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Abstract
Endowing a chatbot with personality is challeng-
ing but significant to deliver more realistic and nat-
ural conversations. In this paper, we address the
issue of generating responses that are coherent to
a pre-specified personality or profile. We present
a method that uses generic conversation data from
social media (without speaker identities) to gener-
ate profile-coherent responses. The central idea is
to detect whether a profile should be used when re-
sponding to a user post (by a profile detector), and
if necessary, select a key-value pair from the pro-
file to generate a response forward and backward
(by a bidirectional decoder) so that a personality-
coherent response can be generated. Furthermore,
in order to train the bidirectional decoder with
generic dialogue data, a position detector is de-
signed to predict a word position from which de-
coding should start given a profile value. Manual
and automatic evaluation shows that our model can
deliver more coherent, natural, and diversified re-
sponses.

1 Introduction
Generating human-level conversations by machine has been
a long-term goal of AI since the Turing Test [Turing, 1950].
However, as argued by [Vinyals and Le, 2015], the current
conversational systems are still unable to deliver realistic con-
versations to pass the Test. Amongst the many limitations, the
lack of a coherent personality is one of the most challenging
difficulties. Though personality is a well-defined concept in
psychology [Norman, 1963; Gosling et al., 2003], while in
this paper, the personality of a chatbot refers to the character
that the bot plays or performs during conversational interac-
tions. In this scenario, personality settings include age, gen-
der, language, speaking style [Walker et al., 1997], level of
knowledge, areas of expertise, and other explicit and implicit
cues that may portray character [Shum et al., 2018]1 .

A chatbot needs to present a coherent personality to gain
confidence and trust from the user [Yu et al., 2016]. Person-

∗ Corresponding Author: Minlie Huang.
1Though personality is a more abstract and broader concept, we

use personality/profile/identity interchangeably in this paper.

General seq2seq model
User: Are you a boy or a girl?
Chatbot: I am a boy.
User: Are you a girl?
Chatbot: Yes, I am a girl.
Our model with personality
User: Are you a boy or a girl?
Chatbot: I am a handsome boy.
User: Are you a girl?
Chatbot: No, I am a boy.

Table 1: Exemplar conversations with/without coherent personality.

ality can make the chatbot easier to communicate with, more
predictable and trustable, and therefore helps to establish an
emotional connection with the user [Shum et al., 2018]. Thus,
generating responses that reflect a coherent personality is im-
portant for the chatbot [Güzeldere and Franchi, 1995].

However, existing generation models are unable to demon-
strate coherent personality, as exemplified in Figure 1. Re-
cent works proposed in [Li et al., 2016] and [Al-Rfou et al.,
2016] can handle implicit personality using user embeddings
in response generation (projecting each user into a vector).
However, such models can not assign an explicit profile to
generate coherent responses. Moreover, these models need to
be trained on dialogue data from many different users, which
is expensive and has a sparsity issue: some users have very
few dialogue data.

In this paper we define personality as a set of profile keys
and values 2 and propose a model consisting of three key
modules: a profile detector which detects whether a profile
key and which key should be addressed, a bidirectional de-
coder that generates a response backward and forward from
a selected profile value, and a position detector which pre-
dicts a proper word position at which a profile value can be
replaced during the training of the decoder. The contributions
of this paper are two-fold:
First, we address a novel problem of endowing a chatbot with
an explicit personality or profile, which allows system devel-
opers to control the profile of a chatting machine specifically.
Second, instead of just learning subtle, implicit personality

2The profile keys include name, gender, age, location, constella-
tion, etc.
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from speaker-tagged dialogue data, our model deals with spe-
cific, explicit personality from generic dialogue data. Our
model does not depend on speaker-tagged dialogue data
which are more expensive and sparse.

2 Related Work

There has been a large amount of work for dia-
logue/conversation generation. These works can be catego-
rized into task-oriented [Young et al., 2013] or chat-based.
Recently, researchers found that social data such as Twit-
ter/Weibo posts and replies [Ritter et al., 2011; Shang et al.,
2015], and movie dialogues can be used to learn and generate
spoken language.

Large-scale conversation generation with social media data
was firstly proposed in [Ritter et al., 2011] and has been
greatly advanced by applying sequence-to-sequence models
[Sutskever et al., 2014; Shang et al., 2015; Serban et al.,
2016]. Many studies are focusing on improving the gener-
ation quality. These works include: dealing with unknown
words [Gu et al., 2016; Gulcehre et al., 2016], avoiding uni-
versal responses [Jiwei Li, 2016], generating more diverse
and meaningful responses [Mou et al., 2016], and many more.

As argued by [Vinyals and Le, 2015], it’s still quite im-
possible for current chatbots to pass the Turing Test, while
one of the reasons is the lack of a coherent personality.
Though personality has been well defined in psychology
[Norman, 1963], it is implicit, subtle, and challenging to
be revealed in language generation. Linguistic style can
be an indicator of personality [Mairesse and Walker, 2006;
Mairesse et al., 2007], and conversation can be clues for per-
sonality recognition [Walker et al., 1997; 2012]. In reverse,
spoken language can be generated in accordance to particular
personality [Mairesse and Walker, 2007].

A persona generation model can be seen in [Li et al., 2016]
where implicit speaker-specific conversation styles are rep-
resented by user embeddings. And a neural generative dia-
log model was proposed in [Kottur et al., 2017] which con-
ditioned on speakers as well as context history. Our work
differs from this work significantly: our task is to endow
the chatbot with an explicit personality while the previous
works learn implicit persona. In other words, our task re-
quires to generate responses that are coherent to the chatbot’s
pre-specified personality. Further, [Li et al., 2016] and [Kot-
tur et al., 2017] requires many dialogue data from different
users while our model is trained on generic dialogue data.

Another related work is generative question answering
(GenQA) [Yin et al., 2015] which generates a response con-
taining an answer extracted from a knowledge base (KB).
However, endowing a chatbot with personality is more than
just question answering over KB, where there arise challeng-
ing problems such as semantic reasoning and conversation
style modeling. Further, GenQA requires that the answer
from KB must appear in the response to provide sufficient
supervision while our work avoids the limitation by applying
a position detector during training.

3 Model
3.1 Task Definition
The task can be formally defined as follows: given a post
X = x1x2 · · ·xn, and an explicit profile defined as a set of
key-value pairs {< ki, vi > |i = 1, 2, · · · ,K}, the task aims
to generate a response Y = y1y2 · · · ym that is coherent to
the profile. We consider several common attributes in per-
sonality including name, gender, age, weight, location, and
constellation. The generation process can be briefly stated as
below:

P (Y |X, {< ki, vi >})
=P (z = 0|X) · P fr(Y |X)

+P (z = 1|X) · P bi(Y |X, {< ki, vi >})
(1)

where P (z|X) is the probability of using the profile
given post X , which is computed by the Profile Detector;
P fr(Y |X) =

∏m
t=1P

fr(yt|Y<t, X) is given by a general
forward decoder, the same as [Sutskever et al., 2014], and
P bi(Y |X, {< ki, vi >}) is given by a Bidirectional Decoder.

Note that post/response pair < X,Y > is collected from
social media, and the profile value may not occur in the re-
sponse Y at all. This leads to the discrepancy between train-
ing and test, as described in the Position Detector section.

3.2 Overview

Figure 1: The overall process.

Our model works as follows (see Figure 1): given a post,
the profile detector will predict whether the profile should be
used. If not, a general seq2seq decoder will be used to gen-
erate the response; otherwise, the profile detector will further
select an appropriate profile key and its value. Starting from
the selected profile value, a response will be generated for-
ward and backward by the bidirectional decoder. To train the
bidirectional decoder on generic dialogue data (see Figure 2),
the position detector predicts a word position from which de-
coding should start given the selected profile value. Note that
the position detector will not be used during test.

3.3 Encoder
The encoder aims to encode a post to a vector representation.
Given a post X = x1x2 · · ·xn, the hidden states of the post
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h1, h2, · · ·, hn are obtained by a gated recurrent unit (GRU)
[Chung et al., 2014], as follows:

ht = GRU(ht−1,xt) (2)

where xt is the embedding of the t-th word xt.

3.4 Profile Detector
The profile detector has two roles: first to detect whether the
post should be responded with the profile, and second to se-
lect a specific < key, value > to be addressed in the re-
sponse. The first role of the profile detector is defined by
the probability P (z|X) (z ∈ {0, 1}) where z = 1 means the
profile should be used. For instance, if the post is “how are
you today”, P (z = 1|X) ≈ 0, while if the post is “how old
are you”, P (z = 1|X) ≈ 1.
P (z|X) is a binary classifier trained on labeled data. More

formally, the probability is computed as follows:

P (z|X) = P (z|h̃) = σ(Wph̃) (3)

where Wp is the parameter of the classifier and h̃ =
∑

j hj ,
simply the sum of all hidden states, but other elaborated meth-
ods such as attention-based models are also applicable.

The second role of the profile detector is to decide which
profile value should be addressed in a generated response.
This is implemented as follows:

βi = MLP([h̃,ki,vi]) = softmax(W · [h̃;ki;vi]) (4)

whereW is the weight and ki/vi is the embedding of a pro-
file key/value respectively. h̃ =

∑
j hj is the representation

of the post. β is a probability distribution over profile keys.
The optimal profile value is selected with the maximal

probability: ṽ = vj where j = argmaxi(βi). As long
as a profile value ṽ is obtained, the decoding process will be
determined by the bidirectional decoder, as follows:

P bi(Y |X, {< ki, vi >}) = P bi(Y |X, ṽ) (5)

3.5 Bidirectional Decoder
This decoder aims to generate a response in which a profile
value will be mentioned. Inspired by [Mou et al., 2016], we
design a bidirectional decoder which consists of a backward
decoder and a forward decoder, but with a key difference that
a position detector is employed to predict a start decoding
position.

Suppose a generated response is Y = (Y b, ṽ, Y f ) = (yb1,
· · · , ybt−1, ṽ, yft+1, · · · , yfm) where ṽ is a selected profile
value. The bidirectional decoder will generate Y b in a back-
ward direction and Y f forward. The backward decoder (P b)
generates Y b from the given profile value ṽ to the start of
the response. The forward decoder (P f )3 generates Y f from
ṽ to the end of the response, but takes as input the already
generated first half, Y b. The process is defined formally as

3Note that this decoder is different from P fr(yt|Y<t, X).

follows:
P bi(Y |X, ṽ) = P b(Y b|X, ṽ) ∗ P f (Y f |Y b, X, ṽ))

P b(Y b|X, ṽ) =
1∏

j=t−1
P b(ybj |Y b

>j , X, ṽ)

P f (Y f |Y b, X, ṽ) =
m∏

j=t+1

P f (yfj |Y
f
<j , Y

b, X, ṽ)

(6)

In order to encode more contexts in the forward decoder,
the first half of a generated response (Y b), along with the pro-
file value (ṽ), serves as initial input to the forward decoder.
The probability P b and P f is calculated via

P b(ybj |Y b
>j , X, ṽ) ∝MLP([sbj ;y

b
j+1; c

b
j ])

P f (yfj |Y
f
<j , Y

b, X, ṽ) ∝MLP([sfj ;y
f
j−1; c

f
j ])

(7)

where s(∗)j is the state of the corresponding decoder, c(∗)j

is the context vector, and ∗ ∈ {b, f} where b indicates the
backward decoder and f the forward decoder. The vectors
are updated as follows:

s
(∗)
j = GRU(s

(∗)
j+l, [y

(∗)
j+l; c

(∗)
j ])

c
(∗)
j =

n∑
t=1

α
(∗)
j,t ht

(8)

where α(∗)
j,t ∝ MLP([s

(∗)
j+l,ht]) can be viewed as the simi-

larity between decoder state s(∗)j+l and encoder hidden state
ht, l = 1 when ∗ = b (backward), and l = −1 when
∗ = f (forward). And these MLPs have the same form as
Eq. 4, but with different parameters.

3.6 Position Detector

Figure 2: The training process of the model. Given a pair <
X,Y >, the position detector will predict a position小提琴(violin)-
4 at which the profile value 钢琴(piano) can be replaced, and the
position will be used to train the bidirectional decoder.

The position detector is designed to provide more supervi-
sion to the bidirectional decoder. It is designed to provide a
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start decoding position to the decoder during training. For in-
stance, given a post X =“你(you)-1有(have)-2什么(what)-
3 特长(speciality)-4 ？-5 (what’s your speciality?)4” and a
response Y =“我(I)-1 非常(very)-2 擅长(good at)-3 小提
琴(violin)-4(I am good at playing violin)”, and a profile key
value pair “<特长,钢琴> (< hobby, piano >)”, the position
detector will predict that “小提琴(violin)-4” in the response
can be replaced by the profile value “钢琴(piano)” to ensure
grammaticality. The predicted position “小提琴(violin)-4”
is then passed to the decoder (see Eq. 6) to signal the start
decoding position.

As mentioned, the bidirectional decoder starts from a pro-
file value to generate the entire sequence at the test stage.
However, in our training dataset, the profile values may be
rarely mentioned in the responses. For instance, given the
profile key value pair <爱好,冰球> (< hobby, hockey >),
the value 冰球(hockey) rarely occurs in the training corpus.
In other words, even though we have a training instance
(X,Y,< k, v >), the value (v) may not occur in Y at all.
Hence, the bidirectional decoder is not aware from which
word decoding should start. This leads to the discrepancy
between training and test: during training, the decoder is un-
aware of the start decoding position but during test, the start
decoding word is specified.

This issue makes our work differ substantially from previ-
ous approaches where supervision is directly observable ei-
ther between post and response [Gu et al., 2016] or between
response and knowledge base [Yin et al., 2015]. Experiments
also show that the position detector contributes much to the
performance improvement than a random position picking
strategy [Mou et al., 2016].

In order to find an appropriate position at which the profile
value can be replaced, we need to estimate the probability:
P (j|y1y2 · · · ym, < k, v >)), 1 ≤ j ≤ m which indicates
how likely the word yj can be replaced by the profile value v.
We apply a simple technique to approximate the probability:
a word can be replaced by a given profile value if the word
has the maximal similarity.

P (j|Y,< k, v >)) ∝ cos(yj ,v) (9)

where cos(yj ,v) denotes the cosine similarity between a
word in a response and a profile value. More elaborated tech-
niques, for instance, language models, will be studied as fu-
ture work.

3.7 Loss Function and Training
Two loss functions are defined: one on the generation prob-
ability and the other on the profile detector. The first loss is
defined as below:

L1(θ, D
(c), D(x,y))

=−
∑

(X,Y )∈D(c)∪D(pr)

logP (Y |X, {< ki, vi >})

=−
∑

(X,Y )∈D(c)

logP fr(Y |X)−
∑

(X,Y )∈D(pr)

logP bi(Y |X, ṽ)

(10)

4The number indicates the position of each word.

The first term is the negative log likelihood of observingD(c)

and the second term for D(pr). ṽ is a word in Y whose po-
sition is predicted by the position detector during training.
D(pr) consists of pairs where a post is related to a profile key
and its response gives a meaningful reaction to the post, and
D(c) has only general post-response pairs.

The two decoders (P fr and P bi) have no shared param-
eters. Since the number of instances in D(c) is much larger
than that of D(pr), we apply a two-stage training strategy:
D(c) will be used to train P bi at the early stage for several
epoches, where ṽ is a randomly chosen word in a response,
and then D(pr) for further training at the later stage.

The above formulation generally adopts the hard form of
P (z|X) (see Eq. 3): P (z = 1|X) = 1 for profile-related
pairs and P (z = 1|X) = 0 for others. In order to better
supervise the learning of the profile detector, we define the
second loss and add it to the first one with a weight α as the
overall loss (i.e., L = L1 + αL2):

L2(θ,D
(pb), D(pr))

=−
∑

(X,Y,z)∈D(pb)

logP (z|X)−
∑

(X,Y,k̂)∈D(pr)

K∑
j=1

β̂j logβj

(11)

where the first term is for binary prediction of using profile or
not, and the second for profile key selection. k̂ is the profile
key whose value should be addressed, K is the total number
of keys, β is the predicted distribution over profile keys as
defined by Eq. 4, and β̂ is one-hot representation of the gold
distribution over keys. < X,Y, z > is obtained by manual
annotation while (X,Y, k̂) is obtained by matching the key-
words and synonyms in the profile with the post, which is
noisy. This works well in practice and reduces manual labors
largely.

4 Experiment
4.1 Data Preparation
We prepared several datasets5:
Weibo Dataset (WD) - D: We collected 9,697,651 post-
response pairs from Weibo. The dataset is used for training
P fr(Y |X) and P bi(Y |X, ṽ) at the early stage and 10,000
pairs are used for validation to make early stop.
Profile Binary Subset (PB - D(pb) ∈ D): We extracted
76,930 pairs from WD for 6 profile keys ({name, gender, age,
location, weight, constellation}) with about 200 regular ex-
pression patterns. The dataset is annotated by 13 annotators.
Each pair is manually labeled to positive if a post is asking
for a profile value and the response is a logic reaction to the
post, or negative otherwise.

This dataset is used to train the binary classifier
(P (z|X)) (see D(pb) in Eq. 11). 3,000 pairs are used for
test and the remainder for training.
Profile Related Subset (PR - D(pr) ∈ D(pb)): This dataset

5The data are available at: http://coai.cs.tsinghua.
edu.cn/hml/dataset/#AssignPersonality
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only contains pairs whose posts are positive in PB. In total,
we have 42,193 such pairs. This dataset is used to train the
bidirectional decoder.
Manual Dataset (MD): This dataset has 600 posts written
by 4 human curators, including 50 negative and 50 positive
posts for each key. A positive post for a profile key (e.g., how
old are you?) means that it should be responded by a pro-
file value, while a negative post (e.g., how are you today?)
should not. This dataset is used to test the performance on
real conversation data rather than social media data.

4.2 Experimental Settings
In our experiments6, the encoder and decoders are all have 4
layers of GRUs with a 512-dimensional hidden state. The
dimension of word embedding is set to 100. The vocab-
ulary size is limited to 40, 000. The word embeddings
are pre-trained on an unlabeled corpus (about 60, 000, 000
Weibo posts) with word2vec. And the other parameters
are initialized by sampling from a uniform distribution
U(−sqrt(3/n), sqrt(3/n)), where n is the dimension of pa-
rameters. Training is conducted by stochastic gradient de-
scent (SGD) with a mini-batch of 128 pairs. The learning
rate is initialized with 0.5 and the decay factor is 0.99.

4.3 Human Evaluation
We evaluated our model at both post and session level. At the
post level, three metrics (naturalness, logic, and correctness)
are defined to evaluate the response generated by each model.
At the session level, the models are evaluated from the aspects
of consistency and variety to justify the performance in the
real conversational setting.

We named our model Personality-Coherent Conversation
Machine (PCCM) and compared it with several baselines:
Seq2Seq: a general sequence to sequence model [Sutskever
et al., 2014].
Seq2Seq + Profile Value (+PV): if the profile detector de-
cides that a profile value should be used (P (z|X) > 0.5), the
response is simply the value of the key decided by the profile
detector (see Eq. 4); otherwise, a general seq2seq decoder
will be used.
Seq2Seq + Profile Value Decoding (+PVD): the response is
generated by a general seq2seq decoder which starts decod-
ing forwardly from the value of the selected key.
PCCM-Pos: Instead of using a predicted position obtained
by the position detector to start the decoding process, the bidi-
rectional decoder in this setting randomly picks a word in a
response during training, the same as [Mou et al., 2016].

Post-level Evaluation
To conduct post-level evaluation, we used 600 posts from
MD, 50 positive/negative posts respectively for each key.
Each post is input to all the models to get the correspond-
ing responses. Thus, each post has 5 responses and these
responses are randomly shuffled and then presented to two
curators. Post-response pairs are annotated according to the
following metrics, based on a 1/0 scoring schema:
Naturalness (Nat.) measures the fluency and grammaticality

6The code is available at: https://github.com/
qianqiao/AssignPersonality

of a response. Too short responses will be judged as lack of
naturalness.
Logic measures whether the response is a logical reaction to
a post. For instance, for post “how old are you”, a logical
response could be “I am 3 years old” or “I do not know”.
Correctness (Cor.) measures whether the response provides
a correct answer to a post given the profile. For instance, for
post “how old are you”, if the profile has a key value pair
like < age, 3 >, responses like “I am 18” will be judged as
wrong.

Each response is judged by two curators. The Cohen’s
Kappa statistics are 0.46, 0.75 and 0.82 for naturalness, logic,
and correctness respectively. Naturalness has a rather lower
Kapp because it is more difficult to judge.

Method Nat. Logic Cor.
Seq2Seq 71.4% 38.7% 22.3%

Seq2Seq +PV 85.4% 51.3% 40.2%
Seq2Seq +PVD 84.7% 51.1% 40.3%

PCCM-Pos (ours) 87.4% 50.0% 41.8%
PCCM (ours) 88.9% 55.9% 44.2%

Table 2: Evaluation of responses to the 600 posts from MD.

Chinese English(Translated)
U:你还没说你几岁呢 U:You haven’t told me your age.
S:我三岁了 S:I’m three years old.
U:你今年有15了不 U:Are you 15 years old or not?
S:我还没到呢 S:I’m not yet.
U:你多大啦 U:How old are you?
S:3岁了 S:Three years old.

Table 3: Samples of consistent conversations generated by our
model. U/S indicates User/System, respectively.

Results in Table 2 support the following statements: First,
our model is better than all other baselines in all metrics, indi-
cating that our model can generate more natural, logical, and
correct responses; Second, in comparison to simply respond-
ing with a profile value (Seq2Seq+PV) where the responses
are generally too short, our model can generate more natural
responses; Third, the position detection contributes to better
generation, in comparison to a random position (PCCM vs.
PCCM-Pos).

Session-level Evaluation
In order to compare these models in real conversation ses-
sions, we randomly generated sessions based on MD. For
each profile key, we randomly chose 3 positive posts7 from
MD, generated responses to the 3 posts for each model, and
obtained a session of 3 post-response pairs. In this way, 240
sessions are generated, and each key has 40 sessions. The
sessions are manually checked with the following metrics:
Consistency measures whether there is a response contradic-
tory to the given profile. Score 1 indicates that all the three
responses are consistent to the profile, and score 0 otherwise.

7A positive post must be responded with a profile value.
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Variety measures the language variety of the three responses
in a session. Score 1 indicates that the linguistic patterns and
wordings are different between any two of them, and score 0
otherwise.

Results are shown in Table 4 and we presented some ses-
sion examples in Table 3. We can clearly see the following
observations:
1) Our model is remarkably better than all the baselines w.r.t
both metrics. Results of our model against Seq2Seq+PVD
indicate that the bidirectional decoder can generate responses
of much richer language variety. The results of PCCM-Pos
show that the position detector improves consistency and va-
riety remarkably.
2) if simply responding with a profile value (Seq2Seq+PV),
the model can obtain good consistency but very bad language
variety, which is in line with the intuition.
3) The general Seq2Seq model is too weak to generate con-
sistent or linguistically various responses.

Method Consistency Variety
Seq2Seq 2.1% 1.6%

Seq2Seq +PV 58.3% 2.1%
Seq2Seq +PVD 47.5% 10.0%

PCCM-Pos (ours) 46.7% 21.2%
PCCM (ours) 60.8% 33.3%

Table 4: Evaluation on the 240 sessions generated from MD.

4.4 Automatic Evaluation
We also presented results of automatic evaluation for the pro-
file detector and position detector.

Profile Detection
The profile detector is evaluated from two aspects: whether
a profile should be used or not (P (z = 1|X)), and whether
a profile key is correctly chosen. Note that the prediction of
profile key selection is cascaded on that of P (z = 1|X).

Dataset (# samples) Binary profile Key selection
PB (3000) 85.1% 74.8%
MD (600) 82.0% 70.5%

Table 5: Classification accuracy of the profile detector.

The classifiers are trained on Weibo social data. Results in
Table 5 show that the profile detector obtains fairly good ac-
curacy. But the classifiers have a noticeable drop when tested
on the manual dataset. This indicates that real human conver-
sations are different from Weibo social interaction data.

Profile Key Acc Profile Key Acc
Name 35.0% Gender 96.0%
Age 98.5% Weight 85.5%

location 99.0% Constellation 100.0%

Table 6: Accuracy for predicting the start decoding position.

Position Detection
As mentioned previously, the position detector plays a key
role in improving the naturalness, logic, and correctness of
responses (see PCCM vs. PCCM-pos in Table 2), and the
consistency and variety of conversational sessions (see Table
4). Thus, it is necessary to evaluate the performance of this
module separately.

We randomly sampled 200 post-response pairs from PR for
each key (1200 pairs in total), and then manually annotated
the optimal position from which decoding should start. The
results are shown in Table 6. The position for most keys can
be estimated accurately while for name the prediction is bad.
This is because the value of the key rarely occurs in our cor-
pus, and the embeddings of such values are not fully trained.
Nevertheless, the results are better than a random word pick-
ing strategy (see PCCM vs. PCCM-Pos in Table 2).

4.5 Extensibility
The effectiveness of our model is verified on six profile keys,
but manual labors are required. We will show the extensibility
of the model by evaluating it on four additional keys: hobby,
idol, speciality, and employer.

Dataset Method Nat. Logic Cor.

4 keys

Seq2Seq 75.6% 39.9% 17.9%
Seq2Seq+PV 87.2% 46.3% 35.4%

Seq2Seq+PVD 87.0% 47.5% 35.3%
PCCM-Pos 87.8% 47.6% 36.2%

PCCM 88.8% 50.9% 39.6%

Table 7: Extensibility evaluation on 4 new keys.

Firstly, for the 4 keys, we extracted 16,332 post-response
pairs from WD with 79 hand-crafted patterns and each pair is
noisily mapped to one of the keys with these patterns. These
new pairs, along with the old pairs on the six pairs, are used
to retrain the model. Secondly, we constructed a test dataset
consisting of 400 posts, 50 positive and 50 negative human-
written posts for each key. Responses from our model and
Seq2Seq are obtained and then evaluated. The manual labor
exists only in hand-crafting the 79 patterns.

Results show that our model has a relative 10% drop on the
new keys with respect to logic and correctness, and remains
unchanged in naturalness. Nevertheless, our model is still
much better than the Seq2Seq model. The baseline has no
drop in naturalness and logic because this model does not
deal with any pre-specified profile.

5 Conclusion and Future Work
We present a model that can generate responses that are co-
herent to a pre-specified, explicit personality or profile. In-
stead of learning implicit personality from speaker-tagged di-
alogue data, our work allows system developers to control
chatbots’ profile explicitly using generic dialogue data. Ex-
tensive results show that our model is effective to deliver
more coherent and diversified conversations.

Our work moves toward endowing a chatbot with control-
lable personality. As a preliminary attempt, we only experi-
mented with a few attributes of personality. Obviously, there
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are much more to be explored in this direction such as speak-
ing styles, linguistic cues for extrovert or introvert, and many
other subtle traits. More interestingly, this task raises more
challenging problems such as semantic reasoning: if you ask
a ten-year-old boy chatbot with “are you married?” or “do
you play women football?”, it requires to make reasoning
with commonsense knowledge.
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