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Abstract
Text segmentation is a fundamental task in natu-
ral language processing that comes in two levels of
granularity: (i) segmenting a document into a se-
quence of topical segments (topic segmentation),
and (ii) segmenting a sentence into a sequence of
elementary discourse units (EDU segmentation).
Traditional solutions to the two tasks heavily rely
on carefully designed features. The recently propo-
sed neural models do not need manual feature en-
gineering, but they either suffer from sparse boun-
dary tags or they cannot well handle the issue of
variable size output vocabulary. We propose a ge-
neric end-to-end segmentation model called SEG-
BOT. SEGBOT uses a bidirectional recurrent neural
network to encode input text sequence. The model
then uses another recurrent neural network toget-
her with a pointer network to select text bounda-
ries in the input sequence. In this way, SEGBOT
does not require hand-crafted features. More im-
portantly, our model inherently handles the issue
of variable size output vocabulary and the issue of
sparse boundary tags. In our experiments, SEGBOT
outperforms state-of-the-art models on both topic
and EDU segmentation tasks.

1 Introduction
Text segmentation has been a fundamental task in natural lan-
guage processing (NLP) that has been addressed at different
levels of granularity. At a coarser level, text segmentation
generally refers to breaking a document into a sequence of
topically coherent segments, often known as topic segmenta-
tion [Hearst, 1997; Choi, 2000]. Topic segmentation is often
considered as a pre-requisite for other higher level discourse
analysis tasks like discourse parsing [Joty et al., 2015], and
has been shown to support a number of downstream NLP ap-
plications including text summarization and passage retrie-
val [Riedl and Biemann, 2012]. At a finer level, text seg-
mentation refers to breaking each sentence into a sequence
of elementary discourse units (EDUs), often known as EDU
segmentation [Marcu, 2000]. As exemplified in Figure 1,
EDUs are clause-like units that serve as building blocks for
discourse parsing in Rhetorical Structure Theory [William

[A person]EDU [who never made a mistake]EDU [never tried any-
thing new]EDU

Figure 1: A sentence with three elementary discourse units (EDUs).

and Thompson, 1988].
Both topic and EDU segmentation tasks have received a

lot of attention in the past due to their utility in many NLP
tasks. Although related, these two tasks have been addressed
separately with different sets of approaches. Both supervised
and unsupervised methods have been proposed for topic seg-
mentation. Unsupervised topic segmentation models exploit
the strong correlation between topic and lexical usage, and
can be broadly categorized into two classes: similarity-based
models and probabilistic generative models. The similarity-
based models are based on the key intuition that sentences
in a segment are more similar to each other than to senten-
ces in the preceding or the following segment. Examples
of this category are TextTiling [Hearst, 1997], C99 [Choi,
2000], and LCSeg [Galley et al., 2003]. Probabilistic gene-
rative models are based on the intuition that a discourse is a
hidden sequence of topics, each of which has its own charac-
teristic word distribution. Variants of Hidden Markov Mo-
dels (HMMs) and Latent Dirichlet Allocations (LDAs) fall
into this class. Supervised topic segmentation models are
more flexible in using more features (e.g., cue phrases, length
and similarity scores) and generally perform better than unsu-
pervised models, however, come with the price of efforts to
manually design informative features and to annotate large
amount of data. Successful methods for EDU segmentation
are mostly supervised, and they use lexical and syntactic fea-
tures [Soricut and Marcu, 2003].

While most existing topic segmentation methods use lexi-
cal similarity based on surface terms (i.e., words), it is now
generally admitted that lexical semantics are better captured
with distributed representations [Goldberg, 2017]. Further-
more, existing supervised models, for both topic and EDU
segmentation, require a large set of features manually desig-
ned for each task and domain, which demands task and dom-
ain expertise. We would envision for a system that is based
on distributed representation, and that can learn informative
features for each task and domain by itself without requiring
human effort. In this paper, we propose a generic neural ar-
chitecture that can achieve this goal.

Both topic and EDU segmentation can be treated as a se-
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Figure 2: Two classical models for sequence labeling.

quence labeling problem, where the task is to predict a se-
quence of ‘yes/no’ boundary tags at the level of sentences
in a document (for topic segmentation) or words in a sen-
tence (for EDU segmentation). Conditional random fields
(CRFs) have been the traditional models for such sequence
labeling tasks in NLP. More recently, recurrent neural net-
works with CRF output layer (RNN-CRF) as shown in Fi-
gure 2(a) have provided state-of-art results in many sequence
tagging tasks in NLP [Lample et al., 2016]. However, due
to the sparsity of ‘yes’ boundary tags in EDU and topic seg-
mentation tasks, CRFs did not provide any additional gain
over simple classifiers like MaxEnt [Fisher and Roark, 2007;
Joty et al., 2015].

Instead, we cast our segmentation problems as sequence
prediction tasks with seq2seq encoder-decoder models, which
have been quite successful in machine translation and sum-
marization. Figure 2(b) shows a toy seq2seq model, which
uses an RNN to encode an input sequence (U1, U2, U3), and
then uses another RNN as a language model to generate the
output sequence (O1, O2). However, one limitation of this
basic model is that the output vocabulary (i.e., from which
O1 and O2 are drawn) is fixed so that it needs to train diffe-
rent models with respect to different vocabularies. Whereas
in our tasks, the segmentation positions depend on the input
sequence. For example, in the input sequence in Figure 3,
there are three segment boundaries – units U3, U6, and U8.

To alleviate these issues, we propose SEGBOT, a generic
end-to-end neural model for text segmentation at various le-
vels of granularity. SEGBOT uses distributed representations
to better capture lexical semantics, and employs a bidirecti-
onal RNN to model sequential dependencies while encoding
a text. The decoder, which is an unidirectional RNN, uses a
pointer mechanism [Vinyals et al., 2015] to infer the segment
boundaries. In addition, SEGBOT can effectively handle vari-
able size vocabulary in the output to produce segment boun-
daries depending on the input sequence.

In summary, we make the following contributions:

• We propose SEGBOT– a generic end-to-end model for
text segmentation at various levels of granularity. SEG-
BOT learns informative features automatically while al-
leviating the problem of tag sparsity in output sequence
and the problem of variable size output vocabulary.

• We conduct experiments at two levels of granularity:
document-level topic segmentation, and sentence-level
EDU segmentation. Our results show that SEGBOT
achieves new state-of-the-art results on both tasks.

2 Related Work
Text Segmentation. Existing methods for text segmenta-
tion fall into two categories: unsupervised and supervised.

One branch of unsupervised methods is based on the idea of
lexical cohesion, which states that similar vocabulary tends
to be in a coherent segment. Hearst et al. [1997] introdu-
ced TextTiling, based on the fact that high vocabulary inter-
section between two adjacent blocks means high coherence
and vice versa. C99 [Choi, 2000] is an algorithm based on di-
visive clustering with a matrix-ranking schema. LCSeg [Gal-
ley et al., 2003] uses a lexical chain to identify and weight
word repetitions. U00 [Utiyama and Isahara, 2001] is a pro-
babilistic approach using dynamic programming to find a
segmentation with minimum cost. Many unsupervised met-
hods are based on topic modeling, including TopSeg [Brants
et al., 2002] and LDA based models [Misra et al., 2009;
Riedl and Biemann, 2012]. The idea is to induce semantic
relationship between words, and use topics assigned by topic
models to build sentence vector.

Supervised methods have also been proposed for text
segmentation. Hsueh et al. [2006] integrate lexical and
conversation-based features for topic and sub-topic segmen-
tation. Hernault et al. [2010] use CRF to train a discourse
segmenter with a set of lexical and syntactic features. Joty
et al. [2015] train a binary classifier to decide whether to
place an EDU boundary by using lexico-syntactic, shallow
syntactic and contextual features. Different from existing stu-
dies where features have to be carefully hand-crafted, our ap-
proach does not need feature engineering.
Sequence Labeling. Sequence labeling is a fundamental
task in NLP. Traditional methods employ machine learning
models like hidden markov models [Qiao et al., 2015] and
CRFs [Liu et al., 2011], and have achieved relatively high
performance. The drawback of these methods is that they re-
quire domain-specific knowledge in the form of hand-crafted
features and data pre-processing.

Recently, neural network models have been successfully
applied to sequence labeling. For instance, Long Short-Term
Memory (LSTM) network has been used to encode the in-
put sequence, and a CRF layer is used to decode tag se-
quence [Lample et al., 2016]. However, in text segmenta-
tion tasks, segment boundaries are sparse making CRFs less
effective [Fisher and Roark, 2007; Joty et al., 2015]. Vas-
wani et al. [2016] use seq2seq model to output tag sequence
through a LSTM layer. The drawback of these approaches is
that the output dictionary is fixed and is not dependent on the
input sequence. By using a pointer-based neural network, our
model overcomes both shortcomings simultaneously.

3 SEGBOT: Neural Text Segmentation Model
To address the problem of sparse boundary tags and variable
output vocabularies in text segmentation, we propose a gene-
ric segmentation model SEGBOT that can perform segmenta-
tion at various levels of granularity, e.g., document-level to-
pic segmentation and sentence-level EDU segmentation. In
the following, we describe our model in detail.

3.1 Model Architecture
Figure 3 shows the model architecture of SEGBOT, consis-
ting of three components: encoding phase, decoding phase
and pointing phase. Depending on the granularity of the task,
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Figure 3: The model architecture of SEGBOT. Input sequence:
U0, U1, ..., U8. Identified boundaries: U3, U6, U8.

the units in the input (U0 to U8) can be either sentences in a
document (for topic segmentation) or words in a sentence (for
EDU segmentation). We first represent each input unit with
a distributed representation. For words, we use GloVe [Pen-
nington et al., 2014], which provides good representations
that are validated on various NLP tasks including text classi-
fication and reading comprehension. For sentences, we use
embeddings from [Arora et al., 2017], which were shown to
outperform many sophisticated supervised methods on vari-
ous textual similarity tasks.

Formally, given an input sequence U = (U1, U2, . . . , UN )
of length N , we get its distributed representations X =
(x1,x2, . . . ,xN ) by looking up the corresponding embed-
ding matrix, where xn ∈ RK is the representation for the
unit Un with K being the dimensions. Our ultimate goal is to
split the input sequence into contiguous segments by identi-
fying the boundaries (e.g., U3, U6 and U8 in Figure 3).
Encoding Phase. We encode the input sequence X =
(x1,x2, . . . ,xN ) using a RNN. RNNs capture sequential de-
pendencies, and with hidden cells like long short-term me-
mory (LSTM) [Hochreiter and Schmidhuber, 1997] and gated
recurrent unit (GRU) [Cho et al., 2014], it can capture long
distance dependencies without running into the problems of
gradient vanishing or explosion. In our model, we use GRU
to encode input sequences, which is similar to LSTM but is
computationally cheaper. The GRU activations at time step n
are computed as follows:

zn = σ(Wzxn +Rzhn−1 + bz) (1)
rn = σ(Wrxn +Rrhn−1 + br) (2)
nn = tanh(Whxn +Rh(rn � hn−1) + bh) (3)
hn = zn � hn−1 + (1− zn)� yn (4)

where σ() is the sigmoid function, tanh() is the hyperbolic
tangent function, � is the element-wise multiplication, zn is
update gate vector, rn is reset gate vector, nn is the new gate
vector, and hn is the hidden state at time step n. W ,R, b are
the parameters of the encoder that we need to learn.

We use a bi-directional GRU (BiGRU) network to memo-
rize past and future information in the input sequence. Speci-
fically, each hidden state of BiGRU is formalized as:

hn =
−→
h n ⊕

←−
h n (5)

where ⊕ indicates concatenation operation,
−→
h n and

←−
h n are

hidden states of forward (left-to-right) and backward (right-

to-left) GRUs, respectively. Assuming the size of the GRU
layer is H , the encoder yields hidden states in h ∈ RN×2H .
Decoding Phase. Since the number of boundaries in the out-
put vary with the input, it is natural to use RNN-based models
to decode the output. At each step, the decoder takes a start
unit (i.e., start of a segment) Um in the input sequence as in-
put and transforms it to its distributed representation xm by
looking up the corresponding embedding matrix. It then pas-
ses xm through a GRU-based (unidirectional) hidden layer.
Formally, the decoder hidden state at a time step is computed
by:

dm = GRU(xm,θ) (6)

where θ are the parameters in the hidden layer of the deco-
der, which has the same form as described by Equations (1) –
(4). If the input sequence contains M boundaries, the deco-
der produces hidden states in d ∈ RM×H with H being the
dimensions of the hidden layer.
Pointing Phase. At each step, the output layer of our decoder
computes a distribution over the possible positions in the in-
put sequence for a possible segment boundary. For example,
considering Figure 3, as the decoder starts with input U0, it
computes an output distribution over all positions (U0 to U8)
in the input sequence. Then, for U4 as input, it computes an
output distribution over positions U4 to U8, and finally for
U7 as input, it computes a distribution over U7 to U8. Note
that unlike traditional seq2seq models (e.g., the ones used in
neural machine translation), where the output vocabulary is
fixed, in our case the number of possible positions in the in-
put sequence changes at each decoding step. To deal with
this, we use a pointing mechanism [Vinyals et al., 2015] in
our decoder.

Recall that h ∈ RN×2H and d ∈ RM×H are the hidden
states in the encoder and the decoder, respectively. We use
an attention mechanism to compute the distribution over the
possible positions in the input sequence for decoding with
input symbol Um:

umj = vT tanh(W1hj +W2dm), for j ∈ (m, . . . ,M) (7)

p(ym|xm) = softmax(um) (8)

where j ∈ [m,M ] indicates a possible position in the input
sequence, and softmax normalizes umj indicating the probabi-
lity that the unit Uj is a boundary given the start unit Um.

3.2 Model Training
We use “teacher forcing” [Lamb et al., 2016] to train our mo-
del by supplying the ground-truth start units to the decoder
RNN. This mechanism forces the RNNs to stay close to the
ground-truth start units and segment boundaries. The loss
function L is the negative log likelihood of boundary distri-
bution over the whole training set D, and can be written as:

L(ω) =
∑
D

M∑
m=1

− log p(ym|xm;ω) +
λ

2
||ω||22 (9)

where ω are the trainable parameters of the model (encoder
and decoder), and λ is the strength of L2 regularization.
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When using the RNN decoder for prediction on test exam-
ples, the ground-truth boundaries are not available. Similar to
traditional seq2seq decoders, we feed the input symbols ba-
sed on the decoded symbol at the previous step, e.g., we feed
U4 after predicting a boundary at U3 in Figure 3.

4 Experiments
We conduct two sets of experiments to evaluate the effecti-
veness of SEGBOT: segmenting a document into topically
coherent segments, and segmenting a sentence into EDUs.

4.1 Data and Metrics
Choi Dataset. For evaluating topic segmentation models, we
use the commonly used Choi dataset [Choi, 2000]. It con-
sists of 700 documents, each being a concatenation of 10 seg-
ments. A segment of a document is the first n (s.t. 3 ≤ n ≤
11, totally 4 subsets) sentences of a randomly selected docu-
ment from the Brown corpus.

We use the error metric Pk [Beeferman et al., 1999], which
is the commonest metric to evaluate topic segmentation mo-
dels. Using a sliding window of size k, Pk compares the in-
ferred segmentation with gold-standard by:

Pk =
∑

1≤s≤t≤T

1(δtru(s, t) 6= δhyp(s, t)) (10)

where a document consists of T sentences (s, t = 1, 2, ..., T ),
δ() is equal to 1 when sentences s and t belong to the same
segment in the true/hypothetical segmentation and to 0 other-
wise. 1(a 6= b) is the indicator function (equal to 1 when
a = b and to 0 otherwise), k is equal to half of the document
length divided by the number of gold segments. Note that
lower Pk means higher accuracy.
RST-DT dataset. The Rhetorical Structure Theory Dis-
course Treebank (RST-DT) [Carlson et al., 2002] is a publi-
cly available corpus manually annotated with EDU segmenta-
tion and discourse relations according to Rhetorical Structure
Theory. The RST-DT corpus is partitioned into a training set
of 347 articles (6,132 sentences) and a test set of 38 articles
(991 sentences), both from the Wall Street Journal.

Following previous work [Hernault et al., 2010; Joty et al.,
2015], we measure segmentation accuracy with respect to the
sentence-internal segmentation boundaries. That is, if a sen-
tence has 3 EDUs, which correspond to 2 inside-sentence
discourse boundaries and the end of the sentence. We me-
asure the ability of our model to correctly identify these 2
boundaries within the sentence. Let g be the total number of
sentence-internal boundaries in the human annotation, h be
the total number of sentence-internal boundaries in the mo-
del output, and c be the total number of correct boundaries in
the model output. Then, we measure Precision, Recall, and
F-score for segmentation performance as follows:

Precision =
c

h
, Recall =

c

g
, and F–score =

2c

g + h
(11)

4.2 Training Details
For Choi dataset, we split it into training and test sets with the
same proportion as used in previous studies (see Section 4.3).

Parameters Choi RST-DT

Learning rate 0.001 0.01
Regularization 1e−4 1e−4

Dropout 0.5 0.2
GRU dimensionality 128 64
GRU depth 3 6
Batch size 20 80

Table 1: Hyper-parameter settings.

Group Method Pk (%)

A

TextTiling [Hearst, 1997] 45.25
C99 [Choi, 2000] 10.50
U00 [Utiyama and Isahara, 2001] 7.75
ADDP [Ji and Zha, 2003] 5.68
TSM [Du et al., 2013] 0.92
GraphSeg [Glavaš et al., 2016] 6.64

B

TopSeg [Brants et al., 2002] 8.22
F04 [Fragkou et al., 2004] 4.20
M09 [Misra et al., 2009] 2.72
SEGBOT (our model) 0.33

C
TopicTiling [Riedl and Biemann, 2012] 0.88
BiLSTM-CRF [Lample et al., 2016] 0.67
SEGBOT (our model) 0.11*

Table 2: Segmentation results on Choi dataset. Significant impro-
vement over BiLSTM-CRF is marked with * ( p-value < 0.01).

For RST-DT dataset, training/test partition is provided. We
use the first 10% data of shuffled training set as development
set for both Choi dataset and RST-DT dataset.

We use GloVe 300-dimensional pre-trained word embed-
dings released by Stanford1, and the word vectors are fixed
without fine-tuning during training. We use Adam optimi-
zer to update model parameters. In addition, we use gradient
clipping by a max norm of 5 and l2 -regularization during
training. Table 1 gives the details of other hyper-parameter
settings. SEGBOT2 is implemented with PyTorch framework
and evaluated on NVIDIA Tesla P100 GPU.

4.3 Results

Topic Segmentation. In Table 2, we report the performance
of SEGBOT and prominent methods on Choi dataset. Note
that the methods in Group A involve no training set, but still
require specifying some hyper-parameters. In Group B, the
full dataset is split into 500 documents for training and 200
documents for test. In Group C, the full dataset is split into
630 for training and 70 for test. For fair comparison, the
data partition of SEGBOT is consistent with these existing
methods. Especially, we reimplement BiLSTM-CRF model,
which is the state-of-the-art neural model for sequence labe-
ling. Except BiLSTM-CRF, the Pk of baselines are from pu-
blished results by averaging the 4 subsets.

1 http://nlp.stanford.edu/projects/glove/
2An online version of SEGBOT (EDU segmentation) is available

at http://138.197.118.157:8000/segbot/.
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Figure 4: Visualization of topic segmentation. The boundaries of
topics are in yellow. This document consists of 63 sentences. The
upper part illustrates the boundary distribution and the lower part
shows segmentation of S14-S25, which consisting of three topics:
“Utopia” , “Oxidation ponds”, and “Polycrystalline Afj".

From the results, we make the following observations: (1)
The performance of SEGBOT significantly outperforms all
existing methods to date. (2) The performance of unsupervi-
sed methods (in Group A) is relatively poor as these methods
do not utilize training data to learn accurate models. TSM
achieves relatively high accuracy because it estimates para-
meters from the whole corpus, not only the test data. (3)
SEGBOT outperforms all topic-modeling-based approaches
(TSM, TopSeg, M09, and TopicTiling). Specifically, SEG-
BOT achieves an absolute Pk reduction of 87.5% over the
state-of-the-art topic modeling method, i.e., TopicTiling. One
reason is that SEGBOT is based on the distributed representa-
tions of words which capture more semantic information over
the topic modeling methods. (4) SEGBOT significantly out-
performs the state-of-the-art neural model (BiLSTM-CRF)
with an absolute Pk reduction of 83.6% (p-value < 0.01).
This result shows that SEGBOT can effectively capture the de-
pendencies of input sentence when the boundaries are sparse.

Figure 4 shows an example topic segmentation using SEG-
BOT. The upper part of this figure illustrates the boundary
distribution. The x-axis shows gold boundaries while the y-
axis shows predicted boundaries by SEGBOT. The heat map
indicates that SEGBOT can effectively partition the document
into ten topically coherent segments. We only show details
of S14-S25 in the lower part of the figure. The predicted
boundaries are highlighted in yellow. Observe that SEGBOT
successfully identifies topic shifts (from “Utopia” to “Oxida-
tion ponds”, to “Polycrystalline Afj”).
EDU Segmentation. We compare SEGBOT with six base-
lines. HILDA [Hernault et al., 2010] and SPADE [Soricut
and Marcu, 2003] are two publicly available discourse seg-
menters, which are based on syntactic and lexical features.
F&R [Fisher and Roark, 2007] is a classification approach
using features derived from finite-state and context-free anno-
tations. DS [Joty et al., 2015] is a binary Logistic Regression
classifier. BiLSTM-CRF is a neural model for sequence la-

Method Precision Recall F-score

HILDA [Hernault et al., 2010] 77.9 70.6 74.1
SPADE [Soricut and Marcu, 2003] 83.8 86.8 85.2
F&R [Fisher and Roark, 2007] 91.3 89.7 90.5
DS [Joty et al., 2015] 88.0 92.3 90.1
BiLSTM-CRF [Lample et al., 2016] 89.1 87.8 88.5
SEGBOT (our model) 91.6* 92.8* 92.2*

Table 3: Segmentation results on RST-DT Dataset. Significant im-
provements over BiLSTM-CRF is marked with * ( p-value < 0.01).

Word Embeddings Precision Recall F-score

GloVe vectors with fine-tuning 87.5 88.4 87.9
GloVe vectors without fine-tuning 91.6 92.8 92.2

Table 4: Performance w.r.t. fine-tuning and fixed word embeddings.

beling. We ran HILDA with its default settings. For SPADE,
we applied the same modifications to its default settings as
described in [Fisher and Roark, 2007], which delivers signifi-
cant improvement over its original version. We reimplement
DS and BiLSTM-CRF in our experiments. F&R [Fisher and
Roark, 2007] segmenter is not available, so its performance
is taken from the published results.

Table 3 reports precision, recall and F-score, of SEGBOT
and six baseline systems. We make the following observa-
tions from the results. (1) SEGBOT outperforms all base-
lines on all measures. The improvements against baselines
are from 0.3% to 17.6% on precision, 0.5%-31.4% on recall,
and 1.8%-24.4% on F-scores, respectively. (2) It is worth
mentioning that SEGBOT does not require any tedious fea-
ture engineering. Taking pre-trained word embeddings as in-
put, SEGBOT outperforms all models that require carefully
designed features including HILDA, SPADE, F&R and DS.
Since SEGBOT does not need any syntactic parser or tag-
ger, it can easily be transfered to other resource poor langua-
ges and domains. (3) BiLSTM-CRF takes the same input as
our model, i.e., pre-trained word embeddings. SEGBOT be-
ats BiLSTM-CRF with an absolute F-score improvement of
4.2% (p-value < 0.01).

Figure 5 gives an example sentence segmentation by SEG-
BOT. It segments the sentence “Sheraton and Pan Am said
they are assured under the Soviet joint-venture law that they
can repatriate profits from their hotel venture.” into three
EDUs, with boundaries “said”, “law” and “.”, respectively.
We observe that the identified boundaries have dominant at-
tention weights, which implies that SEGBOT can successfully
learn sentence structure and syntax.

4.4 Fixed Word Embeddings vs Fine-Tuning
Recall that SEGBOT takes the pre-trained GloVe vectors as
input. During the training process, the word embeddings can
also be fine-turned if we make them as learnable parameters.
Accordingly, only those words appear in our training data will
have embeddings. Table 4 reports the performance on RST-
DT dataset, with and without fine-tuning the GloVe vectors.
Observe that the performance of using off-the-shelf GloVe
vectors, i.e., without fine-tuning, is much better than the re-
sults of using fine-tuned embeddings.
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Figure 5: Visualization of EDU segmentation.
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Figure 6: The venn diagram of three vocabularies.

The main reason is that fine-tuning results in more out-
of-vocabularies on test data. Figure 6 illustrates the relati-
onships among GloVe vocabulary, training data vocabulary,
and test data vocabulary. It shows GloVe vocabulary co-
vers 96.5% of training vocabulary and 98% of test vocabu-
lary. With fine-tuning, only 76.6% of test vocabulary ap-
pear in training data (B ∩ C = 3, 489), resulting 1,066 (i.e.,
4, 555 − 3, 489) words as “unknown”. In short, GloVe vo-
cabulary covers more words in test data than the fine-tuned
embeddings. On the other hand, the higher performance of
SEGBOT obtained on GloVe vocabulary shows that our mo-
del well handles those words that only appear in test data, i.e.,
out-of-training-vocabulary words.

4.5 Effect of Pre-trained Word Embeddings
To test the impact of pre-trained word embeddings, we con-
ducted experiments with two other sets of publicly available
word embeddings, namely Google embeddings3 trained on
100 billion words from Google News, and FastText embed-
dings4 trained on 600 billion words from Common Crawl.
We also include random initialization as a reference. Table 5
reports the performance of SEGBOT with the different word
embeddings as input, on RST-DT dataset for EDU segmenta-
tion. Note that the word embeddings of Google, FastText and
GloVe are fixed without fine-tuning. The embeddings with
random initialization are learned during training.

There results show that Google embedding delivers the we-
akest performance. One possible reason is vocabulary mis-
match. Google embedding excludes punctuation marks, di-
gits, and stopwords, which are extremely important for EDU
segmentation. FastText embedding obtains similar perfor-
mance with GloVe embedding, as both were trained in case-
sensitive manner, including common symbols such as punc-
tuation marks, digits, and stopwords.

4.6 Error Analysis
In Figure 7, we show two error examples, one for topic seg-
mentation and the other for EDU segmentation. When the

3 https://code.google.com/archive/p/word2vec/
4 https://fasttext.cc/docs/en/english-vectors.html

Word Embeddings Precision Recall F-score

Random initialization (300d) 85.8 85.5 85.6
Google embeddings (300d) 84.5 84.6 84.5
FastText embeddings (300d) 91.1 93.0 92.0
GloVe embeddings (300d) 91.6 92.8 92.2

Table 5: Results of SEGBOT with different word embeddings on
EDU segmentation.

decoder RNNs reach sentence S27, SEGBOT predicts boun-
dary at S32 and misses the gold boundary S29. However,
missing this gold boundary does not affect SEGBOT to cor-
rectly detect the subsequent boundaries (S32 and S35).

For EDU segmentation shown in Figure 7, there are 3 gold
boundaries in bold font: “Until Mr. Luzon took the helm last
November, Banco Exterior was run by politicians who lacked
either the skills or the will to introduce innovative changes.”.
SEGBOT wrongly predicts “skills” as a boundary. Again, this
wrongly predicted boundary does not affect the correct de-
tection of “.” to be the next boundary.

5 Conclusion
In this paper, we propose SEGBOT, an end-to-end neural mo-
del for text segmentation at different levels of granularity.
SEGBOT does not need hand-crafted features or any prior
knowledge of the given texts. It effectively addresses the spar-
sity of boundary tags in text segmentation tasks. More impor-
tantly, compared with existing neural models, SEGBOT has
the key advantage of inherently handling variable size output
vocabulary. Through two sets of experiments, on document-
level topic segmentation and sentence-level EDU segmenta-
tion tasks respectively, we have demonstrated the effective-
ness of SEGBOT against state-of-the-art solutions.
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