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Abstract

Co-Attentions are highly effective attention mecha-
nisms for text matching applications. Co-Attention
enables the learning of pairwise attentions, i.e.,
learning to attend based on computing word-level
affinity scores between two documents. However,
text matching problems can exist in either symmet-
rical or asymmetrical domains. For example, para-
phrase identification is a symmetrical task while
question-answer matching and entailment classifi-
cation are considered asymmetrical domains. In
this paper, we argue that Co-Attention models in
asymmetrical domains require different treatment
as opposed to symmetrical domains, i.e., a concept
of word-level directionality should be incorporated
while learning word-level similarity scores. Hence,
the standard inner product in real space commonly
adopted in co-attention is not suitable. This paper
leverages attractive properties of the complex vec-
tor space and proposes a co-attention mechanism
based on the complex-valued inner product (Hermi-
tian products). Unlike the real dot product, the dot
product in complex space is asymmetric because
the first item is conjugated. Aside from modeling
and encoding directionality, our proposed approach
also enhances the representation learning process.
Extensive experiments on five text matching bench-
mark datasets demonstrate the effectiveness of our
approach.

1 Introduction

Computing relevance scores between textual documents
(a.k.a text matching) is a widely researched area in natural
language processing and information retrieval. The wide in-
terest in this topic is understandable, given that text match-
ing enables a broad spectrum of applications ranging from
question-answer retrieval systems to paraphrase identifica-
tion. The real world applications of text matching is also
broad, encompassing possibilities such as automated FAQ
systems or microblog retrieval. Our work is concerned with
the general application of text matching, focusing on short
sentences as documents.
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Recent advances and state-of-the-art in this field comprise
mainly neural models. Neural networks (or deep learning)
are trained end-to-end to predict the relevance between doc-
uments which may be used to serve ranked lists during infer-
ence. In most architectures, networks are siamese in nature,
using identical encoders for both documents. In relatively
simpler models, encoded representations are typically com-
bined using a parameterized function such as a feed-forward
neural network or non-parameterized functions such as cosine
similarity. This may be extended, in which representations
are learned pairwise using recent advances such as grid-wise
feature aggregation and co-attentional mechanisms.

This paper is based on an observation that not all text
matching tasks are created equal. We characteristically di-
chotomize them into two categories - symmetrical problems
and asymmetrical problems. Examples of symmetrical prob-
lems include paraphrase identification and semantic textual
similarity in which the positions of documents do not matter,
i.e., s(a,b) = s(b, a). Asymmetrical domains, conversely, in-
clude problems such as answer retrieval and entailment clas-
sification in which s(a, b) # s(b, a). Consider the following
(negative) example in question-answer retrieval.

1. ‘May I know where IJCAI 2018 will be located?’
2. ‘Itis where top Al researchers present their latest works.

Clearly, we notice that the word ‘where’ has vastly different
semantics just based on whether it appears in the question (1)
or answer (2). Hence, a sense of directionality is critical, i.e.,
allowing models to have a sense of @ — b. This applies to
many other words in which the relative importance largely
depends on whether it belongs to a or b. It is also intuitive
that directionality is important due to the lexical gap and a
common need for co-reference resolution in QA pairs. While
a straightforward and naive way is to decouple parameters be-
tween a and b, this has generally been found to not only incur
extra parameter costs but also degrade performance. As such,
many text matching methods do not distinguish between a
and b and compute relevance scores indiscriminately.

This paper proposes a novel co-attentional mechanism with
two key benefits - (1) inducing a sense of directionality
and (2) enhancing representation learning. We investigate
complex-valued inner product to model word-word similari-
ties when learning co-attentions. This exploits the property of
complex vector space, i.e., C where the inner product (Her-
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mitian inner product) is actually asymmetrical because the
first matching sentence is conjugated. Moreover, our new co-
attention mechanism also benefits from expanded represen-
tation capability, an inherent advantage brought by complex
vector spaces.

Typically, Co-Attention models similarity between a and
b indiscriminately, i.e., s(a,b) = s(b,a). In other words, all
word pairs return the same scores irregardless of position. We
further elaborate on the potential weaknesses of this. Con-
sider the following entailment pair from the SciTail [Khot et
al., 2018] dataset:

1. ‘A concave lens is thinner in the middle than it is near
its edges’

2. ‘A concave lens is thicker at the edges than it is in the
middle.’

In the above example, complex reasoning is required to suc-
cessfully classify this pair. However, there are many repeated
words, e.g., middle, edges, etc. Intuitively, this raises the need
for the model to maintain some forms of positional informa-
tion when matching each individual word pairs. As such, it is
helpful that a model is able to differentiate whether the words
- thicker, thinner, middle, edges come from a or b.

1.1 Our Contributions

The overall contributions of this paper are summarized as fol-
lows:

e We propose a novel Hermitian Co-Attention (HCA)
mechanism for asymmetrical text matching problems.
We propose an overall model architecture, the Hermi-
tian Co-Attention Recurrent Network (HCRN) for text
matching. We demonstrate the utility of complex-valued
co-attention mechanisms.

e We conduct extensive experiments on five benchmark
datasets in four domains of entailment classification
(SciTail), question answer retrieval (TrecQA, Wik-
iQA), Twitter Customer Support and Dialogue Predic-
tion (Ubuntu Corpus). HCRN achieves highly compet-
itive results on all datasets. HCRN outperforms state-
of-the-art models such as BiMPM [Wang et al., 2017],
ESIM[Chen ef al., 2017] and KEHNN [Wu ez al., 2016]
on their respective tasks. The results reflect a consid-
erable gain over when only vanilla co-attention mecha-
nism is used.

2 Related Work

Text matching is a core research problem in NLP and Infor-
mation Retrieval. Many problems that require a relevance
score to be computed between two documents (or sentences)
can be cast as a text matching problem. A wide range of
problems fall into this problem formulation such as ques-
tion answering [Yang et al., 2015], document search [Shen et
al., 2014], entailment classification [Khot ef al., 2018] ,para-
phrase identification [Wang er al., 2017] and recommendation
with reviews [Tay er al., 2018b]. As such, general purpose
text matching algorithms are highly attractive as they can be
applied to a diverse range of applications.
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The dominant state-of-the-art methods today are mostly
based on deep learning. Early work in this paradigm explores
recurrent [Wu et al., 2016; Wang er al., 2016a] and convo-
lutional based encoders [Hu et al., 2014; Severyn and Mos-
chitti, 2015] for document representation and subsequently
learns a similarity function between these representations.
Several works explore alternate encoders such as recursive
networks [Wan et al., 2016b] and quasi-recurrent networks
[Tay et al., 2017c]. A wide range of parameterized similarity
functions have been explored such as multi-layered percep-
trons [Severyn and Moschitti, 2015], neural tensor networks
[Qiu and Huang, 2015] and holographic hidden layers [Tay
et al., 2017a]. Recent advances in question answer match-
ing have considered several novel matching functions such
as Hyperbolic distance [Tay et al., 2018a] and quantum-like
language models [Zhang et al., 2018].

Recent advances exploit two main paradigms. The first
paradigm utilizes extensive matching operations [Wan et al.,
2016a; He et al., 2015; Wang et al., 2017] and aggregates
an overall matching vector(s) for prediction. The Bilateral
Multi-Perspective Matching (BiMPM) is one of the recent
state-of-the-art models for general text matching, utilizing a
multi-perspective cosine matching function to model across
multiple views. The second paradigm mainly utilizes co-
attention [Xiong er al., 2016] to learn pairwise attentions. A
diverse range of co-attention mechanisms exist, mainly vary-
ing the innovation at the similarity matrix computation layer
and pooling of this similarity matrix. Attentive pooling [San-
tos et al., 2016] is a form of extractive co-attention, using the
max pooling operator to extract strong signals in the docu-
ments. Models that utilize alignment-based pooling [Parikh
et al., 2016; Wang and Jiang, 2016] are also prominent es-
pecially in the areas of entailment classification. Unlike the
max pool operator, alignment-based pooling learns subphrase
alignments between two documents. The ESIM (Enhanced
Sequential Inference Model) [Chen et al., 20171, which uti-
lizes alignment-pooling is a strongly competitive model for
entailment classification. Recently, [Tay er al., 2017b] pro-
posed CAFE, a new alignment-pooling model with factoriza-
tion layers and achieved state-of-the-art performance on en-
tailment classification.

The innovation of this work lies in the computation of affin-
ity scores within Co-Attention mechanisms. [Parikh er al.,
2016] adopted feed-forward neural networks to first trans-
form words and then used the inner product to compute scores
between word-pairs. The ESIM [Chen et al., 2017] used the
plain inner product in lieu of the fact that the words have been
encoded in previous layers by a recurrent model. Attentive
pooling [Santos et al., 2016] used a bilinear scoring func-
tion to compute the affinity matrix. This work investigates
the usage of scoring functions that are both asymmetrical and
expressive, exploiting computation in Complex space C for
computing this affinity matrix.

Many works have demonstrated the utility of complex-
valued parameters. Our work is inspired by ComplEx [Trouil-
lon et al., 2016], a knowledge base embedding method that
uses the complex inner product to explicitly model asymmet-
ric relations in knowledge bases. Notably, ComplEx achieved
state-of-the-art performance, by simply replacing real-valued
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dot products with complex parameters. [Danihelka er al.,
2016] proposed complex-valued long short-term memory net-
works, drawing links to holographic reduced representations
[Plate, 1995] and associative memory. Complex-valued pa-
rameters have been used to parameterize recurrent models
[Arjovsky er al., 2016] as a novel strategy to combat van-
ishing gradients and also enhance its representation capacity.
A recent work [Trabelsi ef al., 2017] proposed various build-
ing blocks for complex networks such as activation functions
and convolutions. Contrary to these works, our work aims
to demonstrate the effectiveness of isolated complex mod-
ules within real-valued neural networks, i.e., in our proposed
approach, only the co-attention mechanism operates in com-
plex vector space. This saves parameter cost by only using
complex-valued matching where it is most necessary.

3 Our Proposed Approach

In this section, we describe our proposed model. Figure 1
describes our model architecture.
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Figure 1: Our Proposed Model Architecture with Softmax Activa-
tion.

3.1 Input Encoding

Our network accepts two sequences (a, b) as an input. For
the sake of brevity, we only describe the encoding of one
sequence since the input encoder is functionally symmetri-
cal. Each input is represented as a sequence of one hot en-
coded vectors, {wy,---w,} € RV, An embedding matrix
W, € R™*IVI converts each word into a r-dimensional vec-
tor. Each word is passed into a projection layer with ReLU
activation as follows:

U; = ReLU(prz) + b,) @)

where W, € R™*" b, € R™ are the parameters of the pro-
jection layer. Next, each sequence is then passed through a
bidirectional long short-term memory (LSTM) encoder.

h; = BiILSTM(u, 4),Vi € [1,...(] )

where / represents the maximum length of the sequence. The
bidirectional LSTM runs a single-directional LSTM encoder
in two directions (forward and backward). The output at
each timestep h;, is the concatenation of the hidden states
from both directions. Notably, the parameters of the BILSTM
are siamese in nature, sharing weights between all input se-
quences. The output of the input encoding layer is therefore,
{h1,+- he} € R® where d = 2n.

3.2 Vanilla Co-Attention

First, we introduce the baseline symmetrical (Vanilla Co-
Attention) mechanism. The inputs to this layer are the en-
coded representations from the BiLSTM layer. For simplic-
ity, we refer to these encoded representations as a, b. There
are many variants of Co-Attention mechanisms. As an ex-
ample, we consider the alignment adaptation proposed by
[Parikh et al., 2016]. Let a and b be sequence pairs. A simi-
larity (affinity) matrix s € R%*% is formed by passing each
word through F(.) as follows:

Sij = F(a)" - F(bj) 3)

where s € Rf*% and a;, b; are the i-th and j-th word in the
a and b respectively. F'(.) is a single-layered feed-forward
neural network f(z) = ReLU(W (x) + b). There are var-
ious pooling layers that could be utilized such as alignment
pooling or extractive pooling which are described as follows:

1. Alignment Pooling learns to align sub-phrases of two
sequences together. The alignment pooling operation is
defined as:

Ly

La
exp(sij _ exp(sij -
=Y S e =3 P
j=1 >k exp(sik) =3 2kl exp(sk;s)

“

where [3; is the sub-phrase in a that is softly aligned to

a;. Intuitively, §; is a weighted sum across {a; }f‘;l,
selecting the most relevant parts of a to represent 3;.

2. Extractive Pooling Alternatively, an extractive pooling
may also be performed by taking column-wise and row-
wise max pooling across s.

a' = S(max(s))"a and ¥ = S(max(s))'b  (5)
col row
where s € R > s the affinity matrix. S(.) is the soft-
max function. a',b’ are the co-attentional representa-
tions of a and b respectively. Intuitively, max pooling
selects each word based on its maximum importance of
all word in the other text.

The choice of pooling operator is task-dependent and is tuned
as a hyperparameter, in similar spirit to how pooling operators
are tuned in LSTM or CNN models.
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3.3 Hermitian Co-Attention

In this section, we introduce our novel co-attention mecha-
nism. This variation is inspired by complex-valued represen-
tations. Interestingly, the complex-valued dot product (also
known as the Hermitian Inner Product or sesquilinear form)
is non-commutative which is defined as:

(a;,b;) = a; ' b; (6)

where a;, b; are complex-valued vectors, i.e., a = Re(a;) +
1Im(a;) where Re(a;) and I'm(a;) are the real and imaginary
parts of the vector. ¢ is the square root of —1. @; is the com-
plex conjugate of the complex vector a;. Note that the com-
plex conjugate over the first vector in the Hermitian product
makes it asymmetric, i.e., {a, b) # (b, a), which is a property
that we are seeking in our novel Co-Attention model.

Complexification

Our network introduces a brief complexification process in
the network. In other words, while the Hermitian Co-
Attention module operates in complex vector space, the in-
puts and outputs are real-valued vectors. This is in similar
spirit to [Trouillon et al., 2016] that extracts the real compo-
nent for prediction. In order to initialize the imaginary com-
ponent, we use a nonlinear transform layer to project' the
initial inputs to another vector space. Subsequently, we com-
plexify both real vector spaces into a complex vector space

C.

Similarity Matrix Computation
Finally, similarity matrix is computed by:

sij = Re((ai + 1Fproj(as), bj + iFproj(b5))) (1)

where (., .) is the Hermitian inner product and Re(.) denotes
the real component of the complex-valued matrix. Alterna-
tively, we also explore the complex bilinear product.

Sij = RB(CLIM b]) (8)

where a;,b; € C% and M € C?*9. The existence of this
matching matrix M is tuned as a hyperparameter in our ex-
periments.

Isolated Complex Module

Different from entirely complex-valued neural networks, our
network only exploits a partially complex module. There
are two good reasons for this. Firstly, we want to avoid the
mandatory incorporation of complex-differentiable and holo-
morphic activation functions which are required to handle
complex-valued input-outputs. In this case, complex-specific
versions of activation functions such as ReLU have to be used
[Trabelsi ef al., 2017]. In our case, the complex module is
self-contained and converted to real vectors before any acti-
vation function is applied. Secondly, we want to minimize
the parameter cost incurred by using entirely complex-valued
networks. Hence, our network is only complex-valued within
the co-attention module where properties of complex spaces
are most desired.

'An alternative would to be to project directly from the base
word embeddings or to use random vectors. Early empirical ex-
periments found these alternatives to perform worse.
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3.4 Hermitian Intra-Attention (Optional)

Following [Parikh er al, 2016], intra-attention (or self-
attention), when applied individually to each sentence, can
help improve awareness of each sentence to the entirety of its
context. The Intra-Attention function is defined as:

4 .
rh = Z ;xp(SZJ )A ;
j=1 > =1 €xp(3ik)

where 2 is the intra-attentional representation of x;. Note
that following the Hermitian Co-Attention, we also use the
complex-valued inner product to calculate 5;;. The output of
the intra-aligned output x is concatenated to the original z;,
i.e., [¢};x;]. The intra-attention layer is applied right after
the input encoding layer. This layer is optional and we found
varying results in performance when applying this layer. As
such, this is also tuned.

(©))

3.5 Aggregation and Prediction

After the co-attention layer, we sum (aggregate) the weighted
representations to form two d-dimensional representations.
The prediction layer is dependent on the dataset and is de-
scribed as follows:

e Ranking - We measure the similarity between the vec-
tors using cosine similarity and minimize the pairwise
hinge loss. This loss function requires sampling neg-
ative samples. This objective is used for TrecQA and
WikiQA.

e Classification - The concatenation of [a;b] is passed
through a standard 2-layer fully-connected layer with
h units for classification. The output of the MLP is
then passed into a k-class softmax layer and optimized
with multi-class cross entropy loss. This loss is adopted
for the SciTail (entailment classification task), Twitter
(Tweet-Response) and Ubuntu Dialogue datasets.

For both losses, we include a L2 regularization term \||0]| 2.
where 6 is the trainable model parameters and A is the weight-
ing term for the regularization term.

4 Experiments

We evaluate our proposed HCRN on four text matching
tasks, namely Entailment Classification (premise, hypoth-
esis), Question Answering (question, answer), Tweet Re-
sponse Prediction (tweet, reply) and Dialogue Prediction
(message-reply).

4.1 Experiment 1 - Entailment Classification

Entailment classification is concerned with determining the
logical relationship between two sentences, i.e., deciding if
the premise entails the hypothesis.

Experimental Setup

We use the SciTail dataset [Khot et al., 2018], an entailment
classification dataset constructed from educational (science)
domain, for our evaluation. This dataset comprises 27K sam-
ples, marked as entailment or neutral. There are 101,101
entail examples and 16,925 neutral examples. There are
23K, 1.3K and 2K pairs for training, development and test-
ing respectively.
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Baselines and Implementation

We compare against the benchmarks reported in the actual
paper since the splits are identical. The competitors are En-
hanced LSTM [Chen er al., 2017] and Decomposable Atten-
tion Model [Parikh et al., 2016] and DGEM [Khot et al.,
20181, which used knowledge graph triplets to improve the
semantic knowledge of the model. The evaluation metric is
the accuracy score. For this dataset, we use the two-class
classification loss and the alignment-based pooling. We use a
dimensionality of d = 100 for our model. We train all models
with the Adam optimizer with an learning rate of 3 x 10~%.
The L2 regularization is set to 10~ and a dropout of d = 0.8
is applied to all layers (except the embedding layer). We ini-
tialize word embeddings with GloVE 300D and keep the em-
beddings fixed during training. The batch size is set to 64.
All parameters are initialized with xavier initialization. We
use intra-attention for our model.

Experimental Results

Table 1 reports the results of our evaluation. Firstly, we ob-
serve that HCRN achieves the state-of-the-art performance.
More notably, we outperform strong baselines such as ESIM
and DecompAtt by a large margin (= 10%). Additionally,
performance gains over DGEM, which uses external knowl-
edge, is significant (= 3%). This ascertains the effectiveness
of our proposed HCRN model.

Model Dev  Test
Majority 63.3 60.3
Ngram 65.0 70.6
ESIM [Chen et al., 2017] 70.5 70.6
DecompAitt [Parikh et al., 2016] 754 72.3
DGEM w/o edges 75.1  70.8
DGEM 796 713
HCRN 794  80.0

Table 1: Performance evaluation (accuracy scores) on SciTail En-
tailment Classification dataset.

4.2 Experiment 2 - Question Answer Matching

Given a question, retrieval-based question answering (QA)
aims to return a ranked list of candidate answers.

Experimental Setup

We evaluate our proposed approach on two popular and
widely adopted benchmarks for retrieval-based QA, i.e., Wik-
iQA [Yang et al., 2015] and TrecQA [Wang et al., 2007].
WikiQA comprises 5.9K training pairs and 1.1K/1.4K de-
velopment/testing pairs. On the other hand, TrecQA com-
prises 53K pairs for training and 1.1K /1.5 K pairs for devel-
opment and testing.

Baselines and Implementation

We compare against a wide range of competitive baselines
including AP-BiLSTM [Santos et al., 2016], L.D.C [Wang et
al., 2016b], MP-CNN + NCE [Rao et al., 2016] and BIMPM
[Wang er al., 2017]. Notably, AP-BiLSTM can be regarded as
the key ablation baseline. We use the alignment-pooling co-
attention and ranking loss with a margin A\ of 0.1. The num-
ber of negative samples are 4 and 6 for WikiQA and TrecQA
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respectively. We adopt the mix sampling approach in [Rao et
al., 2016]. For WikiQA, we use the Adadelta optimizer with
a learning rate of 0.1 for WikiQA and 0.2 for TrecQA. Learn-
ing rate is decayed at a rate of 0.96 every 10000 steps. The
batch size is 100. Sequences are dynamically padded to the
batch-wise maximum length. We use the 300D GloVe em-
beddings. All parameters are initialized with Gaussian distri-
butions with zero mean and standard deviation of 0.01. We
apply a dropout of 0.9 to all layers.

Experimental Results
Table 2 reports the results on TrecQA and WikiQA.

TrecQA WikiQA
Model MAP MRR MAP MRR
AP-BILSTM 0.753 0.851 0.689 0.696
L.D.C 0.771 0.845 0.706 0.723
HyperQA 0.784 0.865 0.712 0.727
MPCNN + NCE 0.801 0.877 0.701 0.718
BiMPM 0.802 0.899 0.718 0.731
HCRN 0.805 0.895 0.743 0.756

Table 2: Performance comparison on TrecQA and WikiQA.

Table 2 reports the results on TrecQA and WikiQA. HCRN
achieves very competitive performance on TrecQA and out-
performs all baselines on WikiQA. HCRN outperforms AP-
BiLSTM, a strong co-attentional baseline by a significant
margin, i.e., & 4% on TrecQA and =~ 5% on WikiQA.

4.3 Experiment 3 - Customer Support on Twitter

This experiment is concerned with predicting an appropriate
reply given a tweet.

Experimental Setup

We utilize a customer support dataset obtained from Kaggle?.
This dataset contains tweet-response pairs of tweets to fa-
mous brands and their replies. For each Tweet-Reply pair, we
randomly selected four tweets as negative samples that orig-
inate from the same brand. The dataset is splitinto 8 : 1 : 1
train-dev-test split. There are 33K training samples, 4K de-
velopment samples and 4K testing samples. The evaluation
metrics for this task are MRR (Mean reciprocal rank) and Pre-
cision@1 (accuracy).

Baselines and Implementation
Unlike previous datasets, there are no published works on this
dataset. As such, we implement the baselines ourselves. We
implement standard baselines such as (1) CBOW (sum em-
beddings) into a 2 layer MLP with ReLLU activations, (2) stan-
dard LSTM and CNN models and (3) LSTM and CNN with
standard Co-Attention (AP-CNN and AP-LSTM). All atten-
tion models utilize extractive max-pooling and minimize the
binary cross entropy loss. We set all LSTM dimensions to
= 100 and the number of CNN filters is 100. The CNN
filter width is set to 3. We train all models with the Adam
optimizer with 3 x 10~ learning rate and batch size of 64.
The maximum sequence length is set to 30.

https://www.kaggle.com/soaxelbrooke/
customer—-support-on-twitter
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Experimental Results

Model MRR P@l
CBOW + MLP 65.8 442
Vanilla LSTM 65.2 431
Vanilla CNN 68.7  48.0

AP-CNN 69.1  48.7
AP-LSTM 724 539
HCRN 734 55.2

Table 3: Performance Comparison on Twitter dataset.

Table 3 reports the results of our experiments on the Twitter
dataset. HCRN outperforms both AP-LSTM and AP-CNN.
Notably, AP-LSTM is the real-valued counterpart of HCRN.
As such, this ablation serves as a direct comparison between
complex-valued and real-valued co-attention. We observe
that HCRN outperforms AP-LSTM by ~ 1% — 1.3% in terms
of MRR and P@1.

4.4 Experiment 4 - Dialogue Prediction

In this task, the goal is to match a message with replies.

Experimental Setup

We utilize the large and well-known large-scale Ubuntu Di-
alogue Corpus (UDC) [Lowe et al., 2015]. Following [Wu
et al., 2016], the task mainly utilizes the last two utterances
in each conversation, predicting if the latter follows the for-
mer. We use the same testing splits are provided by Xu et
al. [Xu er al., 2016]. The training set comprises one million
message-response pairs at a 1 : 1 positive-negative ratio. The
development and testing sets have a 9 : 1 ratio. Following
[Wu et al., 2016; Xu et al., 2016], we use the evaluation met-
rics of recall@k (R,,@K) which indicates whether the ground
truth exists in the top & results from n candidates.

Baselines and Implementation

We compare against a large number of competitive baselines,
e.g., MLP, DeepMatch [Lu and Li, 2013], ARC-I / ARC-II
[Hu et al., 2014], CNTN [Qiu and Huang, 2015], Match-
Pyramid [Pang et al., 2016], LSTM, Attentive Pooling LSTM
[Santos et al., 2016], MV-LSTM [Wan et al., 2016a] and fi-
nally the state-of-the-art Knowledge Enhanced Hybrid Neural
Network (KEHNN) [Wu et al., 2016]. Since testing splits are
the same, we report the results directly from [Wu ef al., 2016].
Following the competitors and for fair comparison, we use a
dimensionality of d = 100 for the recurrent model. We mini-
mize the classification loss. The Adam optimizer with learn-
ing rate of 3 x 10~ is used. Word embeddings are initialized
with GloVE 300D and not fine-tuned. Sequence lengths are
padded to a maximum of 50 tokens. The batch size is 256
and L2 regularizartion is 1075, All parameters are initialized
with xavier initialization.

Experimental Results

Table 4 reports the experimental results on Ubuntu dia-
logue corpus. Our proposed HCRN achieves state-of-the-
art performance, outperforming a significant number of well-
established and competitive baselines. Performance gains
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over KEHNN are ~ 5% across all metrics while perfor-
mance gain over AP-LSTM (ablation baseline) ranges from
5% — 11% on different metrics.

Model RQ@I Rl()@l R10 @2 Rl() @5
MLP 0.651 0.256 0.38 0.703
DeepMatch 0.593 0.345 0.376 0.693
ARC-1I 0.665 0.221 0.360 0.684
ARC-1I 0.736 0.380 0.534 0.777
CNTN 0.743 0.349 0.512 0.797
MatchPyramid  0.743 0.420 0.554 0.786
LSTM 0.725 0.361 0.494 0.801
AP-LSTM 0.758 0.381 0.545 0.801
MV-LSTM 0.767 0.410 0.565 0.800
KEHNN 0.786 0.460 0.591 0.819
HCRN 0.816 0.508 0.656 0.863

Table 4: Performance Comparison on Ubuntu Dialogue Corpus.

4.5 Ablation Study

In order to study the effectiveness of the complex-valued co-
attention mechanism, we report scores on three datasets us-
ing identical model architectures but only varying the co-
attention mechanism. We compare between Complex (bi-
linear), Complex and Real (Vanilla). Additionally, we also
report scores with and without the intra-attention layer.

Dataset Scitail Twitter WikiQA

Complex (Bilinear) 79.5 73.42/55.24  0.738/0.746
Complex 77.7  73.22/55.12  0.711/0.723
Real / Vanilla 77.0  72.53/54.07 0.704/0.715
+ With Intra 80.0  73.00/54.98  0.743/0.756

Table 5: Ablation study on three datasets. Scores in boldface are the
best scores

Table 5 reports the ablation results on three datasets. We
observe that complex-valued co-attention can improve the
performance over real-valued co-attention. Moreover, adding
the complex bilinear scoring further improves performance.
Finally, the effect of Hermitian intra attention improves per-
formance on WikiQA and Scitail but not on Twitter datasets.

5 Conclusion

We proposed a conceptually simple but highly effective co-
attention mechanism for text matching. Our novel approach
exploits computation in complex vector space, enabling (1)
a sense of word-level directionality, and (2) enhanced rep-
resentation learning by leveraging complex vector spaces.
We demonstrate the effectiveness of our approach on five
benchmark datasets and in four different domains. Compar-
isons against standard co-attention and attention models show
that complex-valued co-attention can lead to considerable im-
provements in performance. Overall, our proposed Hermitian
Co-Attention Recurrent Network (HCRN) achieves the state-
of-the-art on all datasets.
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