, in each class we
obtain the number of edges; conversely, for a« = 1, we get
the sum of weights. The benefit of a continuous parameter
« is the fact that it can be adjusted in order to better fit to a
specific application at hand. In particular, when used in the
route planner, parameter « can be learned from the user’s be-
haviour. Building upon the analysis of path evaluation func-
tions, we propose a new definition of the classical centrality
measures in weighted graphs.

Finally, in the experimental section, we compare the three
classes of path evaluation functions on a random graphs con-
structed from 2-dimensional grid. Then, we apply newly de-
fined centrality measures to the graph of a public transport in
Warsaw. Our analysis allows to identify the most well-linked
districts in a way that takes into consideration not only the
time, but the number of changes on communication routes.

2 Preliminaries
This section provides the necessary background and notation.

Graph theory: A (weighted undirected) graph is a triple,
(V, E,w), where V is the set of nodes, F is the set of undi-
rected edges, and w : E — Ry is an edge-weight function
that assigns to every edge its weight, i.e., a positive real value.

A path,p = (v, ..., vk), is a sequence of distinct nodes in
which every two consecutive nodes are connected by an edge,
ie., {vi,vi41} € E, Vi € {1,...,k — 1}. The size of a path
p is the number of its edges (i.e., the number of nodes on a
path minus 1). The length of a path is the sum of the weights
of its edges, i.e., Z;:ll w({vi,vit1}). Wewritev € pifovis
one of the nodes in p.

If v1 = v and vy = u, we say that path is between v and
u. The set of all paths between nodes v and u is denoted by
II(v, ). For a path, p, we will denote by w(p) a sequence of
edge weights associated with edges that constitute p:

w(p)=(w({vi,v2}), s wl{ve-1,0})), Vp=(v1, ..., vk).

For an unweighted graph, G = (V, E), a distance between
v and u, denoted by d(v, u), is the size of its shortest path in
terms of the number of edges. The set of all shortest paths
between nodes v and u, is denoted by I (v, u).

A maximal subset of nodes such that there is a path be-
tween every two nodes is called a connected component. The
set of connected components of a graph G is denoted K (G).
Note that K (G) is a partition of a set of nodes V.

Nodes v,u € V are said to be neighbors if they are con-
nected by an edge, i.e., {v,u} € E. The set of neighbors of
anode v is denoted by N (v). Formally, Ng(v) ={u €V :
{v,u} € E}.

Distance and metric: Distance is a function, d : X x X —
R, that satisfies non-negativity Vx,y € X,z # y d(x,y) >

0), symmetry (Vx,y € X d(z,y) = d(y,x)), and reflexivity
Vx € X d(x,x) = 0).

Metric is a function, d : X x X — R, that satisfies non-
negativity, reflexivity (as defined above), and also identity of
indiscernibles (Vx,y € X x =y < d(x,y) = 0) and trian-
gle inequality Vx,y,z € X d(z,y) < d(z,z) + d(z,y)).

Centrality measures: A function that assigns to every node
a number reflecting its importance is called a centrality mea-
sure and defined as F : G¥Y — RV, where GV denotes
the set of all possible graphs with nodes V. There is a
plethora of centrality measures proposed in the literature. See
[Koschiitzki et al., 2005] for an overview. Below, we list all
the most important centralities based on distance.

Freeman [1979], in his seminal work, listed three classical
centrality measures:

e Degree Centrality (D,) is the number of edges incident
to a node:

Dy(V,E) = [{{v,u} € E:u eV}

o Closeness Centrality (C,) is the inverse of the sum of
distances to other nodes [Sabidussi, 1966]. Note that
this definition is valid only if the graph is connected:

Vi) = (Socr g dolvw)

o Betweenness Centrality (B,) is the sum of percentages
of shortest paths between any two other nodes that goes
through the node under consideration:

_ {p€lls (s,t):veEp}|
By(V,E) =3 iev\io} "Gl

Other known centrality measures based on distance be-
long to the class of additive distance-based centralities [Garg,
2009; Skibski and Sosnowska, 2018], i.e., they are defined as:

Fél(va E) = ZuEV\{U} Ad(v,u)>

0o € RT:

e Harmonic Centrality (H,) is defined by a; = 1/i for
every i € {1,...} and as = 0.

e Decay Centrality (Y,), for § € (0,1), is defined by a; =
0* forevery i € {1,...} and as = 0.

o k-Step Reach Centrality (R,) is defined by a; = 1 for
every 1 <i < k,a; =0fori > k,and ao, = 0.

for some values a1, as, . .

In particular, 1-Step Reach Centrality is equivalent to the De-
gree Centrality.

3 Path Evaluation Functions (PEFs)

In this section, we concentrate on evaluating arbitrary paths
in a graph.

Let p be a path in graph G = (V, E,w). We will evalu-
ate p based on w(p), i.e., the vector of edge-weights between
consecutive nodes in p.

Definition 1. A path evaluation function (PEF), f, assigns a
positive real value to every vector of positive real values, i.e.,
w = (wy,wa, . ..,w), that represents the distances between
consecutive nodes on this path.
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The two basic PEFs take into consideration only the size or
only the length of a path:

e Size: f*((w1,wa,...,wy)) = k;

o Length: f!((w1,ws,...,wx)) =S5 wi.

Our goal in this section is to define new PEFs that take into
account both size and length of a path.

To this end, we will use the axiomatic approach: we will
propose several desirable properties and show they imply spe-
cific forms of the PEF. Our first two axioms—~Normalization
and Monotonicity—are satisfied by all functions considered
in this paper. The next three axioms—Relocation, Homo-
geneity and Additivity—taken in pairs, will characterize three
classes of PEFs. In Theorem 4, we show that Size and Length
are the only functions that satisfy all five axioms.

Our first axiom—~Normalization—enforces consistency
with the unweighted setting. For unweighted graphs, the path
is simply assessed by its size, i.e., its number of edges. Since
in the weighted setting unweighted edges are usually treated
as edges with weight 1, Normalization states that to a path
consisting of k£ edges of weight 1 should be assigned value k.

Normalization: For every vector w = (1,...,1)
fw) = |wl.
Note that Size and Length also coincide for w = (1,...,1).

The second axiom, Monotonicity, states that increasing the
length or size of a path should result in a bigger value.

Monotonicity: For every vector w = (w1, ..., wg)

o f(w) < fl(wy,...,w; +¢&,...,wg)) for ev-
eryi€{l,...,k}ande >0

o f(w) > f((wi,...,w; +Wiy1,...,wg)) for

everyi e {1,...,k—1}

The third axiom, called Relocation, states that the evalua-
tion should depend solely on the size and length of a path. In
other words, the distribution of weights in vector w does not
affect the evaluation.

Relocation: For every vector w = (w1, ..., wg),
ie{l,....,k—1}ande € (—w;, w;y1)
fw) = f(wy,...,w; +&,wit1 —&,...,Wg)).

Homogeneity, our next axiom, describes how changing
the distances affects the evaluation. Specifically, this axiom
states that multiplying each value in the vector by a constant,
¢, affects the evaluation by ¢ for some «. If o < 1, this no-
tion is consistent with studies that show people tend to map
numbers on a logarithmic, and not linear scale [Dehaene et
al., 2008].

Homogeneity: There exists o« € R such that for
every vector w = (wy, ..., wy) and c € Ry
fle-w) =c* - fw).
We will say that a function satisfies a-Homogeneity if it sat-
isfies Homogeneity for a given «.
Our last axiom, Additivity, states that the evaluation of a

path combined out of two parts should be equal to the sum
of evaluations of both parts considered separately. In other

words, the value of a path can be assessed by looking at the
value of each its element.

Additivity: For every vectorw = (w1, . .., wy) and
ie{l,....,k—1}
f(w) = f((wl, e ,wz)) + f((wH_l, e ,wk))

In what follows, we propose three different classes of PEFs
that span between Size and Length. Specifically, each of these
classes is parametrised by a € [0, 1] that represent the im-
portance of the size of the path, compared to its length. In
particular, in each class, for & = 0 we get the Size function
and for o = 1 we get the Length function.

Convex Combination path evaluation functions
This class consists of PEFs that for some « € [0, 1] equal:

k
fc(lw):a'zwi+(1ia)’kﬂ vw:(wla"'awk)' (1
=1

Thus, each function in this class is simply the convex com-
bination of Size and Length. Theorem 1 shows that if PEF
satisfies Normalization, Monotonicity, Relocation, and Addi-
tivity, then it must belong to this class.

Theorem 1. The Convex Combination PEFs are the only
functions that satisfy Normalization, Monotonicity, Reloca-
tion and Additivity.

Proof. The Convex Combination PEFs satisfy Normaliza-
tion, Monotonicity, Relocation and Additivity. Assume f sat-
isfies Normalization, Monotonicity, Relocation and Additiv-
ity. We will prove that it satisfies (1) for some « € [0, 1]. Fix
vector w = (wy, ..., wy). From Relocation and Additivity:

flwi,...;wk)) =k f((wy + ... +wp)/k)). (2)

Moreover, from Additivity we know that

f((w o wi)) = f((wn) + o4 f((wg). B)

Let us consider £ = 2. Combining (2) and (3), we get that
F((2)) + F(1)) = 2+ F((Z£L)) for every 2,y € R, . Based
on Cauchy’s functional equation we get that f((z)) = « -
x + B for every x € R, and some «, 8 € R. In result, from
Relocation and Additivity we get: f(w) = a~2f=1 w;+ k.
Finally, from Normalization: f((1,...,1))=k-(a+ 8)=k,
that implies 3 = 1 — a. Moreover, Monotonicity implies
a € [0, 1]. This concludes the proof of Theorem 1. O

Exponential path evaluation functions
A function belongs to this class if for some « € [0, 1] equals:

fow) =0 we, Lwg). @

This class was proposed by Opsahl et al. [2010]. In the ax-
iomatization of this class, compared to Convex Combination
PEFs, instead of Relocation we use Homogeneity.

Yw = (wl,..

Theorem 2. The Exponential PEFs are the only functions
that satisfy Normalization, Monotonicity, Homogeneity and
Additivity.

Proof. The Exponential PEFs satisfy Normalization, Mono-
tonicity, Homogeneity and Additivity. Assume f satisfies
Normalization, Monotonicity, c-Homogeneity for some o €
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Figure 1: Summary of the axiomatic results.

R and Additivity. We will prove that function f satisfies
(4). Fix vector w = (wi,...,wg). From Additivity we
get that f(w) = f((w1)) + ... + f((wg)). Now, for each
i € {1,...,k} from a-Homogeneity we have f((w;)) =
w - f((1)). Thus, a~-Homogeneity and Additivity implies

flw) = (Zle wf‘) - f((1)). From Normalization, we have

f((1)) = 1. Finally, since z® < (x +¢)* fore > 0iffa > 0
and % 4+ y* > (z + y)® iff « < 1, we get that f satis-
fies Monotonicity iff a € [0, 1]. This concludes the proof of
Theorem 2. O

Geometric path evaluation functions
Our third class consists of functions that for some o € [0, 1]
have the form

f9(w) = (Zle wi)ak(l*a), Yw = (wy, ..., wg). (5)

This class does not satisfy Additivity, but satisfies both Relo-
cation and Homogeneity.

Theorem 3. The Geometric PEFs are the only functions that
satisfy Normalization, Monotonicity, Relocation and Homo-
geneity.

Proof. Tt is easy to check that the Geometric PEFs satisfy
Normalization, Monotonicity, Homogeneity and Relocation.
Assume f satisfies Normalization, Monotonicity, Relocation
and a-Homogeneity for some o € R. We will prove that
f satisfies (5). Fix vector w = (wq,...,wy) and assume
Zle w; = d. Relocation implies that changing consec-
utive values in the vector w is possible as long as their
sum remains the same. In particular, we obtain a vector
whose all values are equal. By using a-Homogeneity we
get: f(w) = f((d/k,d/k,....d/k)) = (d/k)*- f(L,...,1).
From Normalization, we get (5) for arbitrary o € R. Since
d* < (d+e)® fore > 0iffa > 0and k) > (k—1)(1—«)
iff & < 1, we get that f satisfies Monotonicity iff « € [0, 1].
This concludes the proof of Theorem 3. 0

Size and Length

Borderline cases for each class are the two standard PEFs—
Size and Length. This implies they satisfy all five axioms:
Normalization, Monotonicity, Relocation, Homogeneity, and
Additivity. In the following theorem, we show they are the
only such functions.

Theorem 4. Size and Length are the only PEF's that satisfy
Normalization, Monotonicity, Relocation, Homogeneity, and
Additivity.

Proof. From Theorems 1, 2 and 3 we know that Size and
Length satisfy Normalization, Monotonicity, Relocation, Ho-
mogeneity, and Additivity.

Assume f is a PEF that satisfies Normalization, Mono-
tonicity, a-Homogeneity, Relocation and Additivity. Let us
consider vector w = (x). From Theorem 1, we know
f(w) = a-z+ (1—«). Analogously, from Theorem 2 and 3,
we know that f(w) = z*. Combining these two formulas,
we get that « satisfies a-x + (1 — ) = z® forevery x € R.
For z = 2 we get 1 +a = 2. Since 1+« is a linear function,
and 2¢ is convex or concave, there are at most two solutions.
Since o = 0 and o = 1 are solutions, we get they must be the
only solutions. In result, only Size and Length satisfy all five
axioms. This concludes the proof of Theorem 4. O

Figure 1 illustrates the theoretical results of this section.

Example 1. Consider the graph from Figure 2. There are
5 paths between v and u: p1,...,ps. Paths are ordered as-
cending by the length and descending by the size.

Clearly, according to Length path p; with w(p1) =
(1,1,1,1) is the shortest one: f'(w(p1)) = 4. On the other
hand, according to Size path ps with w(ps) = (13) is the
shortest one: f*(w(ps)) = 1. Now, consider Convex Combi-
nation, Exponential and Geometric PEFs for o = 0.5.

For Convex Combination PEF, we get that f¢(w) =
((Zle w;) + k)/2 is the arithmetic average of Size and
Length. Thus, a path with the size larger by one is equivalent

to a path with Length larger by one. In result, path ps with

w(p2)=(1.5,1.5,1.5) is the shortest one: f°(w(pz2)) = 3.75.

For Geometric PEF, we get that f9(w) = ((Z:f:1 w;) -

k)l/ 2 is the geometric average of Size and Length. Thus, a
path with the doubled Size is equivalent to a path with dou-
bled Length. In result, path p3 with w(ps) = (3,3) is the
shortest one: f9(w(ps)) =~ 3.46.

Finally, consider the Exponential PEF. Here, we get that
fe(w) = Zle wil/Q. Compared to Geometric PEF, Expo-
nential PEF favors paths with the greater spread of weights.
In result, path py with w(ps) = (6,1) is the shortest one:

fe(w(ps)) = 3.45.

13

1 1 1 1

Figure 2: A sample graphs with 5 paths: p1 = (v, v1,v2,vs3,u),
p2 = (v,v4,vs5,u), p3=(v,v6,u), pa= (v, v7,u) and ps = (v, u).
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4 Centrality Measures for Weighted Graphs

In this section, we show how standard centrality measures can
be extended to weighted graphs by using a specific PEF.

We begin with the definition of distance based on such a
specific function.

Definition 2. ( f-distance) For a PEF, f, f-distance is a func-
tion d¥ : GV x V x V — R that assigns to every two nodes
v,u € Vina graph, G = (V, E,w), a real value, denoted
dé(v7 w), defined as follows:
d(v,u) = min{f(w(p)) : p € (v, u)}.

We assume dé(v,u) = o0 if Il(v,u) = 0, and dé(v,v) =0.
The f-distance is formally a distance: it satisfies non-
negativity (f returns only positive values), symmetry (graph is
undirected) and reflexivity (from the definition). However, it

is not always a metric, since it can violate triangle inequality
(in fact, if f satisfies Additivity, then f-distance is a metric).

4.1 Degree Centrality

In unweighted graphs, the Degree Centrality simply counts
the number of links. In weighted graphs, where weights
represent distance between nodes, the number of links con-
tribute positively to node’s centrality, but weights of edges—
negatively. To cope with this problem, for an arbitrary
PEF, f, graph G = (V,E,w) and node v € V such that
Ng(v) = {u1,us,...,u;} we define the Degree Centrality
for weighted graphs as follows:

D{E(G) =f (w(mul)*l,w(v,uz)*l, e ,w(uuk)*l) .

From the technical point of view, in this definition the Degree
Centrality is the result of PEF for a path that consists of edges
to neighbours of v, but with the weights inversed. Thus, PEF
is applied to edges that do not form a path. The rationale be-
hind this is as follows. PEFs aim at finding balance between
the number of edges on a path and their weights. The Degree
Centrality for weighted graphs has exactly the same goal, but
for edges of a node. In result, PEFs and the Degree Central-
ity have many similarities. For example, in unweighted case,
they both simplify to the number of edges. This connection is
especially visible for PEFs that satisfy Additivity, where each
link is considered separately. The main difference, however,
lays in Monotonicity: the bigger weight corresponds to the
higher path evaluation, but should result in the lower impor-
tance of a node.
For example, for the Geometric PEF we get:

[e%

DJ'(G) = |Ng(v)| -

1 Z 1
No()] ", &= w(v.u)
4.2 Closeness and Betweenness Centralities

Since the Closeness and Betweenness Centralities explicitly
depend on distances to other nodes, they can be directly trans-
lated to weighted graphs as follows:

-1

Z dé(v,u) ,

ueV\{v}
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{pell(s,t) : f(w(p))=dL(s,t),veEp}|
ity HPEL(s,0) : f(w(p)=df(s, )}

4.3 Additive Distance-Based Centralities

In unweighted graphs, each additive distance-based centrality
is defined by a sequence, a = (a1, as, ..., 0 ). In weighted
graphs, distance can be any real value; thus, instead of a dis-
crete sequence, we use a continuous function, a : Ry — R.
In general, an additive distance-based centrality based on a is
defined as follows:

i@ = Y alds(v.u).

ueV\{v}

B/ (G)=

As discussed in [Skibski and Sosnowska, 2018], function a
should satisfy a(1) = 1, and a(x) > a(y) for z,y € R, such
that x < y. By using a(x) = 1/z and a(x) = §* for some
0 € (0,1), we get the Harmonic and Decay Centralities:

Z 6dé (v,u) ]

weV\{v}

1
H(G) = Y ——— Y/(G)=
weV\{v} dt;(v,u)

In a similar fashion, we can define k-Step Reach Centrality:
RIM(G) = {u e V\{v} : df(v,u) <k}

To give an example, for the graph that represents the map of
public transport and f equal to Size or Length, k-Step Reach
Centrality can capture number of places that can be reached
by a direct connection or in 30 minutes.

5 Experimental Analysis
This section illustrates concepts proposed in this paper.

Random Grid: To visualize the difference of three classes
of PEFs, we present their performance on random graphs on
grids. Specifically, we generated 75 random graphs based
on 2-dimensional grids [0,80] x [0, 80]. Here, every cell is
a node in the graph and only cells in the same column or
row are connected by an edge. Each edge is created with
the probability 0.25 and its weight is the Cartesian distance
between those cells. In so doing, we obtained graphs with
6561 nodes, where each cell had on average 70 edges.

For a considered PEF, f, in every graph we selected 30%
of nodes closest to the center cell, (40, 40), according to f-
distance. Then, we combined all these selected nodes on a
single grid. Figure 3 shows the final results for Convex Com-
bination, Geometric, and Exponential PEFs parametrised by
a € {0,0.1,...,0.9,1.0}. The intensity of color illustrates
the percentage of graphs in which a given node was selected.

For each class of PEFs we can see its transition between
its border cases—Size (o = 0) and Length (o« = 1). The
class of Convex Combination PEFs very quickly becomes al-
most identical to Length. This is because, for most paths in
the graph, its Length dominates its Size (in our graphs, all
paths had the Size smaller than 13, while the Length was of-
ten larger than 50). The transitions of Geometric and Expo-
nential PEFs are much smoother. The Geometric PEFs treat
each node at a given distance from the center cell equally—on
average, the path to each such a point has the same Size and
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Figure 3: Experimental analysis of PEFs for different values of parameter c.

Length. Thus, from Relocation we should expect the same
result. Differently, the Exponential PEFs scales each distance
on the path. Inresult, edges of the darkest area are determined
by the functions ® 4 y* = c for some ¢ € R.

This visualization was inspired by the work by Faliszewski et
al. [2017] concerning multiwinner elections rules.

Public transport: As a sample application of centrality mea-
sures for weighted graphs, we have considered the graph of
public transport of Warsaw, Poland. Here, nodes represent the
stops, and edges—a direct connection by bus, tram or metro
line during a day. The weight of an edge equals the dura-
tion of the fastest connection between its ends. The resulting
graph contains 1478 nodes and 116 921 edges.

For every centrality measure, Table 1 presents the top
districts based on the average value of centralities of stops
within. Each centrality measure captures a different prop-
erty: the Degree Centrality ranks places based on the number
of fast direct connections; the Closeness Centrality evaluates
places looking on how fast we can get to any other place in
the city; finally, the Betweenness Centrality rewards places
with more possibilites to transfers. Srodmiescie (I), which is
ranked first according to all centralities, is considered to be
the center of Warsaw (see Figure 4). Interestingly, Praga Pd.
and Praga Pn., that are on the east side of Vistula take very
high places in all rankinga. The reason for that may be the
high level of routes that go through the bridges that connect
west and east sides of city.

Additionally, on Figure 4 we present a Voronoi diagram
with stops as the seeds. Specifically, a Voronoi diagram is
a partition of the plane into regions based on distance to the
specified set of points, called seeds. Each region contains one
seed and all points for which this is the closest seed. The color
of each region represents the value of the Closeness Centrality

\ Degree | Closeness | Betweenness

1 | Srodmiescie (I) | Srodmiescie (I) | Srodmiescie (I)
2 | Praga Pd. (IID) Praga Pn. (II) Praga Pn. (II)

3 | Mokotow (IV) Ochota (V) Zoliborz (VII)
4 Ochota (V) Praga Pd. (IIT) | Mokotow (IV)
5 | Zoliborz (VII) Wola (VI) Praga Pd. (III)

Table 1: The ranking of districts in Warsaw under the Degree, Close-
ness, and Betweenness centralities for Geometric PEF with o = 0.5.
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for Geometric PEF with parameter &« = 0.5. The more blue
the region is, the lower its centrality is.

6 Related Work

There were several attempts in the literature to extend classi-
cal centralities to weighted graphs and most of them focus
only on the sum of weights [Barrat er al., 2004; Brandes,
2001; Newman, 2001].

Opsabhl et al. [2010] proposed the first generalization of the
classical centrality measures that takes into account both sum
of weights and the number of edges. This class in our paper
is introduced under the name Exponential PEF. Candeloro et
al. [2016] defined two generalizations of the Degree Central-
ity. The first one, WDC, is based on the distribution of edge
weights. The second one, WSC, is a geometric mean of the
sum of weights and the number of edges. Thus, it is equiva-
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Figure 4: A Voronoi diagram of the map of Warsaw, Poland. White
regions represent well-linked parts of the city based on the graph of
the public transport.
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lent to Degree Centrality for Geometric PEF with parameter
a = 0.5 from our paper.

More recently, Stai et al. [2017] considered computational
properties of distance-based centrality measures. Cheng et
al. [2015] proposed new centrality measures for the analysis
of transportation networks. However, they depend not only on
the graph, but also additional information, such as the number
of passengers. The axiomatic characterization of the class of
distance-based centralities for unweighted graphs has been
recently proposed by Skibski and Sosnowska [2018]. For the
axiomatic characterization of different classes of centralities
see, e.g., [Skibski et al., 2018].

7 Conclusions

In this paper, we studied the problem of evaluating arbitrary
path in a weighted graph in which weights represent dis-
tance between nodes. Using the axiomatic approach, we pro-
posed three classes, parametrised by « € [0, 1], that span be-
tween Size and Length. Building upon this analysis, we pro-
posed a way to extend several classical centrality measures
to weighted graphs. In our future work, we plan to use our
analysis to compare the public transport from different cities.
Also, we are interested in creating explicit axiomatic charac-
terization of centrality measures based on discussed PEFs.
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