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Abstract
In non-cooperative multi-agent systems, agents
might want to prevent the opponents from achiev-
ing their goals. One alternative to solve this task
would be using counterplanning to generate a plan
that allows an agent to block other’s to reach their
goals. In this paper, we introduce a fully auto-
mated domain-independent approach for counter-
planning. It combines; goal recognition to infer an
opponent’s goal; landmarks’ computation to iden-
tify subgoals that can be used to block opponents’
goals achievement; and classical automated plan-
ning to generate plans that prevent the opponent’s
goals achievement. Experimental results in several
domains show the benefits of our novel approach.

1 Introduction
In non-cooperative multi-agent systems, agents might want
to prevent the opponents from achieving their goals. This
task has been named counterplanning [Carbonell, 1981]. Ex-
amples of non-cooperative multi-agent domains where this
approach can provide great benefits are police controls, cy-
ber security, or real-time strategy games, where this ability
has been identified as one of the major challenges for Artifi-
cial Intelligence [Ontañón et al., 2013]. Most previous coun-
terplanning approaches are based on domain-dependent so-
lutions, such as rule-based systems [Carbonell, 1978; Rowe,
2003], or Hierarchical Task Networks (HTN) [Willmott et al.,
2001].

Recently, there has been increasing interest in the study and
generation of agents capable of reasoning about their own and
opponents’ goals as well as their environment [Cox, 2007].
Some works follow the Goal-Driven Autonomy (GDA) pro-
cess, which integrates a diverse set of AI components such
as HTN planning or explanation generation [Molineaux et
al., 2010; Weber et al., 2010]. Other works combine goal
recognition and reasoning on actions, applying those tech-
niques in domains such as identifying terrorist activity [Jarvis
et al., 2005], air combat [Borck et al., 2015], real-time strat-
egy games [Kabanza et al., 2010], or cyber security [Boddy
et al., 2005; Edelkamp et al., 2009; Sarraute et al., 2012;
Obes et al., 2013; Hoffmann, 2015]. Again, these approaches
are domain-dependent. On the goal recognition side, they

use plan [Kabanza et al., 2010], rules [Carbonell, 1978] or
behavior [Borck et al., 2015] libraries to detect their oppo-
nent’s goals. On the action reasoning side, they use stored
policies [Carbonell, 1981], ask for human guidance follow-
ing a mixed-initiative paradigm [Jarvis et al., 2005], or re-
quire heavy knowledge engineering processes such as HTN
based approaches [Willmott et al., 2001].

In this paper we present a fully automatic domain-
independent approach for counterplanning. This approach is
based on: goal recognition, landmarks, and classical auto-
mated planning. Goal recognition aims to infer an agent’s
plan or goals from a set of observations. In general, the
observed agent can be cooperative or competitive. We use
this technique to infer an opponent’s goals. Fact land-
marks are propositions that must be true in all valid solution
plans [Hoffmann et al., 2004]. We use landmarks to iden-
tify subgoals that can be used to block the opponent’s goal
achievement. Classical automated planning aims to generate
a sequence of actions, namely a plan, which achieves some
goals from an initial state. We use it to generate plans that
prevent the opponent’s goal achievement.

The main idea of this novel approach is to: (1) quickly
identify the actual opponent’s goal g using planning-based
goal recognition techniques; (2) compute the set of landmarks
involved in the achievement of g; (3) select a counterplanning
landmark, which is the first landmark where the opponent
could be blocked; and (4) generate a plan to achieve the coun-
terplanning landmark, and therefore to block the opponent’s
goal achievement. This approach shows how an opponent can
be effectively blocked in different non-cooperative domains.

The rest of the paper is organized as follows. In the next
section we review the basic notions of classical planning,
goal recognition, and landmarks. In Section 3 we introduce
our fully automatic domain-independent counterplanning ap-
proach, which includes the quick detection of goals using
goal recognition, and the landmark’s computation to identify
relevant counterplanning landmarks. In Section 4 we present
an empirical study, and in Section 5 we discuss future work.

2 Background
2.1 Automated Planning
Automated Planning is the task of choosing and organizing a
sequence of actions such that, when applied in a given initial
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state, it results in a goal state [Ghallab et al., 2004]. For-
mally, a single-agent STRIPS planning task can be defined as
a tuple Π = 〈F,A, I,G〉, where F is a set of propositions, A
is a set of instantiated actions, I ⊆ F is an initial state, and
G ⊆ F is a set of goals. Each action a ∈ A is described by
a set of preconditions (pre(a)), which represent literals that
must be true in a state to execute an action, and a set of ef-
fects (eff(a)), which are the literals that are added (add(a)
effects) or removed (del(a) effects) from the state after the
action execution. The definition of each action might also in-
clude a cost c(a) (the default cost is one). The execution of
an action a in a state s is defined by a function γ such that
γ(s, a) = (s \ del(a)) ∪ add(a) if pre(a)⊆ s, and s other-
wise (it cannot be applied). The output of a planning task is
a sequence of actions, called a plan, π = (a1, . . . , an). The
execution of a plan π in a state s can be defined as:

Γ(s, π) =

{
Γ(γ(s, a1), (a2, . . . , an)) if π 6= ∅
s if π = ∅

A plan π is valid if G ⊆ Γ(I, π). The plan cost is com-
monly defined as c(π) =

∑
ai∈π c(ai). We will use the func-

tion PLANNER(Π) to refer to an algorithm that computes a
plan π from a planning task Π.

2.2 Goal Recognition
Goal Recognition is the task of inferring another agent’ goals
through the observation of its interactions with the environ-
ment. The problem has captured the attention of several
computer science communities [Albrecht et al., 1997; Geib
and Goldman, 2009; Sukthankar et al., 2014]. Among them,
planning-based goal recognition approaches have been shown
to be a valid domain-independent alternative to infer agents’
goals [Ramı́rez and Geffner, 2009; 2010; 2011; Pattison and
Long, 2010; E-Martı́n et al., 2015; Vered and Kaminka, 2017;
Pereira et al., 2017]. Ramı́rez and Geffner [2010] developed
an approach that assumes observations are actions, and for-
mally defined a planning-based goal recognition problem as:

Definition 1 (Goal Recognition Problem) A goal recogni-
tion problem is a tuple T = 〈P,G, O, Pr〉 where P =
〈F,A, I〉 is a planning domain and initial conditions, G is
the set of possible goals G, G ⊆ F , O = (o1, ...., om) is an
observation sequence with each oi being an action in A, and
Pr is a prior probability distribution over the goals in G.

The solution to a goal recognition problem is a prob-
ability distribution over the set of goals G ∈ G giv-
ing the relative likelihood of each goal. In this work we
assume that Pr is uniform. We will use the function
RECOGNIZEGOALS(F,A, I,G, O) to refer to an algorithm
that solves the goal recognition problem. This function re-
turns a list of tuples in the form of 〈goal, probability〉 for each
goal in G.

2.3 Landmarks
In Automated Planning, landmarks were initially defined as
sets of propositions that have to be true at some time in every
solution plan [Hoffmann et al., 2004]. Formally:

Definition 2 (Fact Landmark) Given a planning task Π =
〈F,A, I,G〉, a formula LΠ ⊂ F is a fact landmark of Π iff
LΠ is true in some state along all valid plans executions that
achieve G from I .

This definition was later extended to include action land-
marks [Richter and Westphal, 2010]. We will use the function
EXTRACTLANDMARKS(F,A, I,G) to refer to an algorithm
that computes a set of landmarks LΠ from a planning task Π.

3 Domain-Independent Counterplanning
We first formalize the two actors involved in a counterplan-
ning problem as planning agents.
Definition 3 (Seeking agent) A seeking agent φ is an agent
that has an associated planning task Πφ = 〈Fφ, Aφ, Iφ, Gφ〉,
and pursues its goal Gφ by following a plan πφ computed
from Πφ.
Definition 4 (Preventing agent) A preventing agent α is
an agent that has an associated planning task Πα =
〈Fα, Aα, Iα, Gα〉.
Gα is initialized to ∅. Then, Algorithm 1 (described later)

computes a set of goals to be used for the counter-planning
task. There can be varied relations between Πφ and Πα, and
the information that one agent has from the other. For in-
stance, the actions that both agents can perform could be the
sameAφ = Aα, or totally differentAφ∩Aα = ∅. They could
also have different or equal observations of the world. In this
work, we make the following assumptions:
• φ’s model is known by α except for its goal Gφ. In most

real-world domains that we have selected for potential
applications (e.g. police control, cyber security, strategy
games, . . . ), both Fφ, Iφ, and Aφ can be assumed to be
known;
• as in most literature on goal reasoning, α knows a set of

potential goals, Gφ ⊂ Fφ, φ could be trying to achieve;
• deterministic action outcomes and full observability of

those actions by α;
• both agents can follow optimal or suboptimal strategies

to reach their goals;
• both agents stick to their plans. In other words, they do

not replan or change their goals during execution; and
• the temporal duration of an action ai ∈ A is determined

by its cost c(ai).1

Since both agents operate in a common environment, the
execution of their actions affects the shared environment.
Therefore, we assume any state of the environment s can be
defined in terms of the set of propositions Fe (s ⊆ Fe), such
that Fφ ∪ Fα ⊆ Fe. Additionally, some propositions must
be in Fφ ∩ Fα, i.e. they will be observable and modifiable by
both agents. The individual execution of actions by any of the
two agents in Fe will be based on the respective action sets.
Hence, the execution of an action a (a ∈ Aφ ∪ Aα) in a state
s is defined using the previous γ(s, a). Furthermore, the joint
execution of one action per agent in the same time step t can
be defined as follows.

1In this paper, we assume unit action costs.
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Definition 5 (Joint execution of two actions) Given two
actions aφ ∈ Aφ and aα ∈ Aα and an environment state
s ⊆ Fe, the joint execution of both actions at a time step t
results in a new state given by

γφ,α(s, aφ, aα) =

{
γ(γ(s, aα), aφ) if aφ not mutex with aα
γ(s, aα) otherwise

Similarly, the joint execution of two plans Γφ,α(s, πφ, πα)
can be defined by the iteration of the joint execution of actions
of those plans using γφ,α(s, aφ, aα). For simplicity, in this
paper we assume that the preventing agent always executes
its action first when two actions are mutex. We define two
mutex actions as follows.

Definition 6 (Mutex actions) Two actions ax, ay executed
at a time step t are mutex if any literal in eff(ax) deletes (adds)
any literal in pre(ay) or if any literal in eff(ax) deletes (adds)
a literal that is added (deleted) in eff(ay).

Using these definitions, we can now formally describe a
counterplanning task.

Definition 7 (Counterplanning task) A counterplanning
task is defined by a tuple CP = 〈Πφ,Πα,Gφ, Oφ〉 where
Πφ is the planning task of φ, Πα is the planning task
for the preventing agent, Gφ is the set of sets of goals
that φ can potentially pursue, and Oφ = (o1, . . . , om)
is a set of observations by α of the execution of a plan
πφ = (o1, . . . , om, am+1, . . . , ak) that solves Πφ.2

We assume that φ generates a plan πφ to solve its planning
task Πφ prior to counterplanning, and that plan (as well as its
corresponding goals) is unknown for α. Then, at some time
step m of the execution of πφ (where m can range from 1
to k, the length of πφ), given all observed actions from the
execution of πφ, α has to infer the φ agent goals (from Gφ)
and generate a solution to a counterplanning task, namely a
counterplan.

Definition 8 (Counterplan) Given φ agent plan πφ =
(am+1, . . . , ak), a plan πα = (a1, . . . , an) is a valid coun-
terplan for πφ = (am+1, . . . , ak) if the joint execution of
πα and πφ does not allow φ to achieve the goals in Gφ;
Gφ 6⊆ Γφ,α(s, πφ, πα).

Our approach to solve counterplanning tasks assumes that
α can delete (or add in the case of negated literals) some
proposition that φ needs in order to achieve its goals. There
could be different definitions for needed literals. We use plan-
ning landmarks in this work. Therefore, we impose two con-
straints: the seeking agent φ and the preventing agent α share
some propositions, Fφ ∩ Fα 6= ∅; and at least one action a in
α model, a ∈ Aα, must delete (add) at least one of φ’s plan
landmarks.

Algorithm 1 shows the high-level algorithm used to solve
a counterplanning task from the perspective of α. The algo-
rithm first solves a goal recognition problem using RECOG-
NIZEGOALS given a planning domain, initial conditions, a
set of candidate goals Gφ, and a set of observations Oφ. It

2We have changed the notation oi for aj in the πφ plan to differ-
entiate between observations and future actions.

returns Tφ, a probability distribution over the set of candidate
goals set Gφ in the form of tuples 〈goal, probability〉. Then,
the initial state of φ, Iφ, is updated with the given observa-
tions by advancing the state from the initial Iφ and applying
all actions corresponding to the observations in Oφ. Next, we
select the set of most probable goals’ sets G′φ from Tφ. For
each goal g ∈ G′φ, we extract the landmarks of the new φ
planning task using EXTRACTLANDMARKS. This computa-
tion will return the set of common landmarks among all the
most probable sets of goals, LΠφ . Figure 1 shows an example
of that computation in a navigation domain. If there are not
common landmarks, the counterplanning task cannot be per-
formed. Otherwise, the algorithm selects the set of counter-
planning landmarks LΠφ,Πα in EXTRACTCPLANDMARKS.
This process will be explained in detail later. As before, if
there are not counterplanning landmarks, the counterplanning
task cannot be performed. Otherwise, one of the landmarks
in LΠφ,Πα is negated and returned as the preventing agent’s
goal Gα in SELECTGOAL. Finally, a plan πα is computed
to achieve that goal such that it prevents φ from achieving its
goals. In the next section we discuss how we select Gα from
LΠφ .

Algorithm 1 DOMAIN-INDEPENDENT COUNTERPLANNING

Inputs: Πφ,Πα,Gφ, Oφ
Outputs: πα

1: Tφ ← RECOGNIZEGOALS(Fφ, Aφ, Iφ,Gφ, Oφ)
2: Iφ ←UPDATE(Iφ, Aφ, Oφ)
3: LΠφ ← Fφ
4: G′φ ← goal(arg maxt∈Tφ probability(t))
5: πα ← ∅
6: for g ∈ G′φ do
7: LΠφ ← LΠφ∩ EXTRACTLANDMARKS(Fφ, Aφ, Iφ, g)
8: if LΠφ 6= ∅ then
9: LΠφ,Πα ←EXTRACTCPLANDMARKS(Πφ,Πα,LΠφ)

10: if LΠφ,Πα 6= ∅ then
11: Gα ←SELECTGOAL(Πφ,Πα,LΠφ,Πα)
12: Iα =UPDATE(Iα, Aα, Oφ)
13: πα ← PLANNER(Πα = (Fα, Aα, Iα, Gα))
14: return πα

3.1 Selecting Goals from Landmarks
Given a set of common landmarks LΠφ , two questions arises:
(1) how many of those fact landmarks could be deleted
(added) by α’s model of the world (domain), so φ cannot
achieve them?; and (2) within those facts that α can delete
(add), which one should it become its goal Gα to effectively
stop φ from achieving its goal? The first question brings us
to the following definition:
Definition 9 Counterplanning landmark Given the set of
fact landmarks from Πφ, LΠφ , a landmark li ∈ LΠφ is a
counterplanning landmark for α if ∃a ∈ Aα with li ∈ eff(a).
If li is a positive literal, li should be in del(a). If li is a
negative literal, li should be in add(a).

All the fact landmarks that comply with this condi-
tion are added to the counterplanning landmarks set of
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Figure 1: Navigation example. The green node illustrates the current
position of the agent. The rest of the nodes represent a possible goal.
The red node indicates a common landmark among the remaining
goals after observing an action (moving to the right). The blue node
refers to the actual goal of the seeking agent.

both agents LΠφ,Πα . We will refer to this process as
EXTRACTCPLANDMARKS(Πφ,Πα,LΠφ).

The second question requires further analysis. Given the
definition of a fact landmark, α only has to delete (add) a fact
landmark of Πφ to prevent the seeking agent from achieving
its goal. The problem therefore turns into selecting a single
goal from LΠφ,Πα to become the next goal for α, Gα. In
most counterplanning domains, the earlier we discover the
opponent’s intentions (and thus stop him/her from achieving
its goal), the better. This is a common characteristic in: (1)
cyber security domains where we want to detect an intruder
as soon as possible; (2) real-time strategy games where we
want to defeat our enemy in the shortest possible time; or
(3) a medical domain where we want to prevent the disease
from spreading at the earliest time. Thus, this type of prob-
lems presents some temporal aspects that we need to take into
account. In particular, it is not useful for α to pursue a coun-
terplanning fact landmark that φ is going to achieve before
α can avoid it. We define this temporal subproblem as find-
ing the First Counterplanning Landmark, FCL. Algorithm 2
shows the high-level algorithm used to find it. For each coun-
terplanning landmark li, an optimal plan is computed for φ
and α. It is done optimally to ensure that the returned values
correspond to the shortest time (cost) when both agents could
reach that subgoal.

If the cost (duration) of achieving ¬li by α solving Πα is
smaller than the cost (duration) of achieving li by φ, solving
Πφ, and there is no other landmark lj with smaller cost, then
¬li becomes FCL. In other words, li is the first landmark in
Πφ that α can achieve before φ. Therefore, the new Gα will
be the negated FCL, since we want α to avoid φ achieving
FCL. As a reminder, we are performing a one-step counter-
planning episode. If φ performs some actions to re-achieve
FCL or change its goals, then we assume α would have to
start a new counterplanning episode.

3.2 Example
To illustrate our approach, let us consider a simple domain
where a terrorist has committed an attack in the center of

Algorithm 2 SELECT GOAL

Inputs: Πφ,Πα,LΠφ,Πα
Outputs: FCL

1: FCL← ∅
2: FCLCost← 0
3: for li in LΠφ,Πα do
4: πφ ← PLANNER(Πφ = 〈Fφ, Aφ, Iφ, li〉)
5: πα ← PLANNER(Πα = 〈Fα, Aα, Iα, {¬li}〉)
6: if c(πφ) >= c(πα) then
7: if c(πφ) < FCLCost then
8: FCLCost← c(πφ)
9: FCL← ¬li

10: return FCL

Figure 2: Terrorist capture domain. The red circle represents the
initial position of the terrorist. Green circles represent his/her possi-
ble goals. Arrow a1 indicates the terrorist first observed action. L1,
L2 and L3 refer to the landmark points that the terrorist has to pass
through in order to reach G1.

a city. Figure 2 shows the road network for this problem.
The city police (α) knows that the terrorist (φ) wants to leave
the city by either G1 (airport), G2 (train station), or G3 (bus
terminal); so, Gφ = {G1, G2, G3}. The police has control
over some cameras located at key points around the city (rep-
resented as nodes in Figure 2). The police actions consist
of stopping the terrorist by setting a control at any of those
points (Aα). So, the police wants to: (1) quickly know where
the terrorist wants to go (G′φ); and (2) stop him/her as soon
as possible to avoid panic breaking out. When the cameras
observe that the terrorist is at L1 (O1 = a1 ∈ Aφ), the police
guesses that his/her goal is to reach G1 (G′φ) by doing goal
recognition. The police only has resources to set one control.
It knows that the terrorist must pass through L1, L2 and L3 to
reach the airport. Although these four spots are counterplan-
ning landmarks LΠφ,Πα , the police can only set the control
at L2, L3 and G1 before the terrorist reaches those places.
Finally, the police goal Gα will be to set the control at L2
since it is the FCL; i.e. the first spot where the terrorist can
be effectively stopped.

4 Experiments and Evaluation
We empirically evaluate our approach on the new previ-
ously described TERRORIST domain as well as in other do-
mains usually used in goal recognition works such as LO-
GISTICS, EASY IPC GRID, BLOCKS, and INTRUSION DETEC-
TION. Each domain and problem conforms Πφ. Additionally,
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in order to perform counterplanning, for each domain we have
generated a new counterplanning domain, which defines the
planning task Πα for α. The classical domain and the coun-
terplanning domain comply with the requirements mentioned
in Section 3.

For each classical domain, we generate 10 random prob-
lems for φ. All the problems have the same number of ob-
jects. However, each problem has a different actual goal for
φ, which is hidden for α. Their details are explained below.

• LOGISTICS. φ can deliver any package to any destina-
tion. It can do it by driving either trucks or planes. α can
break a truck or a plane to interrupt the delivery.
• TERRORIST. φ may want to get to any point in the map.

It can do it by navigating through points that are con-
nected. α can set a control at a point so that they can
arrest φ.
• INTRUSION DETECTION. φ may want to perform a set

of attacks to a pool of computers. It can do it by perform-
ing hacking actions like delete logs or gain root access.
α can perform administration actions like encrypt the in-
formation or change the root password to a computer to
prevent φ from conducting its attack.
• BLOCKS. φ may want to put any of block on top of

another. It can do it by picking up and stacking blocks
that are not painted. α can paint a block so φ can not
pick it up and preventing it from achieving its goal.
• EASY IPC GRID. φ may want to get to any cell in the

grid. It can do it by navigating through cells without
door or, if it has the right key, by opening them. α can
navigate through those cells without needing a key, and
can steal the key or change the lock of a door to block
φ’s plan.

The set of candidate goals Gφ always consists of a 20% of
all the possible goals in each problem. Therefore, bigger Gφ
sets for the same domain mean bigger problems. In particular,
for the TERRORIST domain with a problem map of 20 nodes,
Gφ consists of 4 random destinations; when the map has 50
nodes, Gφ consists of 10 possible destinations. The hidden
goal, i.e., the current goal of φ, Gφ, that is unknown to α, is
always on Gφ.

The set of observed actions was taken to be a subset of the
plan solution πφ, ranging from 10% of the actions, up to 70%
of the actions. We did not include tests where the observed
sequence is higher than 70% because our counterplanning ap-
proach degrades rapidly. The reason for this is that the num-
ber of counterplanning landmarks decreases as the number of
observed actions increases.

Our fully automatic domain-independent counterplanning
approach works with any combination of goal recognition
and classical planning approaches. For purposes of these
tests, we have selected the following configuration of goal
recognition techniques and planners. For the goal recogni-
tion part of our counterplanning technique, we have tested
the aforementioned domains and problems using the Ramı́rez
and Geffner [2010] approach with different planners. The
planners are HSP*f [Haslum, 2008], an optimal planner; and
LAMA [Richter et al., 2011], a satisficing planner. LAMA

is used in two modes: as a greedy planner that stops after
the first plan is found GREEDY LAMA; and as an anytime
planner that reports the best plan found in a given time win-
dow LAMA. The planning times for all the planners were set
to 1800 seconds. In all the domains πφ is computed using
GREEDY LAMA. For optimal plan computations of FCL, we
use HSP*f . All the experiments were ran on a Ubuntu ma-
chine with Intel Core 2 Quad Q8400 running at 2.66 GHz.

Table 1 summarizes the experimental results. For each
planner, each row shows average performance over the 10
problems in each domain. Each column represents different
measures of quality and performance:

• |Gφ|: number of goals in the candidate goal’s set.
• |πφ|, |πα|: average plan length cost for each agent.
• |LΠφ |: number of landmarks of the seeking agent plan-

ning task.
• %Obs: percentage of the actions of πφ in Oφ. Higher

percentages of observations mean that more actions of
φ’s plan have already been observed by α and, thus, ex-
ecuted by φ.
• Q: fraction of times that the actual goal Gφ was found

to be the most likely goal G′φ. In our experiments, if
G′φ consist of more than one goal, we select the one
with more counterplanning landmarks as the most likely
goal. Ideally, Q = 1.
• Qt: average time in seconds taken for solving the goal

recognition problems.
• E: fraction of times that α executing πα succeeds in

stopping φ in achieving its goals. Ideally, E = 1.
• Pe: penalty value computed as the number of steps in
πφ that are successfully performed divided by the length
of πφ. This penalty value represents the cost paid by πα
at each time step that has not stopped πφ. Lower values
of Pe indicate better performance, ideally Pe = 0.

As we can see in all the domains, the higher percentage
of observations, the higher Q values, as expected. The goal
recognition task becomes easier as more actions have been
observed (as reported in other goal recognition works). Re-
garding E, the fraction of times that α blocks φ achieving its
goals is clearly related to Q. Guessing the opponent’s goal
right usually involves more opportunities to block it. This is
the case of INTRUSION DETECTION, where our counterplan-
ning approach performs well. However, there are some cases
in which we can badly guess φ’s goal and still block its goal
achievement (Q value is lower than E). This happens when
our analysis of the goal recognition process identifies a com-
mon landmark (to stop φ’s plan), but selects a wrong goal as
in some BLOCKS instances.

The value of E is also closely related to the percentage of
observations. Lower percentage values allow α to find many
landmarks where to effectively block φ. On the other hand,
if most of the actions in πφ have already been observed (i.e.
executed by the seeking agent), there will be just a few coun-
terplanning landmarks to prevent φ from achieving its goal.
This is also connected with the penalty values Pe. Lower
percentage of observations imply that, if the opponent can be
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HSP*f LAMA Greedy LAMA
Domain |Gφ| |πφ| |πα| |LΠφ | %Obs Q Qt E Pe Q Qt E Pe Q Qt E Pe

LOGISTICS 6 9.4 1 12.3

10 0.6 4.2 0.7 0.3 0.6 5.0 0.7 0.3 0.6 2.6 0.6 0.2
30 0.6 7.5 0.7 0.4 0.6 10.7 0.7 0.4 0.7 2.6 0.8 0.4
50 0.7 10.0 0.8 0.5 0.7 16.3 0.8 0.5 0.7 2.7 0.8 0.5
70 0.9 14.3 0.6 0.8 0.9 28.8 0.6 0.8 0.9 2.8 0.7 0.8

TERRORIST

4 3.8 1 3.8

10 0.5 3.8 0.6 0.5 0.6 2.8 0.6 0.5 0.6 2.6 0.6 0.5
30 0.6 4.0 0.8 0.7 0.6 2.9 0.8 0.7 0.6 2.8 0.8 0.7
50 0.6 5.0 0.8 0.8 0.6 3.0 0.8 0.8 0.6 2.9 0.8 0.8
70 0.9 5.1 0.9 1.0 0.9 3.3 0.9 1.0 0.9 3.0 0.9 1.0

10 5.6 1 4.1

10 0.3 283.2 0.5 0.5 0.3 211.4 0.5 0.5 0.3 210.4 0.5 0.5
30 0.5 287.2 0.6 0.8 0.4 235.0 0.6 0.8 0.4 227.3 0.6 0.8
50 0.6 307.1 0.4 0.8 0.6 248.6 0.4 0.8 0.6 269.6 0.4 0.8
70 0.6 325.8 0.4 1.0 0.6 321.1 0.4 1.0 0.6 322.7 0.4 1.0

INTRUSION
DETECTION 6 4.3 1 4.8

10 1.0 0.5 1.0 0.4 1.0 1.0 1.0 0.4 1.0 0.7 1.0 0.4
30 1.0 0.4 1.0 0.7 1.0 1.0 1.0 0.7 1.0 0.7 1.0 0.7
50 1.0 0.4 1.0 0.7 1.0 1.0 1.0 0.7 1.0 1.0 1.0 0.7
70 1.0 0.3 1.0 0.9 1.0 0.8 1.0 0.9 1.0 1.0 1.0 0.9

BLOCKS 10 8.6 1 17.6

10 0.2 836.6 0.4 0.2 0.2 482.1 0.4 0.2 0.2 155.3 0.4 0.2
30 0.3 910.7 0.6 0.5 0.3 531.9 0.6 0.5 0.3 175.3 0.6 0.5
50 0.5 980.3 0.8 0.5 0.5 602.7 0.8 0.5 0.6 195.8 0.9 0.6
70 0.8 1070.3 0.7 0.8 0.8 655.3 0.7 0.8 0.8 207.8 0.7 0.7

EASY
IPC GRID 4 12.6 4.5 6.3

10 0.3 5.6 0.1 1.0 0.3 1.9 0.1 1.0 0.1 1.7 0.1 0.8
30 0.3 7.3 0.3 0.6 0.3 2.0 0.3 0.6 0.3 2.0 0.4 0.78
50 0.1 9.8 0.3 0.7 0.1 2.8 0.3 0.7 0.1 2.5 0.4 0.8
70 0.3 15.3 0.0 ∞ 0.3 3.5 0.0 ∞ 0.3 3.1 0.0 ∞

Table 1: Comparison of the counterplanning approach in five domains using optimal and approximated goal recognition methods. Figures
shown are all averages over the set of problems as explained in the text. The metrics measured are: size of Gφ, length of plans for each
agent, number of landmarks |LΠφ |, percentage of observations, goal recognition accuracy Q and its time Qt, counterplanning accuracy E
and penalty value Pe.

blocked, it could be done farther from the goal than if 50% or
more of the plan has already been observed.

The number of landmarks of φ’s planning task affects the
counterplanning results. Domains with a higher number of
landmarks will have a higher number of potential counter-
planning landmarks where to block the opponent. The ex-
periments confirm this aspect: domains such as LOGISTICS
and BLOCKS are more likely to have more landmarks and the
penalty values are smaller than in the other domains which
just have a few landmarks.

Regarding planners’ performance, GREEDY LAMA seems
to achieve the best overall results both in terms of quality
(Q,E, Pe) and time (Qt). Since LAMA is an anytime plan-
ner, sometimes it takes more time to complete the goal recog-
nition process than the optimal planner HSP*f . However, all
planners scale poorly to bigger problem instances where Gφ
increases. This entails worse goal recognition performance
Q and, therefore, worse counterplanning performance E and
P . We could speed-up our technique by computing plan cost
estimations instead of actual plans in order to improve the
performance. That would allow its use in real-time environ-
ments.

Summarizing, the best scenario for our counterplanning
technique (high E values and low Pe values) would be when
the preventing agent guesses the seeker’s actual goal (Q = 1)
with a low percentage of observed actions (very soon) and
there is a high number of landmarks in the seeker’s planning
task which the preventing agent can delete (add).

5 Conclusions and Future Work

We have presented a novel fully automatic domain-
independent approach for counterplanning, which is based on
classical planning techniques. We have formally defined the
counterplanning task involving two planning agents: an agent
that seeks to achieve some goals; and an agent that tries to
prevent its opponent from achieving its goals. To successfully
block an agent in a domain-independent way, we: (1) rec-
ognize the opponent’s goals by observing its performed ac-
tions; (2) identify the counterplanning landmarks of its plan-
ning task; and (3) generate a sequence of actions to block its
goal achievement process as soon as possible. Results show
the benefits of our approach on preventing the opponent from
achieving its goals in several domains. Its performance de-
pends on the ability of the preventing agent to quickly infer
the hidden goal, and the number of landmarks of the seeker’s
planning task.

In this work, we assume we are given the candidate goals
for the goal recognition process (as in the usual literature on
goal recognition). Future work would consist on relaxing this
assumption and consider Fφ as Gφ. We also assume unit ac-
tion costs. In future work, we would generalize our approach
by considering non-unit action costs. Additionally, a natural
extension to this work would be to assume a seeking agent
capable of changing his/her plans and goals. It seems to be
also possible to extend our approach to deal with noisy obser-
vations and uncertainty on the seeking agent’s behavior.
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