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Abstract
Recent research on grasp detection has focused on
improving accuracy through deep CNN models, but
at the cost of large memory and computational re-
sources. In this paper, we propose an efficient CNN
architecture which produces high grasp detection
accuracy in real-time while maintaining a compact
model design. To achieve this, we introduce a CNN
architecture termed GraspNet which has two main
branches: i) An encoder branch which downsam-
ples an input image using our novel Dilated Dense
Fire (DDF) modules − squeeze and dilated convo-
lutions with dense residual connections. ii) A de-
coder branch which upsamples the output of the
encoder branch to the original image size using de-
convolutions and fuse connections. We evaluated
GraspNet for grasp detection using offline datasets
and a real-world robotic grasping setup. In exper-
iments, we show that GraspNet achieves competi-
tive grasp detection accuracy compared to the state-
of-the-art computation-efficient CNN models with
real-time inference speed on embedded GPU hard-
ware (Nvidia Jetson TX1), making it suitable for
low-powered devices.

1 Introduction
Grasp detection is a visual recognition task in which the ob-
jective is to detect graspable regions in the images of objects
in the environment [Lenz et al., 2015]. The detected grasps
are then used for high-level tasks (e.g., trajectory planning) in
order to interact with the objects. Thus, grasp detection is a
critical step as the subsequent steps of the grasping pipeline
are dependent on the coordinates calculated in this step. How-
ever, grasp detection in real-world is challenging due to the
factors such as: variations in the spatial layouts of the ob-
jects, changes in camera viewpoints, partial occlusions, back-
ground clutter, and the requirements of low computational
complexity and fast runtime. With the recent advancements in
deep learning, methods such as [Levine et al., 2016; Redmon
and Angelova, 2015] have demonstrated state-of-the-art grasp
detection accuracies on the Cornell grasp dataset [Lenz et al.,
2015]. The success of these methods is largely attributed to
the availability of a large amount of labelled training data, and

typically large convolutional neural network (CNN) architec-
tures (e.g., millions of trainable parameters of the model of
[Lenz et al., 2015]). However, large CNN models have high
computational requirements which restrict their usage in ap-
plications with limited computational resources. On the other
side, smaller CNN architectures (e.g., [Iandola et al., 2016;
Howard et al., 2017]) focus on achieving real-time speed (by
reducing network parameters), but at the expense of lower
recognition accuracy. Real-time robotic applications demand
both high accuracy and fast inference speed for reliable op-
erations. Thus, it is critical to design CNN models which
achieve the best accuracy within a certain computational al-
lowance. In this paper, we propose a novel CNN model
(termed GraspNet) which achieves competitive grasp detec-
tion accuracy and real-time inference speed on embedded
GPU hardware compared to the state-of-the-art CNN models.
In summary, the contributions of this work are as follows:

1) We formulate the task of grasp detection as pixel-wise
labeling termed grasp affordance segmentation (Sec. 3)
which segments graspable regions on the surfaces of ob-
jects. To achieve this, we propose a novel CNN architec-
ture termed GraspNet (Sec. 4) which produces pixel-level
labeling of graspable regions using RGB-D images.

2) The core building component of GraspNet is our novel
convolution block termed Dilated Dense Fire (DDF)
module (Sec. 4.1) which consists of squeeze and di-
lated convolutions interconnected through dense residual
connections. The squeeze and dilated convolutions en-
able the network to aggregate multi-scale contextual in-
formation while maintaining a compact design. The pro-
posed dense residual connectivity enables deep supervi-
sion throughout the network by reusing learned features
across multiple layers, and thus reduces over-fitting.

3) We evaluated GraspNet for grasp detection using chal-
lenging RGB-D object datasets (Sec. 5.1) where we show
that GraspNet is highly efficient in terms of fewer train-
ing parameters, faster inference speed, and competitive
grasp detection accuracy compared to the state-of-the-
art computation-efficient CNN models (Sec. 5). We
also demonstrate GraspNet for grasp detection on a low-
powered embedded GPU (Nvidia Jetson TX1) in a real-
world robotic grasping setup (Sec. 6).
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2 Related Work
We briefly review state-of-the-art related work on grasp de-
tection and memory-efficient CNN models.

2.1 Grasp Detection
Recent research in robotic grasping has largely focused on
performing grasp detection using deep learning [Kumra and
Kanan, 2017]. In this context, methods such as [Redmon and
Angelova, 2015; Asif et al., 2017b] focused on predicting
grasp rectangles (defined by its position, orientation, width
and height) directly in images. One challenge with these
methods is the availability of a large volume of labelled train-
ing data, which can be very expensive and time consuming to
generate in real-world. To overcome this challenge, an alter-
native approach was presented in [Levine et al., 2016], where
the authors generated training data using a physics simulation
engine [Levine et al., 2016] to learn grasp scores. Recently,
the work of [Johns et al., 2016] presented another data gen-
eration approach, where reinforcement learning was used to
learn a form of visual servoing by testing grasps on a real
robot. However, their approach required several weeks of
training using multiple robots working in parallel. There-
fore, their approach lacks scalability and ease of deployment
for low-powered embedded hardware. While most of the
discussed approaches rely on models sufficiently trained on
large amounts of training data to achieve high recognition
accuracies, we propose an efficient CNN architecture which
achieves high grasp detection accuracy in real-time and does
not suffer over-fitting when trained from scratch using limited
training data.

2.2 Computation-efficient CNN Models
In the past few years, the research in deep neural networks
has largely focused on the development of efficient CNN ar-
chitectures for deployment on embedded devices. In this con-
text, one stream of work focused on reducing model size af-
ter training. For instance, the methods in [Li et al., 2016;
Hubara et al., 2016] proposed to prune redundant weights
or quantize weights during or after training. Another stream
of work focused on exploring computationally efficient vari-
ants of traditional CNN architectures. In this context,
SqueezeNet [Iandola et al., 2016] introduced an architecture
which achieves classification accuracy equivalent to the well-
known AlexNet [Krizhevsky et al., 2012] with a significant
reduction in training parameters (by almost 50X). ResNet
[He et al., 2016] proposed a bottleneck structure in terms
of residual blocks (where a non-linear transformation of the
input and its identity are combined by means of skip con-
nections), and achieved superior classification accuracy. Re-
cently, DenseNets [Huang et al., 2017] introduced an archi-
tecture which iteratively concatenates outputs from previous
layers, and achieved higher recognition accuracy compared to
the conventional CNN models. However, the iterative growth
of feature channels throughout the network in DenseNets de-
mands high computational resources and produces low infer-
ence speeds (especially on embedded hardware). In this pa-
per, we propose a CNN architecture which is optimized for
fast inference and high accuracy. Our CNN model is built

upon the ideas of squeeze [Iandola et al., 2016] and dilated
[Yu and Koltun, 2016] convolutions interconnected through
dense [Huang et al., 2017] and residual [He et al., 2016] con-
nections within an encoder-decoder architecture [Shelhamer
et al., 2017]. In experiments, we show that our CNN model
outperforms the state-of-the-art computation-efficient CNN
models in terms of grasp detection accuracy and inference
speed.

3 Proposed Grasp Affordance Segmentation
Given an input image I ∈ RC×W×H , where C, W , and H ,
represent the number of channels, width, and height of the in-
put, we define its corresponding labeling by Y ∈ Rnc×W×H ,
where nc = 2 represents the number of classes (grasp af-
fordance and background). We train our CNN model in a
fully supervised manner by minimizing the cross-entropy loss
[Shelhamer et al., 2017]. Specifically, our loss function for
Ns labeled training images is given by:

L =
1

Ns

Ns∑
i=1

Si, (1)

where Si ∈ R(nc×W×H) represents the CNN normalized
scores map for a sampled image i. It is computed by applying
a SoftMax to the output of the final layer of the network:

Si = − log
eW

T
yi
f(xi)+byi∑nc

j=1 e
WT

j f(xi)+bj
, (2)

where, f(xi) represents the output of the CNN layer for a
sample xi. The terms yi, W and b represent the class label,
weights, and bias of the corresponding layer, respectively. To
generate robotic grasps from the predicted scores (S), we first
generate a segmentation maskM = argmaxy(S). Next, we
compute the major and the minor axes of the largest blob in
M. Finally, we compute a 5-dimensional grasp R, given by:

R = [Rx, Ry, Rw, Rh, Rθ], (3)

whereRx andRy represent the centroid of the grasp given by
the centroid of the blob. The width of the grasp (Rw) is equal
to the length of the blob along its minor axis plus 40 pixels.
The height of the grasp (Rh) is set to 30 pixels. The orienta-
tion of the grasp (Rθ) is given by the angle between the x-axis
and the major axis of the blob as shown in Fig. 2-C. Given
the grasp representation R for a target object, the robotic arm
(calibrated with the camera) uses the grasp position (Rx, Ry)
and the grasp orientationRθ to position and orient its gripper,
respectively, to grasp the target object.

4 Proposed CNN Model - GraspNet (Fig. 1)
Fig. 1 shows the overall architecture of our CNN model
which consists of two main branches: i) An encoder branch
(Fig. 1-A) which takes an image as input (shown in Fig. 1-E),
passes it through our novel Dilated Dense Fire (DDF) mod-
ules, and generates down-sampled feature maps. ii) A de-
coder branch (Fig. 1-B) which takes the down-sampled out-
put of the encoder branch, passes it through deconvolution
layers, and generates prediction maps of the size of the input
image as shown in Fig. 1-F.
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Figure 1: Overview of our GraspNet architecture for grasp affordance segmentation. It consists of two main branches: i) An encoder
branch (A) which downsamples the input image using the proposed Dilated Dense Fire (DDF) modules (C). ii) A decoder branch (B) which
upsamples the output of the encoder branch to the input image size using deconvolution layers and skip connections.

4.1 Proposed Dilated Dense Fire Module (Fig. 1-C)
Fig. 1-C shows the architecture of our DDF module
which consists of two Fire blocks interconnected with dense
residual connections, a convolution layer with an inte-
grated channel-compression hyper-parameter α and a dila-
tion hyper-parameter δ, and dropout [Srivastava et al., 2014].
The Fire block of our DDF module is an enhanced version
of the Fire block of [Iandola et al., 2016] which consists of a
squeeze convolution layer (with 1 × 1 filters) and an expand
layer (with 1× 1 and 3× 3 filters). We enhance the effective-
ness of the squeeze convolutions of [Iandola et al., 2016] by
incorporating Batch-Normalization (BN) [Ioffe and Szegedy,
2015] at the output of the Fire block as shown in Fig. 1-D.
This enables the network to reduce the bias-shift effect dur-
ing the training process, and produces highly discriminative
feature maps without sacrificing the low-parameter design.

Proposed Dense Residual Connectivity
To increase information flow between layers in the network,
we combine the outputs from the Fire blocks in a feed-
forward fashion through element-wise summation and con-
catenation as shown in Fig. 1-C. Let Xl ∈ RNf×Wf×Hf rep-
resents output of the lth Fire block, where Nf , Wf , and Hf ,
represent the depth, width, and height of Xl, respectively. For
an input H , the output of a DDF module G ∈ RNg×Wg×Hg

is given by:

G = F([H ,X1,X2, (X1 +X2)]), (4)

where [· · ·] represents concatenation and + denotes an
element-wise summation. The term F(·) represents a non-
linear transformation function composed of a 3× 3 convolu-
tion followed by a rectified linear unit (ReLU). Our proposed
dense residual connectivity has several advantages including:

i) It increases variation in the input of subsequent layers lead-
ing to an implicit deep supervision. ii) The reuse of features
learned by different layers enforces a regularizing effect on
the objective function and the integrated dropout block re-
duces over-fitting.

Proposed Network Compression
To improve model compactness and achieve a small memory
footprint, we reduce the number of feature channels and the
spatial resolution of the feature maps at each DDF module
of the network. For this, we introduce a 3 × 3 convolution
layer (at the end of a DDF module as shown in Fig. 1-C) with
two integrated hyper-parameters. A channel-compression pa-
rameter α and a dilation parameter δ which control the depth
and the spatial resolution of the output feature maps of the
DDF module, respectively. For a given α ∈ (0.1, 0.5, 1.0)
and δ ∈ (4, 8, 16), the output of a DDF module becomes
G ∈ RαNg×(Wg−2δ)×(Hg−2δ). The default values for α and
δ are set to 0.5 and 8, respectively. In experiments (Sec. 5.5),
we show the trade off between memory size and accuracy of
the proposed GraspNet for different values of α and δ.

4.2 Implementation
We train GraspNet in an end-to-end manner using 4× 224×
224−dimensional RGB-D images and their corresponding
2×224×224−dimensional grasp affordance masks. The en-
coder branch starts with a convolution layer Conv1, followed
by max-pooling, and 4 DDF modules (DDF1 − DDF4)
as shown in Fig. 1-A. Each DDF module contains two Fire
blocks. The depths of the Fire block-pairs inDDF1−DDF4
are 128, 256, 384, and 512, respectively. The decoder branch
uses a DAG topology [Shelhamer et al., 2017] with 3 decon-
volution layers which upsample the feature maps as shown
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in Fig. 1-B. Further fuse connections are defined from the
encoder to the decoder branch to utilize fine-grained infor-
mation from the early layers during the upsampling. The lay-
ers to be fused are first aligned through crop operations, and
then their features are combined through element-wise sum
as shown in Fig. 1-B. Our implementation is based on the
Caffe library [Jia et al., 2014]. Training was performed by
Stochastic Gradient Descent (SGD) with a batch size of 16, a
weight decay of 10e-4, and momentum of 0.9 for 300K itera-
tions. The initial learning rate was set to 1e-3, and divided by
10 at 50% and 75% of the total number of iterations.

5 Experiments
5.1 Datasets
GraspSeg Dataset
To evaluate GraspNet for grasp affordance segmentation, we
introduce a new object grasp dataset named GraspSeg. It
provides 33,188 RGB-D images of 42 object instances cat-
egorized into 15 different classes as shown in Fig. 2-A. The
dataset also provides 6896 RGB-D images of indoor scenes
for testing. The test images contain multiple objects arranged
in different layouts as shown in Fig. 2-B. The ground truth in
GraspSeg is available in the form of pixel-wise annotations
for grasp affordances and object segmentations as shown in
Fig. 2-D. We annotated the dataset using an extended version
of the scene labeling framework of [Asif et al., 2017a] and
[Asif et al., 2016]. For evaluation, we used the object-wise
splitting strategy of [Lenz et al., 2015], which splits object
instances randomly into train and validation subsets (i.e., the
training set and the validation set do not share any images
from the same object). This splitting strategy evaluates how
well the model generalizes to objects which were not known
by the model during training. GraspSeg dataset is challeng-
ing for grasp detection. This is because, the training images
of the dataset contain single objects without background in-
formation as shown in Fig. 2-A. However, the test images
contain multiple objects per image, where the objects appear
in close proximities of each others, producing partial occlu-
sions as shown in Fig. 2-B.

Cornell Grasp Dataset
We also evaluate GraspNet for grasp detection on the popular
Cornell grasp dataset [Lenz et al., 2015], which contains 885
RGB-D images of 240 objects. The ground-truth is avail-
able in terms of grasp-rectangles. For evaluation, we used
the object-wise splitting and the image-wise splitting criteria
used in previous works [Lenz et al., 2015]. The object-wise
splitting splits the object instances randomly into train and
validation subsets. The image-wise splitting splits all the im-
ages of the dataset randomly into five folds. The image-wise
splitting strategy evaluates how well the model generalizes to
new positions and orientations of known objects.

5.2 Evaluation Metrics
Grasp Detection
We evaluate GraspNet for grasp detection using the
“rectangle-metric” proposed in [Jiang et al., 2011]. A grasp is
considered to be correct if: i) the difference between the pre-
dicted grasp angle and the ground-truth is less than 30◦, and

ii) the Jaccard index of the predicted grasp and the ground-
truth is higher than 25%. The Jaccard index for a predicted
rectangle R∗ and a ground-truth rectangle Rg is defined as:

J(Rg,R∗) =
|Rg ∩R∗|
|Rg ∪R∗|

. (5)

Affordance Segmentation
We also evaluate GraspNet for affordance segmentation on
the GraspSeg dataset using the mean frequency weighted In-
tersection over Union (f.w.IU ) metric. It is defined in [Shel-
hamer et al., 2017] as:

f.w.IU =
1∑
k tk

∑
i

ti · nii
(ti +

∑
j nij − nii)

, (6)

where, nij represents the number of pixels of class i predicted
to belong to class j, and ti represent the total number of pixels
i in the ground truth segmentation.

5.3 Evaluation on the GraspSeg Dataset
First, we compare our model with three variants of
SqueezeNet [Iandola et al., 2016]: i) SqueezeNet (vanilla),
ii) SqueezeNet (Residual) with residual connections, iii)
SqueezeNet1 with dilated convolutions, and iv) SqueezeNet2
with residual connections and dilated convolutions. The re-
sults of these experiments are reported in Table 1 which
shows that GraspNet clearly outperforms SqueezeNet with
improvements of 17% and 16% compared to SqueezeNet1
and SqueezeNet2 in the grasp accuracy, respectively. We
attribute these improvements to the proposed DDF modules
(Sec. 4.1), where the concatenation of features through dense
residual connections maximizes the variation in the infor-
mation between the layers of the network. This enables
GraspNet to learn more discriminative features compared to
SqueezeNet [Iandola et al., 2016], where the amount of infor-
mation is limited between the layers of the network.

Next, we compare GraspNet with MobileNet [Howard et
al., 2017] and ENet [Paszke et al., 2016]. Table 1 shows
that our GraspNet achieved 20% and 7% higher grasp ac-
curacy, and 4× and 6× faster inference speed compared to
the ENet [Paszke et al., 2016] and MobileNet [Howard et al.,
2017] models, respectively. Finally, we compare our model
to the 50-layer ResNet [He et al., 2016] and SegNet [Badri-
narayanan et al., 2017]. Table 1 shows that GraspNet im-
proved the grasp accuracy by 6% and 9%, while being 12×
and 15× smaller, 6× and 7× less compute-intensive, and 3×
and 4× faster compared to the ResNet [He et al., 2016] and
the SegNet [Badrinarayanan et al., 2017] models on Jetson
TX1, respectively. These improvements are attributed to the
proposed network compression (Sec. 4.1) which effectively
increases the receptive field of the feature maps (and pre-
serves the contextual information) across the network at the
expense of a linear growth of the parameters.

Table 1 also shows that GraspNet consistently outper-
formed the compared models in terms of f.w.IU metric.
Fig. 3 shows qualitative results of affordance segmentation
on the GraspSeg dataset. The results show accurate segmen-
tations with respect to the ground truths. For example, grasp
affordances for spoon, garden tool, and food box are accu-
rately segmented. The proposed dense connectivity in the
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Figure 2: An overview of the proposed GraspSeg dataset. The ground truth in GraspSeg is available in terms of pixel-wise annotations for
grasp-affordance segmentation and object segmentation as shown in D. The dataset is challenging because training images (shown in A)
contain single objects, whereas test images contain multiple objects with partial occlusions and background clutter (shown in B).

Model Affordance Grasp Parameters Model size Memory Tesla K80 Jetson
f.w.IU (%) Accuracy (%) (millions) (MB) (MB) Time (ms) Time (ms)

[Iandola et al., 2016] SqueezeNet (vanilla) 50.5 59.5 0.94 3.6 260 18 119
[Iandola et al., 2016] SqueezeNet (Residual) 55.9 61.9 0.95 3.7 274 18 126
SqueezeNet1 (Dilated) 58.3 69.4 1.08 4.2 274 20 140
SqueezeNet2 (Dilated+Residual) 59.6 71.3 1.08 4.2 278 20 141
[Howard et al., 2017] MobileNet 58.2 66.6 3.21 12.4 384 118 826
[Krizhevsky et al., 2012] AlexNet 59.8 67.8 56.8 22.7 451 25 175
[Badrinarayanan et al., 2017] SegNet 64.1 77.7 29.4 112.3 699 74 518
[He et al., 2016] ResNet50 60.7 80.5 23.5 90.0 601 62 434
[Paszke et al., 2016] ENet 68.3 81.7 0.41 1.4 523 97 680
GraspNet (α = 0.5, δ = 8) 73.5 87.3 3.71 7.2 425 19 133

Table 1: Comparison of GraspNet and other CNN models in terms of average grasp detection accuracy, average affordance segmentation
accuracy, number of model parameters, model size, model memory consumption, and model inference time on the GraspSeg dataset.

encoder branch maximizes the variation in the information
between the layers of the network. Consequently, GraspNet
learns highly discriminative features and recovers fine struc-
tures (e.g., object contours) more accurately than the com-
pared methods.

5.4 Evaluation on the Cornell Grasp Dataset
Table 2 shows a comparison of grasp accuracy produced by
our model and other methods on the Cornell grasp dataset
[Lenz et al., 2015]. The results show that our model outper-
formed all the compared methods with an inference speed of
only 24 ms per image. These improved results show that the
proposed deep residual feature-fusion through DDF modules
(Sec. 4.1) produces feature representations which are highly
effective for the direct grasp regression using limited train-
ing images of the Cornell grasp dataset [Lenz et al., 2015].
Among common failure cases, we observed that our model
failed to predict the correct orientation of the grasp with re-
spect to some objects as shown in Fig. 4.

Method
Accuracy (%)

TimeObject Image
wise wise

[Jiang et al., 2011] Fast search 58.3 60.5 50 sec
[Lenz et al., 2015] Deep learning 75.6 73.9 13.5 sec
[Redmon et al., 2015] MultiGrasp 87.1 88.0 76 ms
[Asif et al., 2017] Random Forests 87.5 88.2 -
[Kumra et al., 2017] Deep ResNets 88.9 89.2 103 ms
GraspNet 90.2 90.6 24 ms

Table 2: Grasp detection results on the Cornell grasp dataset.

5.5 GraspNet Design Space Exploration
To explore the design space of GraspNet, we performed ex-
periments which highlight the impact of CNN architectural
choices on model size and accuracy. GraspNet has 8 DDF
modules, where each DDF module has two Fire blocks and
two hyper-parameters α and δ which control the number of
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Ground truth GraspNet SqueezeNet SegNet MobileNet ResNet50ENet

Figure 3: Qualitative results of grasp detection (rectangles shown in black) and grasp affordance segmentation (regions shown in magenta)
on the GraspSeg dataset using the proposed GraspNet and state-of-the-art CNN models. Failure cases are highlighted in red rectangles.

Figure 4: Grasps predicted by our model and the corresponding ground-truths of the Cornell grasp dataset. Failure cases are shown in red.

feature channels and the spatial resolution of the feature maps
produced by the DDF modules, respectively. First, we inves-
tigate the effect of the channel-compression parameter α on
model size and accuracy. In these experiments, we fixed the
dilation parameter δ to 8. Table 3 shows that increasing α
beyond 0.5 increases the accuracy from 87.3% with a 7.2MB
model to 89.6% resulting in a 14.2MB model. Next, we in-
vestigate the importance of spatial resolution in the network
by evaluating GraspNet with different values of δ. From Ta-
ble 3, we see that reducing δ by half produced improvement
in the accuracy from 87.3% to 90.5%. Table 3 also shows that
when δ was increased to 16, GraspNet achieved a consider-
able boost in the inference speed at the expense of a small
drop in the grasp accuracy. It is conceivable that a more ex-
tensive parameter search would give better insights into the
design choices for the optimal trade-off between the accuracy,
the model size and the inference speed.

6 Robotic Grasping
We implemented GraspNet for grasp detection in real-world
robotic grasping using Nvidia Jetson TX1 and our in-house
robotic platform. In these experiments, the robot was tasked

Model Grasp Model Runtime
accuracy size (MB) (ms)

GraspNet (α = 0.1, δ = 8) 85.1 4.1 17
GraspNet (α = 0.5, δ = 8) 87.3 7.2 19
GraspNet (α = 1.0, δ = 8) 89.6 14.2 28
GraspNet (α = 0.5, δ = 4) 90.5 29.2 24
GraspNet (α = 0.5, δ = 16) 86.4 3.8 13

Table 3: Grasp accuracy, model size, and runtime of GraspNet for
different values of its parameters α and δ on the GraspSeg dataset.

to pickup the objects placed within the workspace of the
robot. To achieve this, we built an integrated framework for
object recognition and grasp detection, where we deployed
the Faster-RCNN model of [Ren et al., 2015] to generate ob-
ject proposals in the scene. A recognized object proposal is
then fed to the proposed GraspNet to produce a grasp which
is finally used by the robotic arm to grasp the target object.
For these experiments, we performed more than 50 trials and
evaluated the grasps based on force-feedback from the grip-
per. A grasp was considered successful if the robot raised and
held the object in the air for 10 seconds (during which the
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Figure 5: Real-world robotic grasping setup. An image acquired from Kinect is fed to Faster-RCNN [Ren et al., 2015] to generate object
proposals. These are fed to the proposed GraspNet to generate grasp inferences which are used by a robotic arm for robotic grasping. Both
Faster-RCNN and GraspNet run on Nvidia Jetson X1 (see the video at: https://youtu.be/bYEmAOImC90).

grasp was confirmed through force feedback from the grip-
per). Fig. 5 shows some grasps from the real-world testing.

7 Conclusion and Future Work
We proposed a novel CNN architecture termed Grasp-
Net which outperforms state-of-the-art computation-efficient
CNN models in terms of grasp detection accuracy. To achieve
this, we proposed a novel convolution block termed Dilated
Dense Fire (DDF) module, which uses squeeze and dilated
convolutions interconnected through dense residual connec-
tions and integrated compression hyper-parameters. In exper-
iments, we show that GraspNet has a small memory footprint
and achieves real-time inference speed on embedded GPU
like Nvidia Jetson TX1. These attributes make GraspNet a
highly suitable CNN model for embedded systems which can
be deployed onto mobile robots. We also demonstrate the ex-
ploration of the design space of GraspNet to build smaller and
faster models by trading off a reasonable amount of accuracy
to reduce size and latency. For future work, we plan to extend
the GraspNet architecture for simultaneous object recognition
and grasp detection, to further reduce the overall latency of
the recognition system, while maintaining a compact model
design and real-time inference speed. We also plan to imple-
ment CRF-based post-processing steps to further improve the
segmentation of grasp affordances.
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