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Abstract
We define the novel problem of extracting and pre-
dicting occurrence dates for a class of recurrent
events that are held periodically as per a near-
regular schedule (e.g., conferences, film festivals,
sports championships). Knowledge-bases such as
Freebase contain a large number of such recurring
events, but they also miss substantial information
regarding specific event instances and their occur-
rence dates. We develop a temporal extraction and
inference engine to fill in the missing dates as well
as to predict their future occurrences. Our engine
performs joint inference over several knowledge
sources – (1) information about an event instance
and its date extracted from text by our temporal
extractor, (2) information about the typical sched-
ule (e.g., “every second week of June”) for a re-
current event extracted by our schedule extractor,
and (3) known dates for other instances of the same
event. The output of our system is a representation
for the event schedule and an occurrence date for
each event instance. We find that our system beats
humans in predicting future occurrences of recur-
rent events by significant margins. We release our
code and system output for further research.

1 Introduction
Extraction of events from text has received significant atten-
tion within the information extraction (IE) literature [Kono-
valov et al., 2017; Foley et al., 2015; Zhang et al., 2015;
Intxaurrondo et al., 2015; Reschke et al., 2014; Kuzey et al.,
2014; Ritter et al., 2012]. However, to the best of our knowl-
edge, there is little work on the extraction or prediction of
recurrent events – events that occur more than once. Even
though events like bombings (sadly) recur, ‘predicting’ their
next occurrence is a rather challenging problem. In this work,
we focus on near-periodic recurrent events – events that oc-
cur according to some pre-defined near-regular schedule.
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Near-periodic recurrent events are an important subclass
of events. They contain many popular events people plan on
attending (or avoiding), such as ‘Edinburgh Art Festival’, ‘IJ-
CAI conference’, and ‘Kumbh Mela’. FreeBase lists a total
of 15,770 recurring events, which means it should list nearly
146K event instances for the last 10 years (as per Freebase
over 93% of the recurrent events happen yearly or more than
once a year). However, FreeBase lists only 16,347 instances,
suggesting massive missing information. Hence KB comple-
tion for these events is an important technical challenge to be
addressed.

Another important aspect of the problem concerns future
occurrences of these events. Because recurrent events follow
somewhat regular schedules, it is possible to predict the fu-
ture dates without even reading them explicitly in text. Anno-
tating FreeBase with predicted future occurrences of an event
will allow tourists to plan accordingly. It can also be of in-
terest to airline companies, which can suitably schedule addi-
tional flights proactively to meet the high demand.

We combine both these related problems into a novel joint
inference problem that uses three knowledge sources, to out-
put the best occurrence date for each past missing instance,
and the best schedule that helps in predicting future occur-
rences. We call our joint inference component as TRINE,
TempoRal Inference for Near-periodic Events.

Our work exploits three sources of knowledge. The first is
descriptive text about the recurrent event, which might explic-
itly mention its schedule. For example, Wikipedia descrip-
tion of ‘Super Bowl’ states that “The Super Bowl is currently
played on the first Sunday in February.” The second source
of knowledge is any known occurrences of the event in the
past. This may come from an existing knowledge base such
as Freebase. The third source is a text corpus that contains
mentions of event instances and associated dates. For exam-
ple, an article may contain the sentence “The next game of
Super Bowl is scheduled for February 4, 2018.”.

In this work we focus on precise prediction of the occur-
rence dates. When performing knowledge base completion,
a few precise fine grained predictions (day level) are more
valuable than many a broad (month or season level) predic-
tions. Most of the existing knowledge bases are hand curated.
Providing precise missing knowledge along with provenance
can help ease the process for the curators considerably.

There are several challenges for developing the joint infer-
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ence model in TRINE. First, some sources may be missing
or inaccurate. For example, the descriptive text may not list
a schedule or the extraction of the schedule may be incor-
rect. Second, recurrent events may not even follow a strict
schedule. We commonly found situations where a specific
instance went off schedule, or that the schedule shifted over
time. There are also NLP challenges in slot filling of occur-
rence dates. Due to lack of training data, we need to use
distant supervision [Surdeanu and Ji, 2014], which automati-
cally annotates an unlabeled text corpus with recurrent event
instance mentions and their occurrence dates using the knowl-
edge in Freebase. Distant supervision typically results in low
to mid precision and recall.

Finally, we also need to develop a novel NLP model for
extracting schedules from text, as this is a novel problem that
arises in the context of recurring events. We solve these chal-
lenges by developing a probabilistic model for joint inference
in TRINE – it can recover from noise in extracted schedules
and occurrence dates, and also allows a few instances to go
off-schedule.

We perform several experiments to assess TRINE’s ben-
efits. For predicting future events, we perform a human
evaluation and find that TRINE beats humans convincingly.
For KB completion, when instance extractions are available,
TRINE fills in missing instances at a Mean Reciprocal Rank
[Craswell, 2009] over 0.5 (i.e., one of top two predictions is
correct on average). Overall, our contributions are:

1. We define the novel task of inferring past and future tem-
poral knowledge of near-periodic recurrent events.

2. We present TRINE, a joint model to infer the sched-
ules of recurrent events and occurrence dates for each
instance.

3. Our experiments show that our system vastly outper-
forms several natural baselines and also crowd workers.

4. We release our code and system output for further use
by research community.6

2 Related Work
Our work is focused towards using a joint model for infer-
ring multiple temporal attributes together. This falls in the
line of [Talukdar et al., 2012; Do et al., 2012], which perform
joint inference over temporal attributes using pre-defined con-
straints; these works do not consider recurrent events.

Temporal IE: Temporal Slot Filling (TSF) task in TAC-
KBP [Surdeanu, 2013], extracts/infers temporal constraints
for relations in knowledge base using evidence from a large
text corpus. The two main difference between TSF and our
work are: (1) we extract precise dates, while TSF extracts a
range for a date and, (2) while both use weak supervision for
annotating training data, TSF is less prone to noise as their
supervision requires a pair of entities in the relation, whereas
we use just a single entity (event instance). We automatically
generate training data using ideas similar to the state of the art
in distant supervision for temporal extraction [Ji et al., 2014].

6Available at https://github.com/dair-iitd/trine

Slot Filling (SF): SF subtask [Surdeanu and Ji, 2014] in the
Knowledge Base Population (KBP) track at TAC [Surdeanu
et al., 2011; Adel et al., 2016] is quite close to our subtask of
extracting instance occurrence dates. SF fills incomplete slots
(such as born-in, employed-by) in a knowledge base by read-
ing a large text corpus. SF extracts only one slot at a time, and
only if it is mentioned in the text corpus. However, TRINE
jointly infers all the missing slots (occurrence dates) of the
recurrent event instances. This helps in not only correcting a
few extraction mistakes, but also potentially filling slots that
are not even mentioned in the text corpus.

Event Extraction: Foley et al. [2015] propose a distant
supervision based approach using Schema.org event annota-
tions to extract non-recurrent events from web pages. The
greedy approach used for grouping event attributes results in
low precision. We leverage the fact that event instances might
follow a near-regular schedule to combat this low precision.

Kunneman and Van den Bosch [2015] propose an approach
to automatically extract recurrent events from tweets. There
are clear differences between their work and ours. Firstly,
they do not use a KB or any descriptive text about recurrent
events as input. So, they need not build a schedule extrac-
tor, and cannot build any component analogous to TRINE for
joint inference. Secondly, while the use of tweets generally
makes extraction harder due to text normalization issues, it
also likely makes temporal extraction for events more accu-
rate due to the 140 char limit.

Previous works on event extraction [Ritter et al., 2012;
Zhang et al., 2015; Bethard and Martin, 2006; Patwardhan
and Riloff, 2009] widely vary based on the techniques for
event mention discovery. As most recurrent events are named,
our event discovery is relatively straightforward. We focus
on leveraging the near-periodic nature of recurrent event in-
stances to better aggregate the associated temporal attributes.

3 Problem Definition
Let e be a recurrent event with a set of instances Ie =
{Ie1 , Ie2 , ..., IeNe

}. For example, ‘Super Bowl’ is a recurrent
event and {‘Super Bowl 2017’, ‘Super Bowl 2016’, ‘Super
Bowl 2015’} are some of its instances. Each event instance
Iei has an occurrence date dei associated with it.

We are provided K, a knowledge base of recurrent events,
where each recurrent event has a set of known instances and
their occurrence dates. We assume all facts in K are correct,
but it can be incomplete. For instance, in the KB of Fig-
ure 1, ‘2015 Independence Bowl’ is missing its date, and LA
Marathon has no known instances.

Additionally, we are provided C, a corpus of unstructured
text that contains information about recurrent events and in-
stances. This combines documents such as news articles,
encyclopedia where information about recurrent events and
their specific instances may be mentioned.

We define the task of inferring temporal knowledge for
near-periodic recurrent events as follows: given an incom-
plete knowledge base K and a corpus of unstructured text C,
build a model to simultaneously (1) infer schedule s for each
recurrent event e in K, (2) populate missing information in
K, and (3) predict the occurrence date for future instances of
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Periodic Events Instances Start Date

Super Bowl Super Bowl  2017 Feb 5, 2017

Independence Bowl 2015 Independence Bowl -

LA Marathon - -

Unstructured Text 
Corpus

Instance Extractor Schedule Extractor

Temporal Inference Engine (TRINE)

Periodic Events Schedule

Super Bowl First Sunday of February

Independence Bowl Last Week of December

LA Marathon Third Sunday of March

Periodic Events Instances Start Date

Super Bowl Super Bowl 2017 February 5, 2017

Independence Bowl 2015 Independence Bowl December 26, 2015

2013 Independence Bowl December 29, 2013

LA Marathon 2013 LA Marathon March 17, 2013 [ Predict Future Instances ]

[ Incomplete Knowledge Base ]

[ Schedule Database ]

Wikipedia

Figure 1: System overview for jointly inferring schedules and missing occurrence dates for recurrent events

Month
Season Date Day/Week Month/Season

Modifier
Day/Week
Modifier

(MS) (DT) (DW) (MSmod) (DWmod)
JAN 1 MON EARLY 1st
· · · 2 TUE MID 2nd
DEC 3 · · · LATE 3rd

SUMMER 4 SAT 4th
· · · · · · SUN LAST

WINTER 31 WEEK

Table 1: Atomic Elements for Schedule Representation

S → C | (C or S)

C → MS
C → MSmod MS

C → MS DT
C → DWmod DW of MS

Figure 2: CFG Rules for Schedule Space Representation

the event. Our system consists of three major components as
shown in Figure 1. Our key technical contribution is TRINE.

4 Temporal Extraction and Inference
We now discuss the technical details of our system. We first
define a context free grammar for representing schedules, fol-
lowed by descriptions of each individual component.

4.1 Schedule Space
Our definition of schedule space is inspired by the temporal
type SET defined in [Pustejovsky et al., 2003]. SET repre-
sents temporal expressions that suggest repetitive events (e.g.
“every July”, “every 25th December”).

We introduce a representation for recurrent event sched-
ules. The full grammar for schedule space is described in Ta-
ble 1 and Figure 2. The non-terminal C constructs schedule
expressions, with two rules on left representing month sched-
ules, while the other two capture day and week schedules.
We find that our CFG can represent almost all annual sched-
ules. However, it cannot handle sub-annual (once in 4 years)
or super-annual (e.g., weekly, fortnightly) events.

4.2 Schedule Extractor
Schedule extractor takes as input a list of known recurrent
events from K and extracts their schedules from text in C.
Given a paragraph that contains a mention of a recurrent event
e, schedule extractor returns its schedule se, if present.

Schedule extractor is a two-step rule-based system built on
top of SUTIME [Chang and Manning, 2012]. The first step
identifies temporal mentions in text and selects the ones la-
beled as temporal types DATE or SET with a month refer-
ence. Ideally, we should have used only SET annotations to
extract periodicity, but we found them to have very low recall.
We included DATE as sometimes a DATE label also suggest a
schedule. For example, ‘January’ is labeled as DATE in “the
event happens in January”. To improve precision, we also
add a few additional rules to SUTIME to include temporal
modifiers such as early, mid and late.

The second step normalizes the identified temporal men-
tions to map them to the schedule space representation. Tem-
poral mentions such as “end January’ and “January end” are
normalized to LATE JAN using TIMEX3 tags returned by
SUTIME.

Empirically we find that the first schedule mentioned in
text is almost always the one describing the event. Hence,
the schedule extractor returns the first schedule mentioned in
text, and discards other schedules, if any. On a handle-labeled
test set, the schedule extractor has a precision of 0.83 and a
recall of 0.79.

4.3 Instance Extractor
Instance extractor starts with a list of known recurrent events
(and their instance names) from K. Its goal is to detect in-
stance mentions in text corpus C and extract occurrence dates
for each mention.

It runs a three-step procedure. In the first step, the extractor
identifies instance mentions and disambiguates it to a known
event instance Ie, when possible. Second, it identifies candi-
date occurrence date d to extract (Ie, d) pairs. Finally, a bi-
nary classifier decides whether the candidate occurrence date
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is in fact an occurrence date for that instance or not.
Detecting mentions of recurrent events (and its instances)

is easier than typical event extraction since most recurrent
events are named events, and are often referred by their names
or a handful of aliases, e.g., ‘Super Bowl 2017’ or ‘Super
Bowl LI’. If only the recurrent event is mentioned, then we
disambiguate it to the year that is closest to the mention. For
example, the mention in “... the 2011 edition of Independence
Bowl is scheduled on 28th December” will be disambiguated
to ‘Independence Bowl 2011’.

In the second step, the extractor detects all date men-
tions in the paragraph mentioning the instance name using
SUTIME. If there are multiple dates {d1, d2, ..., dK}
mentioned, then the following pairs are generated:
{(Ie, d1), (Ie, d2), ..., (Ie, dK)}.

The final step is to run the instance-date pairs (Ie, d)
through a classifier so that only plausible pairs are passed
on to the inference engine. This step is similar to the Task-
15A of SemEval 2007 [Verhagen et al., 2007], which labels
temporal relations holding between time and event expres-
sions that occur within the same sentence. The knowledge
base K is used as a source of distant supervision to automat-
ically construct training data (similar to [Ji et al., 2014]). We
use standard NLP features like words, POS and NER tags of
words around the date d, and dependency parse features. All
features are generated using the Stanford CoreNLP pipeline
[Manning et al., 2014]. We train a max-entropy classifier with
L1 regularization. Each extracted date is associated with a
confidence. For multiple extractions of the same date, the
confidences are aggregated using a Noisy-Or.

Previous work [Ji et al., 2014] has separated temporal clas-
sification into four categories: START, END, HOLD (be-
tween START and END) and NULL (unrelated to event).
However, often textual cues are insufficient to identify the
correct temporal category. For example, in “It premiered at
the YIFF on February 26”, Feb 26 could be START, END or
HOLD date. Our preliminary experiments on four-way clas-
sification returned a large number of errors.

As the output of instance extractor is aggregated by a
downstream inference engine, we prefer a higher recall in the
candidate pairs. As a consequence, we simply construct train-
ing set to separate NULL from {START, END, HOLD}. All
positive labels are sent to TRINE. The date classifier has an
estimated precision of 0.67 and a recall of 0.35 on 10 percent
of the distant supervised data kept aside for test. These num-
bers are comparable to the slot filling accuracies [Surdeanu
and Ji, 2014], where the slots are of the type DATE.

4.4 TRINE: Temporal Inference Engine
TRINE jointly infers missing occurrence dates in K and the
schedules of recurrent events using the extractions mentioned
above. The model must find the best schedule, even if the
extracted schedule is too coarse. It must also be robust to
off-schedule instances as well as to extraction noise.

We model the problem as inference in an undirected graph-
ical model, shown in the Figure 3(a). Let Se represent the
random variable for the schedule of recurrent event e andDe

i ,
the random variable for occurrence date of the instance Iei .
For simplicity, we drop the superscript e, as we model only

one recurrent event e at a time. The schedule S can take any
value from the schedule space S and the occurrence date Di

can take any value from the day of year. Day of year is a
number between 1 and 365/366 (e.g: “January 1” is day 1).

The joint model has three potentials: a unary potential,
φsch(S), associated with the schedule S based on the sched-
ules read. A unary potential, φocc(Di), for the occurrence
date of each instance based on the occurrence dates ex-
tracted and the knowledge base. Finally a pairwise poten-
tial, ψpair(S,Di), that represents how strongly the occur-
rence date Di follows the schedule S. The factorization of
the joint probability for this graphical model is as follows:

P (s, d1, · · · , dN ) =
1

Z
φsch(s)

N∏
i=1

ψpair(s, di)φ
occ(di)

where Z is the normalization factor andN is the total num-
ber of instances for e. Performing a joint MAP inference
returns the best schedule and best occurrence date for each
instance. In our experiments, we wish to return a ranked list
of occurrence dates for each instance. We perform marginal
inference to compute the posterior probability of each oc-
currence date for each instance, and rank them using the
probabilities. Since there are only 365 candidate dates, and
candidate schedules also make a small, enumerable set (size
≈1000), this is easy to compute.

We explain the potentials with the help of ‘Super Bowl’ as
a running example. The three tables in Figure 3(c) represent
the three knowledge sources. The first table shows the sched-
ule extracted (FEB). The second shows the list of instances
extracted for ‘Super Bowl 2016’ and ‘Super Bowl 2015’ with
their extraction confidences. ‘Super Bowl 2014’ has no ex-
tractions but has its occurrence date in Freebase (shown in
the third table). We now describe the three potentials.
Schedule Potential: φsch(S), is defined using the extracted
schedule sex. As it is common for schedules to be described
loosely (e.g FEB) rather than precisely (e.g 1st SUN of FEB),
we define a subsumption relation between schedules, to use
them in the potential. Let sub(sex) be the set of all schedules
subsumed by sex. For example, if sex is FEB, then sub(sex)
will contain {FEB 1, 1st SUN of FEB, EARLY FEB, etc}.
Thus the potential φsch(s) is given by

φsch(s) =

{
λ, if s = sex

α · λ, if s ∈ sub(sex)
1, otherwise

(1)

where λ and α are hyper parameters tuned using a dev set,
with λ > 1 and α ∈ ( 1λ , 1). Intuitively, this assigns the
highest weight to the read schedules and reasonable weight
to schedules subsumed by the read schedule.

For our running example, the schedule FEB is assigned the
highest value λ in the schedule potential, and α ·λ is assigned
to schedules subsumed by the extracted schedule such as FEB
1, 1st SUN of FEB, EARLY FEB, etc.
Pairwise Potential: ψpair(s, di) denotes the affinity be-
tween event’s schedule s and an instance i’s occurrence date
di. We model each schedule s as a Normal distribution
N (µs, σ

2
s) over the days of the year. The mean of the sched-

ule µs is set to the day corresponding to the mid point of the
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1st	SUN	
of	FEB

𝑆

FEB 7	
2016

FEB	1
2015

FEB 2
2014

Instance Source	Text Confidence

Super	Bowl	
2016

After	putting	out	a	call	for	volunteers	on	
June	23,	over	450	volunteers	helped	 to	
make	the	Super	Bowl	50	Tour	happen

0.6

Super	Bowl	50,	which	was	played	on	
February	7,	2016 0.9

Super	Bowl	
2015

Ticket	prices	for	Super	Bowl	XLIX	rose	
quickly over	$8,000	by	January	25

0.7

𝐷# 𝐷$ 𝐷%

Source	Text Extracted Schedule

…happens	 in	the	month	of	February…. FEB

Freebase Occurrence	Date

2014	Super	Bowl FEB	2, 2014
𝑁'

𝑁 𝜙)*+

𝜙,**

𝜓./01

S

𝐷0

(a) (b) (c)

Figure 3: (a) Plate notation of TRINE (b) an example instantiation for Super Bowl with (c) knowledge from the three sources

schedule range. For example, the mean of a month schedule,
is set to the day corresponding to the 15th of the month (14th
for February). The standard deviation of the schedule σs is
set such that the start/end of a schedule is 3σs away from the
mean. The pairwise potential is given by the likelihood of the
occurrence date di in the schedule distribution.
Occurrence Potential: The occurrence potential assigns
highest weight for known dates in the knowledge base, and
lower weight to the extracted dates. Let Di = {dik} be a set
of candidate occurrence dates extracted by the instance ex-
tractor for instance Ii. Let cik be the confidence associated
with extraction dik. Let d∗i be the occurrence date of Ii, if it
is present in the knowledge base. The confidence associated
with d∗i is set to 1.0. We compute φocc(di) as

φocc(di) =

{
cik, if di = dik, dik ∈ Di
1, if di = d∗i
ρ, otherwise

(2)

where ρ is the noise parameter. When ρ = 0, one of the
extractions will necessarily get picked for each instance. This
works if each instance has its correct date in the candidate set.
This is rarely true in practice. ρ > 0 adds flexibility to the
model by allowing it to ignore all extracted candidates from
the instance extractor.

For the Super Bowl running example, the occurrence po-
tential of ‘Super Bowl 2016’ has all days of the year in 2016
(1-366). Day 175 (June 23, 2016) is assigned 0.6, day 38
(February 7, 2016) is assigned 0.9 and all other (unextracted)
days of the year are assigned ρ. For 2014, all days are as-
signed ρ except day 33 (Feb 2, 2014) which is assigned 1.0,
since it is present in the knowledge base.

The noise parameter has a crucial advantage. Consider that
the model is initialized with only start dates from FreeBase
and the recurrent event has an instance that deviated from
its typical schedule. Such aberrations are common in recur-
rent events. For example, let 3 out of 4 instances of an event
happened on 1st SAT of FEB and one on 1st THU of FEB.
Here, the model with ρ = 0 would favor 1st WEEK of FEB (a
broader schedule) rather than the most likely narrower sched-
ule: 1st SAT of FEB. We make the model robust by allowing
it to ignore a few instances in favor of a narrower pattern. ρ
represents the penalty to pay for ignoring an instance.

Let s ∈ S be a schedule with mean µs and stan-
dard deviation σs, d be the day with highest value for

φocc(d)ψpair(s, d), and c be the confidence value associated
with d and dµ be the day corresponding to µs. Since dµ has
the highest value for ψpair, the model chooses between the
day with the highest confidence and the mean of the sched-
ule, based on ρ. To be more specific, the mean is chosen if

φocc(dµ)ψ
pair(s, dµ) > φocc(d)ψpair(s, d)

|d− µs| >
√

2 log c
ρ σs

(3)

We tune ρ using a dev set and set it to 0.1. This provides a
performance boost of 75% in our experiments (Table 4).

Figure 3(b) shows the instantiation of TRINE for ‘Super
Bowl’ along with knowledge from the three sources. For
simplicity we show only three instances, ‘Super Bowl 2016’,
‘Super Bowl 2015’ and ‘Super Bowl 2014’, with their corre-
sponding occurrence date represented by D1, D2 and D3.

The values estimated using MAP inference over the net-
work are shown inside the circles in Figure 3(b). TRINE
predicts the schedule as 1st SUN of FEB – precise and fine
grained, compared to that extracted from text. TRINE is able
to ignore JUN 23 and picks FEB 7 for D1. Due to the noise
parameter, the extraction JAN 25 is completely ignored and
D2 is assigned an occurrence date based on the schedule.

5 Experiments
Our experiments answer the following research questions. (1)
How dependable is TRINE in predicting future events com-
pared to humans and natural baselines? (2) How accurate is
TRINE in performing knowledge base completion? In addi-
tion to this, we also perform an ablation study to showcase
the incremental contribution of each knowledge source to the
overall performance of the system.
Data: We require a knowledge baseK of recurrent events and
a corpus C of unstructured text as input. We choose Freebase
as the knowledge base, as it had more recurrent events com-
pared to DBPedia or YAGO. It lists 15,770 recurrent events,
but only 4,350 of these have at least one instance with its oc-
currence date. We divide these 4,350 recurrent events into
two equal sets: train and test. The instances and their oc-
currence dates in the train set are used as a source of distant
supervision to train the instance extractor. A small fraction
of the events from the train set are used as dev set for feature
selection and hyper parameters tuning. The test set is used
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MRR Acc@1 Acc@3 Acc@5
Mode Baseline 0.096 0.019 0.094 0.264
Mean Baseline 0.147 0.075 0.17 0.32

AMT 0.308 0.241 0.366 0.41
TRINE 0.388 0.292 0.434 0.575

Table 2: Future occurrence date prediction performance for 2016
instances of 106 recurrent events

for the ablation study. In addition to this, we also manually
collected the occurrence dates for 500 instances missing in
Freebase, to evaluate TRINE’s performance.

Each Freebase entity has a description field and a link to the
its English Wikipedia page. Each recurrent event’s descrip-
tion field and the first paragraph of its Wikipedia page are
fed as input to the schedule extractor. We use the New York
Times Corpus [Sandhaus, 2008] and a part of ClueWeb127 as
the input text corpora for the instance extractor.
Evaluation Metric: Each algorithm generates a ranked list
of predictions for missing occurrence dates. Hence we use
standard ranking metrics like Mean Reciprocal Rank and Ac-
curacy@k as the evaluation metrics.

5.1 Future Instance Prediction
The objective of this experiment is to see how TRINE com-
pares with humans in the task of predicting the schedule and
inferring occurrence dates of future instances. This helps
in testing the schedule space formulation and TRINE’s abil-
ity to infer schedules. We made both TRINE and Ama-
zon Mechanical Turk workers predict the occurrence date of
2016 event instances. We anonymized the recurrent events
to prevent AMT workers from looking up external resources
rather than inferring them. For fairness, we provide TRINE
the same knowledge we provide AMT workers i.e., no in-
stance or schedule extractions, as they are extracted using the
event/instance names.

Given the occurrence date of the previous historical in-
stances, AMT workers were requested to predict the 2016 oc-
currence date. They were also provided the day of the week
for each occurrence date and were advised to use a calendar.
Each worker made five guesses ordered by confidence. Three
sets of annotations were collected for each recurrent event.

We also compare TRINE against two baselines: Mean
Baseline and Mode Baseline. To compute these we first repre-
sent each occurrence date by the day of the year. For example,
25th Dec, 2015 will be represented as 359. The mean base-
line uses the mean of historical occurrence dates, whereas
the mode baseline uses the mode. To generate a ranked list,
the mode baseline simply orders each historical date by fre-
quency in decreasing order. The mean baseline orders by de-
viation from the mean, with the two days on either side of the
mean randomly ranked 2nd and 3rd, and so on.

For this experiment, we randomly sampled 106 recurrent
events from Freebase with at least 3 historical instances each.
As 2016 instances were not present in Freebase, we manually
collected their occurrence dates from the Web. Table 2 shows
the performance of AMT workers, TRINE and other base-
lines. TRINE considerably outperforms the baselines and is

7http://lemurproject.org/clueweb12/

Instances
Filled MRR Acc@1 Acc@5

Instance Extractions
+ Freebase 1580 0.508 0.425 0.653

Instance Extractions
+ No Freebase 2893 0.432 0.349 0.514

No Instance Extractions
+ Freebase 25573 0.257 0.172 0.363

Table 3: Performance of TRINE on Freebase Completion

also much superior to that of the AMT workers. In 57% of
the cases, one of the top five predictions is correct for TRINE,
whereas this number is only about 41% for AMT workers.

The problem is inherently difficult because most of the re-
current events do not follow a perfect schedule. For exam-
ple, the past instances of ‘24 Hours of Le Mans’ occurred
on the following dates: 2015-06-13, 2014-06-14 2013-06-22
and 2012-06-16. The 2015, 2014 instances took place on the
2nd SAT of JUN, the 2013 on 4th SAT of JUN and the 2012
on 3rd SAT of JUN. Both TRINE and AMT users had 2nd, 3rd,
and 4th SAT in the top 3, with 2nd at the top. The occurrence
date represented as day of the year were: 164, 165, 173 and
168. The mean baseline’s top prediction was day 167 in 2016
(Wednesday). As all the occurrence dates are different from
each other, the mode would randomly rank them. This show-
cases the importance of explicitly modeling schedules.

The reason behind overall low MRRs for AMT workers
and TRINE is the lack of a dominant schedule. In the previ-
ous example, even though the instances didn’t follow a per-
fect schedule, there is a dominant schedule, which most of
the instances followed. For such recurrent events, it is hard
for both TRINE and AMT workers to infer a schedule and
predict the future instance.

5.2 FreeBase Completion
To analyze the performance of TRINE for filling missing in-
stances in FreeBase, we split the missing instances in Free-
Base based on the knowledge sources available for predicting
the occurrence: instance extractions and FreeBase.
Has Instance Extractions: These are instances for which the
instance extractor has at least one extraction.
Has FreeBase Knowledge: All instances of events that have
at least one instance with an occurrence date in Freebase.

The second column in Table 3 corresponds to the number
of missing freebase instances filled in each category. To eval-
uate the performance, we sample 100 random instances from
each category and manually collect the true occurrence dates.

When instance extractions are present, we find that
TRINE’s top prediction is correct about 42% of the time.
Provenance highlighting of the text where it was extracted is a
straightforward extension to our system. We believe that hav-
ing a human ontologist vet the predictions will significantly
improve the coverage of Freebase. For other cases, we be-
lieve that identifying larger corpora where these events will
be mentioned and running our system through those will pro-
duce similar results.

For cases where instance extraction is not present, it is hard
to ascertain the exact occurrence date. In such cases, our sys-
tem provides a reasonable guess, which can definitely be used
for any downstream task.
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MRR Acc@1 Acc@5
TRINE 0.415 0.308 0.536
TRINE w/o schedules 0.41 0.307 0.534
TRINE w/o instances 0.361 0.261 0.471
TRINE w/o Freebase 0.188 0.133 0.233
TRINE with ρ = 0 0.237 0.159 0.301

Table 4: Contribution of each knowledge source to TRINE

5.3 Contribution of Knowledge Sources
To understand the contribution of each knowledge source, we
measure TRINE’s performance by dropping one source at a
time. We refer to these models as TRINE w/o knowledge
source.

We perform this experiment on the 2,175 recurrent events
in the test set. We randomly remove one instance from each
test event. Out of 2,175 events, 1,566 had at least one knowl-
edge source available for predicting the held out instance.

The MRR and precision numbers for various settings of
TRINE are shown in the Table 4. It is evident that TRINE
with all knowledge sources combined performs the best.
Comparatively speaking, schedules are less valuable than
other sources, as they are seldom mentioned precisely in the
text. For example, even though ‘Chennai Open’ follows the
schedule 1st MON of JAN, Wikipedia expresses it as “It is held
annually in January in Chennai, Tamil Nadu, India.”

We also note the dramatic decrease in performance when
we force ρ, the noise parameter, to zero. This underscores the
importance of providing the model with flexibility to correct
errors from other components.

The major difficulty for TRINE is the lack of a dominant
schedule (as described in Section 5.1). Other issues include
(1) often the actual event happens a few days before or after
the precise schedule, and (2) shift in the schedule over the
years. For example, the Miami International Film Festival
was held in FEB before 2006, but since then has been shifted
to EARLY MAR.

6 Conclusions
Near-periodic recurrent events are an important class of
events that have not received much attention in the NLP lit-
erature. We present the first system for predicting occurrence
dates of event instances using information extracted from
text, as well as information about known historical instances
of the same event present in a knowledge-base. A key com-
ponent is a joint inference module that uses inference over an
undirected probabilistic graphical model to estimate the best
schedule for the event as well as occurrence date for each
event instance.

In an experiment over AMT, we find that TRINE beats hu-
mans in guessing the future occurrence date of an event. We
also show that in cases when textual extractions are available,
we can fill in missing dates in FreeBase at an acceptable MRR
of over 0.5. However, performance degrades when less in-
formation about an event is available. Our work can easily
create a system that can be put within the loop with a human
expert, who can verify system predictions and add important
information to the knowledge-base. We release our source

code, datasets, and system predictions for further research at
https://github.com/dair-iitd/trine.
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