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Abstract
Both entity and relation extraction can benefit from
being performed jointly, allowing each task to cor-
rect the errors of the other. Most existing neural
joint methods extract entities and relations sepa-
rately and achieve joint learning through parameter
sharing, leading to a drawback that information be-
tween output entities and relations cannot be fully
exploited. In this paper, we convert the joint task
into a directed graph by designing a novel graph
scheme and propose a transition-based approach to
generate the directed graph incrementally, which
can achieve joint learning through joint decoding.
Our method can model underlying dependencies
not only between entities and relations, but also be-
tween relations. Experiments on NewYork Times
(NYT) corpora show that our approach outperforms
the state-of-the-art methods.

1 Introduction
Extraction of entities and relations is a fundamental task of in-
formation extraction (IE). An example is shown in Figure 1,
where the input is unstructured texts and the output includes
entities and their semantic relations. There are strong connec-
tions between entities and relations, and also between relation
labels in a sentence. For example, a Live In relation suggests
Person and Location entities, and vice versa. The Live In rela-
tion (between “John” and “California”) can be inferred from
the Live In (between “John” and “Los Angeles”) and Loc In
(between “Los Angeles” and “California”) relations.

The task has been traditionally solved as a pipeline of two
separate sub-tasks: entity recognition [Nadeau and Sekine,
2007] and relation extraction [Zhou et al., 2005]. This separa-
tion neglects the relevance between these two sub-tasks. Joint
extraction of entities and relations can integrate information
of entities and relations, and has achieved better results on
this task. Joint models have been investigated using both sta-
tistical methods [Ren et al., 2017; Miwa and Sasaki, 2014;
Li and Ji, 2014] and neural methods [Zheng et al., 2017;
Katiyar and Cardie, 2017; Miwa and Bansal, 2016]. The
performances of statistical models [Miwa and Sasaki, 2014;
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Figure 1: Entity and relation extraction (Green indicates entity arcs
and blue indicates relation arcs.)

Li and Ji, 2014] heavily rely on complicated feature engineer-
ing and it is difficult to exploit global features.

Neural methods, in contrast, automatically learn non-local
features by exploiting recurrent neural networks for learning
sentence-level representations and have given the state-of-
the-art results. However, most existing neural models [Kati-
yar and Cardie, 2017; Miwa and Bansal, 2016] extract en-
tities and relations separately, achieving joint learning only
through parameter sharing, but not joint decoding. This leads
to a drawback that information between output entities and
relations cannot be fully exploited, since no explicit fea-
tures are used to model output-output dependencies. Zheng
et al. [2017] is the only exception, designing a novel tagging
scheme and converting the joint extraction task to a tagging
problem. In their joint model, information of entities and re-
lations is integrated into a unified tagging scheme and can be
fully exploited. However, due to the transformation into a tag-
ging task, the method only indirectly captures output struc-
tural correspondences, and is incapable of identifying over-
lapping relations (e.g. one entity can only have at most one
relation).

To address this issue, we convert the joint task into a di-
rected graph by designing a novel graph scheme, solved us-
ing a transition-based parsing framework [Zhang and Clark,
2011]. Different from traditional parsing tasks, nodes in our
output structures may have multiple or no heads, as shown
in Figure 1. We propose a novel transition system, which
is a variant of the list-based arc-eager algorithm for non-
projective tree parsing [Choi and McCallum, 2013]. By incre-
mentally integrating entity information and their correspond-
ing relation information, our method can model underlying
dependencies not only between entities and relations, but also
between relations. One challenge for designing a transition-
based parsing system is the representation of parsing states
(i.e. configurations), based on which the transition actions are
disambiguated. We borrow the idea of neural parsing [Dyer
et al., 2015; Kiperwasser and Goldberg, 2016], designing a
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livesJohn in Los Angeles CaliforniaInput:
Tags:

Result:

S-LI-1 O O B-LI-2      E-LI-2 O

{John, Live_In, Los Angeles}

Figure 2: Example for the baseline tagging scheme.

special recursive neural network to model underlying entity-
relation and relation-relation dependencies. We also use a Bi-
LSTM to represent each sentence token to capture richer con-
textual information. The main contributions of this work are
concluded as follows:

• We propose an intuitive graph scheme to jointly repre-
sent entities and relations, so that end to end relation
extraction can be easily transformed into a parsing-like
task

• Based on our graph scheme, we propose a novel transi-
tion system to generate the directed graph. In addition,
we design a special recursive neural network to better
model underlying entity-relation and relation-relation
dependencies.

• We conduct our experiments on NewYork Times (NYT)
corpora and the results show our method outperforms
the state-of-the-art end-to-end methods.

The code is released1.

2 Problem Definition
2.1 Baseline: Tagging Scheme
Zheng et al. [2017] treat the joint extraction task as a se-
quence labeling problem, proposing a novel tagging scheme.
Figure 2 is an example of the tagging scheme. Tag “O” means
that the corresponding word is independent of extracted enti-
ties and relations. In addition to “O”, the other tags consist of
three parts: the word position in the entity, the relation type,
and the relation role. It uses the “BIES” (Begin, Inside, End,
Single) signs to represent the position information of a word
in the entity. The relation type information is obtained from
a predefined set of relations. The relation role information is
represented by the numbers “1” and “2”, where “1” means
that the word belongs to the first entity in the relation and “2”
means that the word belongs to the second entity. As shown
in Figure 2, “Los” is the first word of entity “Los Angeles” be-
longing to the second element of relation Live In, so its tag is
“B-LI-2”. The other entity “John”, which is the first element
of relation Live In, is labeled as “S-LI-1”.

Based on this tagging scheme, Zheng et al. [2017] develop
an end-to-end model with a biased loss function for the se-
quence labeling problem. State-of-the-art results are achieved
thanks to the association between related entities in joint de-
coding. However, the method is incapable of identifying the
overlapping relations. For instance, the sentence in Figure 1
contains three relations, in which every entity has two rela-
tions with other entities. But only one of the relations can be
extracted under the tagging scheme.

1https://github.com/hitwsl/joint-entity-relation

Transitions Change of State

LEFTl-REDUCE
([σ|i∗], δ, e, [j∗|β], R,E)

(σ, δ, e, [j∗|β], R ∪ {(i∗ l←− j∗)}, E)

RIGHTl-SHIFT
([σ|i∗], δ, e, [j∗|β], R,E)

([σ|i∗|δ|j∗], [ ], e, β, R ∪ {(i∗ l−→ j∗)}, E)

NO-SHIFT
([σ|i∗], δ, e, [j∗|β], R,E)

([σ|i∗|δ|j∗], [ ], e, β, R,E)

NO-REDUCE
([σ|i∗], δ, e, [j∗|β], R,E)

(σ, δ, e, [j∗|β], R,E)

LEFTl-PASS
([σ|i∗], δ, e, [j∗|β], R,E)

(σ, [i∗|δ], e, [j∗|β], R ∪ {(i∗ l←− j∗)}, E)

RIGHTl-PASS
([σ|i∗], δ, e, [j∗|β], R,E)

(σ, [i∗|δ], e, [j∗|β], R ∪ {(i∗ l−→ j∗)}, E)

NO-PASS
([σ|i∗], δ, e, [j∗|β], R,E)

(σ, [i∗|δ], e, [j∗|β], R,E)

O-DELETE
([σ|i∗], δ, e, [j|β], R,E)

([σ|i∗], δ, e, β, R,E)

GEN-SHIFT
([σ|i∗], δ, e, [j|β], R,E)

([σ|i∗], δ, [j|e], β, R,E)

GEN-NER(y)
([σ|i∗], δ, [j|e], [β], R,E)

([σ|i∗], δ, [ ], [j∗|β], R, E ∪ {j∗})

Table 1: Transition actions, ∗ indicates an entity.

2.2 The Graph Scheme
Instead of label sequences, we transform entity mentions and
their relations into a directed graph. The nodes in the graph
correspond to words in the input sentence. The directed arcs
are broadly categorized into: 1) entity arcs that represent in-
ternal structures of entities; 2) relation arcs that represent re-
lations between entities, where head node means the first ele-
ment of relation and modifier node means the second element
of relation. To cope with the overlapping relations, the node
in our directed graph can have multiple heads, which is differ-
ent from traditional constituent parsing or dependency pars-
ing graph. Figure 1 illustrates our graph representation, where
the input sentence contains: 1) three entities, which are con-
verted into corresponding green arcs with entity labels; and 2)
three relations, which are converted into corresponding blue
arcs with relation labels. Besides, the other words irrelevant
to the final result have no corresponding arcs.

3 Method
3.1 Transition System
We propose a novel neural transition-based method, inspired
by the list-based arc-eager algorithm [Choi and McCallum,
2013]. There are two types of transition actions: 1) entity ac-
tions, which are used to recognize entities; 2) relation actions,
which are used to recognize relations between entities.
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Transitions Preconditions of transition actions
LEFTl-∗ [i 6= 0] ∧ ¬[(i→∗ j) ∈ R] ∧ (j ∈ E)
RIGHTl-∗ ¬[(j →∗ i) ∈ R] ∧ (j ∈ E)
∗-REDUCE ¬[∃k ∈ β.(i→ k) ∨ (i← k)] ∧ (j ∈ E)
∗-SHIFT ¬[∃k ∈ σ.(k 6= i) ∧ ((k → j) ∨ (k ← j))] ∧ (j ∈ E)
O-DELETE (j /∈ E) ∧ (e = [ ])
GEN-SHIFT (j /∈ E)
GEN-NER (j /∈ E) ∧ (e 6≡ [ ])

Table 2: Preconditions of transition actions.

Formally, we use a tuple (σ, δ, e, β,R,E) to represent each
state, where σ is a stack holding processed entities, δ is a stack
holding entities that are popped out of σ but will be pushed
back in the future, e is a stack storing the partial entity chunk,
and β is a buffer holding unprocessed words. R is a set of
relation arcs. E is a set of entity arcs. We use an index i to
represent word wi and entity ei, respectively. A is used to
store the action history.

The set of actions is shown in Table 1. The first seven ac-
tions are used to generate relations, and the last three actions
are used to generate entities. In particular, LEFTl-REDUCE
adds a relation arc with label l from ej to ei, and pops ei out
of σ. RIGHTl-SHIFT adds a relation arc with label l from ei
to ej , and pushes all entities in δ and ej into σ. NO-SHIFT
pushes all entities in δ and ej into σ. NO-REDUCE pops
ei out of σ. LEFTl-PASS adds a relation arc with label l
from ej to ei, and moves ei to the front of δ. RIGHTl-PASS
adds a relation arc with label l from ei to ej , and moves ei
to the front of δ. NO-PASS simply moves ei to the front of
δ. (i∗ l−→ j∗) is used to denote a relation arc from ei to ej
with label l. (i∗ → j∗) and (i∗ →∗ j∗) indicate that ei is a
head and an ancestor of ej respectively. Note that all the re-
lation actions are forbidden when the top element of β is a
word. O-DELETE pops wj out of β. GEN-SHIFT moves
wj from β to e. GEN-NER(y) pops all items from the top of
e creating a “chunk”, labels this with label y, pushes a repre-
sentation of this chunk onto β, and an entity is added to E.
All the entity actions are forbidden when the top element of
β is an entity.

Each action needs to satisfy certain preconditions to ensure
the properties of a well-formed directed graph of entities and
relations, as described in Table 2. To produce arcs pointing
to entities with multiple heads, we design the preconditions
of LEFTl-∗ and RIGHTl-∗ so that the dependency between a
head and its modifier can be generated even if the modifier
already has a head. Furthermore, we want to confirm that all
heads and children of a word are found before the word is
reduced. To this end, we set the head confirmation in the pre-
condition of ∗-REDUCE to make sure no extra head of ei is in
the buffer β.

Table 3 shows the sequence of state transitions
given the sentence in Figure 1. The initial state is
([ ], [ ], [ ], [1, · · · , n], ∅, ∅), while the terminal state is
(σ, δ, [ ], [ ], R,E). Transition actions are generated by
consulting the gold-standard graph during training and a
neural network classifier during decoding.

TOP

        
mt=max{0,W[st;bt;pt;et;at]+d}

δ

NO-REDUCENO-SHIFT

σ

empty-stack e(John)

β

empty-stack 

h(Los) empty-stack

btetptst at

…. 

A

GEN-SHIFTO-DELETE

h(Angeles) h(California)

e

Figure 3: Representation of model state 6 in Table 3. h(∗) indicates
the Bi-LSTM representation of each token, e(∗) indicates the com-
position of entities and their relations.

3.2 Search Algorithm
Based on the above transition system, our decoder searches
for an optimal action sequence for a given sentence. The sys-
tem is initialized by pushing all the input words and their rep-
resentations onto β in reverse order, such that the first word
is at the top of β. σ, δ, e and A each contains an empty-stack
token. At each step, the system computes a composite repre-
sentation of the model states (determined by the current con-
figurations of β, σ, δ, e and A), which is used to predict an
action to take. Decoding completes when β and e are both
empty (except for the empty-stack symbol), regardless of the
other states.

As shown in Figure 3, the model state representation at
time t, which is written as mt, is defined as:

mt = max{0,W [st; bt; pt; et; at] + d},
where W is a learned parameter matrix, st is the representa-
tion of σ, bt is the representation of β, pt is the representation
of δ, et is the representation of e, at is the representation ofA,
d is a bias term. (W [st; bt; pt; et; at] + d) is passed through a
component-wise rectified linear unit (ReLU) for nonlinearity.

The model state mt is used to compute the probability of
candidate actions at time t as:

p(zt|mt) =
exp(gTztmt + qzt)∑

z′∈A(S,B) exp(gTz′mt + qz′)
,

where gz is a column vector representing the embedding of
the transition action z, and qz is a bias term for the action
z. The set A(S,B) represents the set of valid actions that
may be taken given the current state. Since mt encodes in-
formation about all previous decisions made by the transition
system, the probability of any valid sequence of transition ac-
tions z conditioned on the input can be written as:

p(z|w) =
|z|∏
t=1

p(zt|mt)

We then have

(E∗, R∗) = argmaxE,R

|z|∏
t=1

p(zt|mt),
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State Transition σ δ e β R E

0 Initialization [ ] [ ] [ ] [1, . . . , 6] ∅
1 GEN-SHIFT [ ] [ ] [1] [2, . . . , 6]
2 GEN-NER [ ] [ ] [ ] [1∗, . . . , 6] E ∪ {1− Per→ 1}
3 NO-SHIFT [1∗] [ ] [ ] [2, . . . , 6]
4 O-DELETE [1∗] [ ] [ ] [3, . . . , 6]
5 O-DELETE [1∗] [ ] [ ] [4, . . . , 6]
6 GEN-SHIFT [1∗] [ ] [4] [5, 6]
7 GEN-SHIFT [1∗] [ ] [4, 5] [6]
8 GEN-NER [1∗] [ ] [ ] [5∗, 6] E ∪ {4− Loc→ 5}
9 RIGHT-SHIFT [1∗, 5∗] [ ] [ ] [6] R ∪ {1−Live In→ 5}
10 GEN-SHIFT [1∗, 5∗] [ ] [6] []
11 GEN-NER [1∗, 5∗] [ ] [ ] [6∗] E ∪ {6− Loc→ 6}
12 RIGHT-PASS [1∗] [5∗] [ ] [6∗] R ∪ {5− Loc In→ 6}
13 RIGHT-SHIFT [1∗, 5∗, 6∗] [ ] [ ] [] R ∪ {1−Live In→ 6}

Table 3: Transition sequence for the entity and relation graph in Figure 1.

where E∗ is the best output entities, and R∗ is the best rela-
tions. Thus the extraction of entities and relations are merged
in one transition-based system. To label a new input sequence
at test time, the maximum probability action is chosen greed-
ily until the algorithm reaches a termination state.

3.3 Input Representation
Two neural layers are used to represent the input, where the
bottom layer is token embedding and the next layer is a Bi-
LSTM layer to capture richer contextual information.

Token Embedding We use two vectors to represent each
input token ti: a learned word embedding wi and a fixed
word embedding w̃i. The two vectors are concatenated, trans-
formed by a matrix V and fed to a rectified layer to learn a
feature combination:

xi = max{0, V [w̃;w] + b},

Bi-LSTM Encoding Given the token embeddings of an in-
put sequence x = (x1, ..., xn), bidirectional LSTM is used
to process the sequence in both directions with two separate
LSTM layers. The forward LSTM layer

−→
h encodes the in-

put sequence from x1 to xn. In the similar way, the backward
LSTM layer

←−
h will encode the input sequence from xn to x1.

We then concatenate
−→
ht and

←−
ht to represent word t’s encoding

information, denoted as ht = [
−→
ht ,
←−
ht ]. Finally, the Bi-LSTM

Embedding of the input sequence will be sent to the above
structures of state representation.

3.4 State Representation
Shown in Figure 3, for better capturing non-local context in-
formation, we use stack LSTM [Dyer et al., 2015] to repre-
sent different components of each state. For a conventional
LSTM, new inputs are always added in the right-most po-
sition; but in a stack LSTM, the current location of a stack
pointer determines which cell in the LSTM provides ct−1 and
ht−1 when computing the new memory cell contents. In or-
der to move the stack pointer from the right-most position, the
stack LSTM provides a pop operation which moves the stack
pointer to the previous element. Thus, the stack-LSTM can be
understood as a stack implemented so that contents are never
overwritten. By querying the output vector to which the stack

Los AngelesJohn California

C2

Live_In Loc_In

CaliforniaLoc_InC1

Los Angeles JohnLive_In

W1
t W2

t W3
t

W1
h W2

h W3
h

Figure 4: Relation representation of “Los Angeles”, computed by
recursively applying composition functions. W t is the parameters
when “Los Angeles” is the modifier and Wh is the parameters when
“Los Angeles” is the head

pointer points, a continuous-space “summary” of the current
stack configuration is available. As shown in Table 3, once
a RIGHT-PASS action is taken (state 12), the pop operation
will be taken to move the stack pointer from position of 5∗ to
1∗. Once a RIGHT-SHIFT action is taken (state 13), the ele-
ments in δ and top of β will be added in the position that the
stack pointer points (1∗) in order.

3.5 Composition Functions
To model underlying entity-relation and relation-relation de-
pendencies, our method incrementally integrates the entity
information and corresponding relation information into the
transition-based model.

Entity Chunks When GEN-NER(y) is executed, the algo-
rithm shifts the sequence of words on e to the top of β as
a single completed chunk. To compute an embedding of this
sequence, we run a bidirectional LSTM over the embeddings
of its constituent words together with the chunk type (i.e.,
y). This function is denoted as g(u, ..., v, ry), where ry is a
learned embedding of a label type. Thus, β contains a single
vector representation for each labeled entity chunk.

Relation Labels Recursive neural network models enable
complex phrases to be represented compositionally in terms
of their components and relations [Dyer et al., 2015]. Given
a directed relation arc, which points from a head node h to
a modifier node m, we combine both head-modifier pair and
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modifier-head pair, and use the combinations to update the
embeddings of head node and modifier node separately. For-
mally, for the head-modifier pair, we have

c = tanh(Wh[H;M ;R] + eh)

where Wh is a learned parameter matrix, H is neural embed-
ding of the head entity, M is neural embedding of the modi-
fier entity, R is vector embedding of the relation, eh is a bias
term.

Similary, for the modifier-head pair, we have

c = tanh(W t[M ;H;R] + et)

whereW t is a learned parameter matrix, et is a bias term, and
the others are the same with head-modifier pair.

To simplify the parameterization of our composition func-
tion, we combine the pairs one at a time, building up more
complicated structures in the order they are “reduced” in the
model. Figure 4 shows an example when updating the entity
“Los Angeles”, where the Live In relation is generated firstly.

4 Experiments
4.1 Experimental settings
Dateset To directly compare with Zheng et al. [2017], we use
the public dataset NYT2 as our main data set, which is pro-
duced by distant supervision [Ren et al., 2017]. The training
data set is obtained by means of distant supervision methods
without manually labeling and contains 353k triplets in to-
tal. While the test set is manually labeled and contains 3, 880
triplets.

Evaluation Metrics We adopt standard Precision (Prec), Re-
call (Rec) and F1 score to evaluate the model. The labels of
entity types are not considered when computing the final F1-
score [Ren et al., 2017; Zheng et al., 2017]. In other words, a
triplet is regarded as correct when its relation type and head
offsets of the two corresponding entities are both correct. We
follow Zheng et al. [2017], creating a validation set by ran-
domly sampling 10% data from test set and use the remaining
data as evaluation.

4.2 Hyperparameters and Training Details
Given a set of training data, the training goal is to maximize
the likelihood of each gold action given the current model
state. We update all model parameters by backpropagation
using stochastic gradient descent (SGD) with a learning rate
of 0.01 and gradient clipping at 5.0. Following Dyer et al.
[2015], we use a variant of the skip n-gram model, namely
structured skip n-gram [Ling et al., 2015], to create word em-
beddings. We have 2 hidden layers in our network and the
dimensionality of the hidden units is 100.

4.3 Experimental Results
Baselines We compare our method with several state-of-the-
art extraction methods, which can be divided into the fol-
lowing categories: the pipelined methods, the jointly extract-
ing methods, and the end-to-end methods. For the pipelined

2The dataset can be downloaded at:
https://github.com/shanzhenren/CoType.

Method Prec. Rec. F1
FCM [Gormley et al., 2015] 55.3 15.4 24.0
DS+logistic [Mintz et al., 2009] 25.8 39.3 31.1
LINE [Tang et al., 2015] 33.5 32.9 33.2
MultiR [Hoffmann et al., 2011] 33.8 32.7 33.3
DS-Joint [Li and Ji, 2014] 57.4 25.6 35.4
CoType [Ren et al., 2017] 42.3 51.1 46.3
LSTM-LSTM-Bias 61.5 41.4 49.5
LSTM-LSTM-Bias* 60.8 41.3 49.1
Our Method 64.3 42.1 50.9

Table 4: Comparison with previous state-of-the-art methods on
NYT. The first part (from row 1 to row 3) is the pipelined meth-
ods, the second part (row 4 to 6) is the jointly extracting methods,
and the third part (row 7 to 9) is the end-to-end methods.

Method Prec. Rec. F1
ALL 64.3 42.1 50.9
-composition 62.3 41.2 49.6
-Bi-LSTM 62.3 40.5 49.1

Table 5: Ablation test on NYT.

methods, the NER results are obtained by Ren et al. [2017],
then several classical relation classification methods are ap-
plied to detect the relations. These methods include: (1) DS-
logistic [Mintz et al., 2009] is a distant supervised and feature
based method, which combines the advantages of supervised
IE and unsupervised IE features; (2) LINE [Tang et al., 2015]
is a network embedding method, which is suitable for arbi-
trary types of information networks; (3) FCM [Gormley et
al., 2015] is a compositional model that combines lexicalized
linguistic context and word embeddings for relation extrac-
tion.

The joint methods are listed as follows: (4) DS-Joint [Li
and Ji, 2014] is a supervised method, which jointly extracts
entities and relations using structured perceptron on human-
annotated dataset; (5) MultiR [Hoffmann et al., 2011] is a
typical distant supervised method based on multi-instance
learning algorithms to combat the noisy training data; (6) Co-
Type [Ren et al., 2017] is a domain independent framework
by jointly embedding entity mentions, relation mentions, text
features and type labels into meaningful representations.

LSTM-LSTM-Bias [Zheng et al., 2017] is the baseline
end-to-end method in §2, LSTM-LSTM-Bias* is our imple-
mentation.

Results Table 4 shows the results. Our transition-based
method achieves significant improvements over all the base-
lines in F1 score. In particular, it achieves 4.6 point improve-
ment over the best jointly extracting method [Ren et al.,
2017], and 1.4 point improvement over the best end-to-end
sequence labeling method [Zheng et al., 2017], demonstrat-
ing the effectiveness of our model on modeling and predicting
entities and relations.

The joint methods by multi-task learning are better than
pipelined methods, and the end-to-end methods are better
than most of the joint methods. This result indicates the im-
portance of joint decoding, which has stronger power of ex-
ploiting the dependencies between entities and relations, and
also between relation labels in a sentence.
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Standard S1: CARVING THE GRANITE A Park as Eight Miles of Exits The Flume, [Cannon Mountain]LOC:CONTAIN-2 and the
Old Man of the Mountain Historic Site are all part of Franconia Notch State Park in [New Hampshire]LOC:CONTAIN-1.

LSTM-LSTM-Bias*: CARVING THE GRANITE A Park as Eight Miles of Exits The Flume, [Cannon Mountain] and the
Old Man of the Mountain Historic Site are all part of Franconia Notch State Park in [New Hampshire].

Our Model: CARVING THE GRANITE A Park as Eight Miles of Exits The Flume, [Cannon Mountain]LOC:CONTAIN-2 and the
Old Man of the Mountain Historic Site are all part of Franconia Notch State Park in [New Hampshire]LOC:CONTAIN-1.

Standard S2: The US offered to locate the missile system in Poland, drawing furious objections from [Russia]LOC-LAC-1, though
[Washington]LOC-LAC-1 argues that the system is built to defend against [Iran]LOC-LAC-2,LOC-LAC-2, principally.

LSTM-LSTM-Bias*: The US offered to locate the missile system in Poland, drawing furious objections from [Russia]LOC-LAC-1, though
[Washington] argues that the system is built to defend against [Iran]LOC-LAC-2, principally.

Our Model: The US offered to locate the missile system in Poland, drawing furious objections from [Russia]LOC-LAC-1, though
[Washington]LOC-LAC-1 argues that the system is built to defend against [Iran]LOC-LAC-2,LOC-LAC-2, principally.

Table 6: Output from LSTM-LSTM-Bias and our model. The first row for each example is the gold standard. “LOC” is entity type, ”CON-
TAIN” and “LAC” are relation types, “1” and “2” mean direction of relation. The color of ”LOC-LAC*” refers to relation instance.

It is worth noting that the precision of our method is much
higher compared to all the other methods. We attribute the
success to the strong ability to model feature representations
of entities and relations, and also the joint decoding.

Ablation Tests To demonstrate the effect of Bi-LSTM repre-
sentation and relation composition function, we further con-
duct a set of ablation experiments. For the former, we directly
send the token embedding of the input sentence to the above
structures of state representation. For the latter, we only up-
date each entity embedding by concatenating its original em-
bedding with relation embedding once a relation arc is gen-
erated, ignoring the corresponding head or modifier entity.
As shown in Table 5, the F1-score decreases heavily without
each strategy, which indicates that it is very important to cap-
ture richer contextual information for token embedding and
model feature representations of entities and relations.

Case Study We compare our method with LSTM-LSTM-
Bias [Zheng et al., 2017] on some cases, as shown in Ta-
ble 6. As demonstrated by S1, when the distance between
two interrelated entities is large, it is more difficult for the
LSTM-LSTM-Bias method to identify their relation. How-
ever, thanks to the use of stack LSTM state representation, our
transition-based method can capture more global feature rep-
resentations, which make it more powerful identifying long-
term relations.

Unlike the LSTM-LSTM-Bias method, our method can
identify overlapping relations. S2 in Table 6 shows an ex-
ample, which cannot be identified by the LSTM-LSTM-Bias
method because of its model restriction. Our transition sys-
tems have the ability to handle multiple head or tail nodes,
which make it suitable for such situation. In addition, our
method directly models feature representations of entities and
relations by using specially designed composition function,
which makes it more powerful when dealing with overlap-
ping relations.

5 Related Work
Two main methods have been proposed for entity and relation
extraction, namely the pipeline method and the joint learning
method. The former treats this task as two separated tasks,
i.e., named entity recognition (NER) [Florian et al., 2010;
Kuru et al., 2016] and relation extraction [Bunescu and
Mooney, 2005; Liu et al., 2015; Lin et al., 2016].

Existing joint methods include feature-based statistical
systems [Ren et al., 2017; Miwa and Sasaki, 2014; Li and
Ji, 2014], and neural models [Katiyar and Cardie, 2017;
Miwa and Bansal, 2016; Zheng et al., 2017]. Miwa and
Bansal [2016] propose a neural method comprised of a
sequence-based LSTM for entity identification and a separate
tree-based dependency LSTM layer for relation classification.
Their model depends critically on access to dependency trees
and achieves joint learning only through parameter sharing.
Katiyar and Cardie [2017] propose an attention-based joint
neural model without accessing to dependency trees. This
model extracts the entities and relations from left to right in-
crementally. However, it does not perform joint decoding and
does not model the dependencies between different relations.
Zheng et al. [2017] convert the joint task to a sequence la-
beling problem, achieving joint decoding for entities and re-
lations in one task. Similar with Zheng et al. [2017], we build
a neural model with joint decoding. Different from Zheng et
al. [2017], however, we transform the joint task into a graph
problem and propose a transition-based method.

There has been work using transition-based methods
[Zhang and Clark, 2011; Nivre, 2008] to produce dependency
trees and directed acyclic graphs (DAGs), but little work on
more accurately directed graph in our joint tasks. Choi and
McCallum [2013] use the list-based arc-eager algorithm for
non-projective trees. Our model extends the method for yield-
ing directed graph structure.

Recently, neural transition-based parsers have achieved
highly competitive accuracies thanks to the modeling of
output-output relations [Dyer et al., 2015; Kiperwasser and
Goldberg, 2016; Lample et al., 2016; Liu and Zhang, 2017;
Zhou et al., 2015; Wang et al., 2018]. We are inspired by
these methods. To our knowledge, we are the first to investi-
gate neural transition-based parsing framework for entity and
relation extraction.

6 Conclusion
We proposed a neural transition-based method for joint entity
and relation extraction. Compared with existing neural meth-
ods, our method can model underlying dependencies not only
between entities and relations, but also between relations. Ex-
periments show that our model achieves the state-of-the-art
F-scores on a standard NewYork Times (NYT) benchmark.
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