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Abstract

In this paper, we provide an axiomatic justification
for decision making with belief functions by study-
ing the belief-function counterpart of Savage’s The-
orem where the state space is finite and the con-
sequence set is a continuum [I, M](I < M). We
propose six axioms for a preference relation over
acts, and then show that this axiomatization admits
a definition of qualitative belief functions compar-
ing preferences over events that guarantees the ex-
istence of a belief function on the state space. The
key axioms are uniformity and an analogue of the
independence axiom. The uniformity axiom is used
to ensure that all acts with the same maximal and
minimal consequences must be equivalent. And
our independence axiom shows the existence of a
utility function and implies the uniqueness of the
belief function on the state space. Moreover, we
prove without the independence axiom the neutral-
ity theorem that two acts are indifferent whenever
they generate the same belief functions over con-
sequences. At the end of the paper, we compare
our approach with other related decision theories
for belief functions.

1 Introduction

The problem of decision making under uncertainty is a fun-
damental issue for Artificial Intelligence. In this problem the
decision maker (DM) is concerned with the selection of an
appropriate decision alternative, in the face of uncertainty
with respect to the environment. The uncertainty manifests
itself in that a different payoff is obtained for different states
of nature. Characterizing the behavior of DM using subjec-
tive expected utility was promoted and axiomatized by Savage
[Savage, 1954] following previous work in [de Finetti, 1937]
and [von Neumann and Morgenstern, 1944]. The theory of
subjective expected utility combines two subjective concepts:
first, a personal utility function (a measure of preferences over
outcomes or consequences), and second a subjective prob-
ability distribution quantifying likelihood judgements about
events. Different DMs may make different decisions because
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they may have different utility functions or different beliefs
about the probabilities of different outcomes. Despite its
achievements in economics and Al, experiments have shown
that many DMs do not behave in a manner consistent with
Savage’s axioms of subjective expected utility for probability
functions [Ellsberg, 1961].

In many uncertain situations, the Dempster—Shafer belief
structure provides a more suitable representation framework
a DM may face in regards to the state of nature [Jaffray, 1989;
Strat, 1990; Smets and Kennes, 1994; Ghirardato, 2001;
Yager, 2008; Giang and Shenoy, 2003; Smets, 2005; Gul
and Pesendorfer, 2014; Shafer, 2016; Giang, 2016; Ma et al.,
2017]. Here we provide an axiomatic justification of decision
making with belief functions by showing the counterpart of
Savage’s theorem. Among those semantics for belief func-
tions in the literature, we choose Shafer’s interpretation as al-
locations of probability [Shafer, 1979] or Fagin and Halpern’s
view of subjective belief functions as generalized probability
[Fagin and Halpern, 1991], i.e., inner probability.

Our main contribution in this paper is to propose six ax-
ioms for a preference relation over acts, which are represented
by functions from the state space .S to the consequence set 7,
and prove the Savage-style representation theorem (Theorem
3.12). The theorem shows that the axioms are equivalent to
the existence of an interval utility function and a belief func-
tion (inner probability), such that decisions are being made as
if to maximize the expectation of the utility relative to the be-
lief function. Since finite domains are arguably those of most
interest in Al applications, we assume that the state space is
finite. The first part of our system consists of four axioms
(Axioms 1-4), which are adapted directly from those for ex-
pected uncertain utility (EUU) theory in [Gul and Pesendor-
fer, 2014]. The most important concept in this part is called
ideal events. They are intended to capture aspects of the un-
certainty that the DM can quantify without difficulty. The
Savage sure-thing principle does not hold generally for any
events, but for ideal events. We show that Axiom 3 induces a
preference relation on ideal events called a qualitative prob-
ability, and further derives a preference relation on general
events called a qualitative belief function. Although a qual-
itative probability does not imply the existence of a (quan-
titative) probability function on the state space, a qualitative
belief function guarantees the existence of a quantitative be-
lief function [Wong er al., 1991].
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The key axioms in our theory are the last two: unifor-
mity (Axiom 5) and independence (Axiom 6). Axiom 5 im-
plies that all acts with the same maximal and minimal con-
sequences must be equivalent (Lemma 3.9). It formalizes the
principle of choice under complete ignorance derived in [Ar-
row and Hurwicz, 1972; Jaffray and Wakker, 1994]. By using
a technique called ideal splitting (Def. 3.8), we prove the neu-
trality theorem (Theorem 3.10) which says that two acts are
equivalent whenever they generate the same belief functions
on the consequences. This axiom also applies to infinite do-
mains. It derives a similar Axiom 3 in [Gul and Pesendorfer,
2014] (Lemma 3.7) where the diffuse sets must be infinite,
and hence is more general. Since Axiom 5 (Archimedean)
in [Gul and Pesendorfer, 2014] rules out the possibility of a
finite state space, we replace it with our independence ax-
iom about acts here. This independence axiom is introduced
to ensure the conditions for the mixture space theorem [Her-
stein and Milnor, 1953] and hence guarantees the existence
of a linear function on acts as well as the uniqueness of the
quantitative belief function on the state space. By using ideal
splitting, we separate this linear function into an interval util-
ity function and a belief function on consequences and show
the representation theorem.

2 Belief Functions

Let © be a frame of discernment and 2 be the powerset
of Q. A mass assignment (or mass function) is a mapping
m : 22 — [0,1] satisfying > 400 m(A) = 1. A mass
function m is called normal if m()) = 0. Without further
notice, all mass functions in this paper are assumed to be nor-
mal. A set A is called focal if m(A) > 0. A belief func-
tion is a function bel : 2 — [0, 1] satisfying the following
conditions: bel(0) = 0, bel(2) = 1; and bel(|J;_, A;) >
D 0AIC {1, yn}(—l)m“bel(ﬂie[Ai) where A; € 2 for all
i € {1,---,n}. A mapping f : 22 — [0,1] is a belief
function if and only if its Mobius transform is a mass assign-
ment [Shafer, 1976]. In other words, if m : 2% — [0,1]
is a mass assignment, then it determines a belief function
bel = 29 — [0,1] as follows: bel(A) = > pzc,m(B)
for all A € 29 Moreover, given a belief function bel,
we can obtain its corresponding mass function m as fol-
lows: m(A) = 3 5 4(—=1)4\Blbel(B) for all A € 2. In-
tuitively, for a subset (or event) A, m(A) measures the be-
lief that the DM commits exactly to A, not the total belief
bel(A) that he commits to A. The corresponding plausibil-
ity function pl : 2 — [0,1] is dual to bel in the sense that
pl(A) =1 — bel(A) for all A C €. Suppose that © is a finer
frame than €. This means that the elements wy, -+ ,w|q|
of €2 correspond to a partition Iy, -+ ,II|| of ©: a sub-
set {w;,, - w;, } of Q has the same meaning as the subset
II;, U- - - UIl;, of ©. This identification can represented by a
mapping p : 2% — 29 such that p({w;}) = II;(1 < i < |Q))
and p({w;,, - w;, }) = UF_ p(w;;) = UN_|T1;;. The par-
tition IIy, - - -, I|g| of © as a basis defines a subalgebra A”
of 2° as a Boolean algebra with set operations, which is iso-
morphic to the set algebra 2. We call © a refinement of
and € a coarsening of ©. Given a belief function bel over ©

with the refining mapping p : 2 — 29, its marginal bel [q
over €2 is defined as follows: (bel [q)({wiy, - ,wi }) =

A probability space (S, A, pr) consists of a set S (called
the sample space), a o-algebra A of subsets of S and a prob-
ability measure pr : A — [0,1]. The inner probability pr.
associated with pr is defined as pr.(A) = sup{pr(F) : E C
A,E € A} for any A C S. Without further notice, we as-
sume that the space is finite in this paper.

Proposition 2.1 (Proposition 3.1 and Corollary 3.6 in [Fa-
gin and Halpern, 1991])Belief functions and inner probabili-
ties are equivalent in the following sense:

1. If (S, A, pr) is a probability space, then pr. is a belief
function on S;

2. Given a belief function bel on a finite set S, there is a
probability space (S’, A, pr) and a surjection [ : S’ —
S such that for each A C S, bel(A) = pr.(f~1(4)).

This proposition contains Shafer’s interpretation of belief
functions as allocations of probability [Shafer, 1979]: for
each A C S, p : 25 — A defined as p(A) being the
largest element of A contained in f~'(A) is an alloca-
tion mapping. These semantics are related to but different
from the multi-valued-mapping semantics and the coherent-
lower-probability interpretation (See Section 6 in [Fagin and
Halpern, 1991]).

3 Representation Theorem

In this section, we first set up the background for decision-
making and propose 6 axioms for the preference relations
over acts. Next we prove the Savage-style representation the-
orem.

3.1 Decision-theoretic Setup and Axioms

There is a set of items X, and the DM is willing to express
his preferences among these items by making paired compar-
isons of the form: “I strictly prefer x to y” which is written
x >x y. A binary relation on X is called a preference re-
lation if it is asymmetric, i.e., x >x y impliesnoty >x «x
and negatively transitive, i.e., if not x >x y andnoty >x z,
then not = >x z. With the strict preference relation > x, we
define two other binary relations: = >x y ify ¥ x «, and
x ~x yifz =x yandy =x x. The first is called weak
preference relation and the second indifference relation. If
> x is a preference relation on X, then (1) > x is transitive;
(2) for all z and y in X, exactlyoneof z >x v,y >x
and z ~x y holds; (3) =x is complete and transitive; (4)
~x is reflexive, symmetric and transitive; and x >x y iff
x >x yorx ~x y. In the following, we drop the subscripts
X whenever the context is clear.

Just as in Savage’s theorem for probability functions, un-
certainty is viewed as being subjective in our Savage-style
models and belief functions will be supplied by a decision
maker (DM) on the basis of his subjective preferences. Our
model includes two primitive concepts:

e a finite set of states of nature denoted by S =
{s1,- -, sk} with typical element denoted by s.
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e a set of outcomes or consequences, denoted by Z. Fol-
lowing [Gul and Pesendorfer, 2014], we assume that
Z = [I,M] C R where | < M. For technical reasons,
we assume that [ = 0 in this paper.

From S and Z, we construct the choice space, which is
denoted by F, as the set of all functions from S to Z. For-
mally, we would write 7 = Z% = {f : f is a function
from S to Z}. Elements of F are called acts. For any prop-
erty P, let {P} denote the set of all states where P holds.
For example, {f > g} = {s € S : f(s) > g(s)}. For
{P} = S, we simply write P; that is, f € [x,y] means
{s € §: f(s) € [z,y]} = S. We identify z € Z with
the constant act f = z. In other words, z € Z is also under-
stood as z(s) = z for all s € S. The DM cannot fully specify
the consequences that ensue from the action chosen. Instead,
his choice of action sets up a function f from states of nature
to the consequences-he chooses one such action from some
set of available actions, and his preferences over actions are
modeled by a binary relation > (C F x F) defined on F.
First we describe axioms and explain the basic logic behind
whenever necessary.

e AXIOM 1 (Weak order): The binary relation > is a pref-
erence relation.

e AXIOM 2 (Dominance): For any two acts f and g € F,
if f > g,then f > g.

Forany f,g € F and A C S, let fAg denote the act that

agrees with f on A and with g on A€, the complement of A.

Formally,
fAg(s) = { ggg

The axiom that is most characteristic of subjective proba-
bilities is Savage’s sure-thing principle [Savage, 1954]. As
pointed out in [Jaffray and Wakker, 19941, the belief-function
approach violates this principle. Although the sure thing prin-
ciple does not hold for all events of S, it does for a smaller
set of ideal events.

ifse A,
otherwise.

Definition 3.1 An event E is ideal if, for all acts f, g, h and
n e F, fEN = gEh' and WEf 3= h'Eg provided that
fEh = gFEhand hEf = hEg. An event A is null if fAh ~
gAhforall f,g,h € F. <

Let £ denote the set of all ideal events and £, that of ideal
events that are not null. So & is the domain where the sure
thing principle holds. We wish to measure not only the rank-
ing of outcomes, but also of the events. Specifically, we
wish to find out whether DM thinks that event A is more
likely than event B. The main hypothesis is that the DM
uses elements of £, to quantify the uncertainty of all events.
For any event A, A* = ({F € & : ENA # 0} and
A, ={F €&y : E C A} are called respectively the upper
and lower approximations of A w.rt. £,. Axiom 3 below is
Savage’s comparative probability axiom (P4) applied to ideal
events.

e AXIOM 3 (Comparative Belief): For any x,y, w, z € Z
and any ideal events E, E’ € £,ify > x and w > z,
then wEz = wE'z provided that yFz = yE'x.

For any two ideal events E and E’ € &, say that F is pre-
ferred to E', if, for all x and y from Z such that z > 1y,
xEy > xF’y. According to Axiom 3, it doesn’t matter
which = and y are used to define the preference. Axiom 3
imposes a natural requirement that the betting preferences be
independent of the specific consequences that define the bets.
From Axioms 1-3, we know that the above relation is a pref-
erence relation, which is also denoted by >. Recall that S =
{s1,++,sK}. Since Z is a subset of real numbers, we view
eachact f € F asanelement (f(s1),---, f(sx)) € RE and
hence F as a subset of R, A subset G of acts is called closed
if itis a closed subset of R¥ in the usual topology induced by
the Euclidean metric.

e AXIOM 4 (Continuity): For any act f, both U(f) :=
{9e F:g=ftand L(f) :=={g € F: f = g} are
closed.

AXIOM 4 compensates for Savage’s (P6) and is needed to
ensure the continuity of the von-Neumann-Morgenstern util-
ity index when proving the following Savage-style theorem
in a setting with real-valued outcomes.

Proposition 3.2 (Lemmas Bl and B2 in [Gul and Pesendor-
fer, 2014] ) Assume that the collection F of acts satisfies the

above four axioms Axioms 1-4. Let f and g be two acts in F.
Then

1. f > gimplies f = g;
f > gimplies f >~ z = g for some z € Z;
ifE €&y andy > x, thenyEh = xEh forall h € F;

ifE € & and f € F, there exists a unique cg(f) € Z
such that cg(f)Ef ~ f.

5. The set € of ideal events is a o-algebra.

KN owoN

FE is called an atom if it is an indecomposable ideal event, i.e.,
FE € £ and no other nonempty ideal event is contained in E.
Let &, denote the set of atoms in &.

Lemma 3.3 The above defined preference relation on £ is
a qualitative probability. That is to say, > is a preference
relation; E = () for all ideal events E € £; S = 0, and, if
Eﬂ(El UEQ) :(Z), then E1 - Fy lffEl UFE = EsUE.
Moreover,

1. If B4 ~ Ey,Es ~ Eyand E1 N E3 = Fs N Ey =0,
then E1 U E3 ~ Ey U Ey.

2. For any ideal events E1,E>, E3,Ey € &, if E1 =
FEy, E3 - Eyand E1NE3 = (0, then E{UE3 = EyUE,.

3. For any ideal events E and E', if E O E', then S =
E=FE =0

Proof. The propositions follow from Axioms 1-3. The proof
is similar to that in Savage’s theory about qualitative proba-
bilities (refer to Proposition 9.12 (Page 133) and Proposition
8.4 (Page 119) of [Kreps, 1988]). QED

Now we extend the preference relation on ideal events to
that on general events. An ideal event F € & is called the
core of event A if E C A and F is the largest ideal event
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contained in A. It is easy to see that, for any event A, its
core always exists and is unique because the core is simply
the union of all ideal events contained in A. Let A° denote
the core. Now we express comparative beliefs in terms of
cores. For any two events A and B, A is called preferred to
B (denoted as A >~ B) if A° is preferred to B°.

Lemma 3.4 For any event A, B,C C S,
1. > is a preference relation,
2. (dominance) A O B implies A = B,

3. (partial monotonicity) if A D B and AN C = ), then
A = Bimplies AUC = BUC, and

4. (nontriviality) S = (.

Proof. Here we mainly prove partial monotonicity (Part 3).
All the other parts are straightforward. Assume that A 2
B,A > Band ANC = (. It follows that A° 2 B°, A°\
B° # () and A° > B°. From Lemma 3.3, we know that
A°\ B° > . Note (BUC)°N (A°\ B°) = 0. Since
AUC D BUC, (AUC)° D (BUC)°. In addition, (AUC)° D
(A°\ B®). So (AUC)° D [(BUC)°U(A°\ B°)] and hence
(AUC)° = [(BUC)°U(A°\ B°)] (Lemma 3.3). We already
know that (A° \ B°) = @ and (BU C)° N (A°\ B°) = 0.
It follows from Lemma 3.3 that (B U C)° U (A4° \ B°) >
(BUC)°. So we have shown that (AU C)° > (BUC)° and
hence (AUC) = (BUC). QED

A binary relation R C S x S is called a qualitative belief
function if it satisfies the four conditions in Lemma 3.4. The
following theorem follows directly from Lemma 3.4 and The-
orem 4 in [Wong et al., 1991].

Theorem 3.5 (Qualitative Belief Theorem) There exists a be-
lief function Bel : 25 — [0, 1] such that, for any two events
A, B €25, A~ B < Bel(A) > Bel(B).

Such a belief function Bel is called prior and is not unique.
The existence of such a quantitative belief function as Bel is
equivalent to the solvability of a group of linear (in)equalities.
From the Fourier-Motzkin Lemma, we know that a solution,
if it exists, is not unique and hence the quantitative belief
function is not unique. We need Axiom 6 to ensure the
uniqueness (Theorem 3.12). Note that the belief function
Bel 1¢ restricted to the o-algebra £ is a probability measure,
which is not unique. So Bel is actually an inner probability
associated with the probability measure Bel |¢.

Definition 3.6 Let F be an ideal event in £. An event D is
called E-diffuse if it satisfies the following conditions:

1. DCE;
2. DNE' # (and D°NE’ # () for all E’ such that B’ € £,

and £/ C E.
Let Dg denote the set of all E-diffuse sets. Note that Dg
may be empty. <

e AXIOM 5 (Uniformity): For any z,y € Z,E,E' € &,
D € Dg and D' € Dg, if (.Z'Dy)Ef ~ CEf and
(zD'y)E'f ~ E'f,thenc = ¢'.
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Since E and E’ are ideal, the constant ¢ depends only on x
and y. The upper and lower approximations of any F-diffuse
D are E and (), respectively and hence each E-diffuse event
represents a state of complete ignorance regarding E. Axiom
5 formalizes the principle of complete ignorance regarding
betting on D.

Lemma 3.7 Forany x,y € Z, D € Dg and D' € Dg,
1. if B~ E', then xtDy ~ xD'y for any z,y € Z.
2. (zDy)Ef ~ («D'y)E'f.

Proof. This lemma follows from Prop. 3.2 and Axiom 4.
QED

Since the consequence set Z C R, we can define convex
combinations of acts. Let f and g be two acts in F. For
a € [0, 1], the convex combination af + (1 — a)g of f and g
is defined as: for any s € S, (af + (1 — a)g)(s) = af(s) +
(1—-a)g(s) € Z.

e AXIOM 6 (Independence): For any o € (0, 1] and any
acts f,g,h € F, f > g implies af + (1 — a)h =
ag+ (1 —a)h.

It follows that f; ~ f5 and g1 ~ go implies afy+(1—a)gy ~
afo+ (1 —a)ge.

3.2 Representation Theorem

With the prior Bel, for any act h : S — Z, we define an
associated belief function Belj, on the range R(h) of h. For
any A C R(h),

Bely,(A) := Bel(h™!(A)). (1)
Since {h~!(2) : 2 € R(h)} defines a partition of S, h~!
can be viewed as refining and Bely, is the marginal of Bel
over R(h). In other words, Bel, = Bel [g). Bel, may
also be identified with the belief function Bel restricted to
the subalgebra generated by the sets {h~1(2) : 2 € R(h)}
of preimages of h. Now we introduce a technique to quali-
tatively represent a mass function over outcomes in terms of
inner probabilities.

Definition 3.8 (Ideal Splitting) Let E € £, N ={1,--- ,n}
and {A4;,---,A,} is a finite partition of E. The ideal split
{E7: 0 #JC N}of {Ay,---,A,} is inductively defined
as follows:
e foralli € N, Bt .= (4;)°;
e forall J C N suchthat J # @ and |J| > 1, B/ :=
(UjeJ Aj)o \ U@;&LgJ Er.
<
For any act f with the range {z1, -,z }(z1 < -+ < zp),
let {S }7 : ) #£ J C N} denote the ideal split of the partition
{A; = fYz):1<i<n}ofS. Let D;‘]’j) denote
S'J[ N f~(z;) where j € J. Note that, 4f0r any nonempty
EC S}], f(E)={z :1€ J}and D;J’]) € Ds}z. For any
A C S, define
s) ifseA,
iae={ 7

0 otherwise.
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So f =2 pssen T sy

Lemma 3.9 Ler |J| > 1, maz; and miny be the maximal
and minimal numbers in J. f ] sy~ ¢ 1 s7 for some constant

¢ € Z which depends only on zmaz, and Zmin ;.
Proof. By Proposition 3.2, f ]S};N c s7 for some con-

stant ¢ € Z. Since ZminJ(UjeJ\{mm,,} D}J’j))zmam WS}IS

Jmin
F Ws}fﬁ (zmimD} msz)ZmazJ) ]SfJ, f WS}JN
(Zmin, D;‘]’mm")zmam) 15};'\4 ¢ 15}1. From Lemma 3.7, we
know that ¢ depends only on Zmin S and Z,, 00 ;- QED

So we write this ¢ as ¢(Zmin;, Zmaz,) t0 emphasize its de-
. . ’
pendency. Moreover, a similar argument on Sj{ U shows

that, for another J’ such that @ # J' C N, if min; <
miny and maxy; < mazy, then c(Zmin,, Zmaz,) <
c(2min s » Zmaz ;). Now we prove the following important
neutrality theorem without Axiom 6.

Theorem 3.10 (Neutrality Theorem) For any two acts f,g €
F, if Bely = Belg, then f ~ g.

Proof. Without loss of generality, we assume that both
ranges R(f) = R(g9) = {#z1,22}(z1 < 22) and Bely =
Bel,. This implies that Bel(f~1'(z1)) = Belg(z1) =
Bely(z1) = Bely(g7(21)) and Bel(f'(z2)) =
Belf(z2) = Bely(z2) = Bely(97"(22)). From Theorem
3.5, we know that f~1(z;) ~ g7 !(z1) and f~1(22) ~
g (22). So we need to show that f = 21 (21)20 ~
21971(21)22 = g. Note that it is not necessarily the

case that f~1(21),97(21) € €. Let {5;1}75}2}75}1,2}}

and {Sél},S;,{Q},Sél’g}} be the ideal splits of the parti-
tions {f~1(2;)} and {g~!(z;)}, respectively. Without loss
of generality, we assume that all these ideal events are not

~ sél},sf} ~
Sf} and 5}1’2} ~ S_;;{I’Q}. Note that, for any nonempty
ideal event £ C 5}1’2}, f(E) = {z1,22}. So D} =
S]{cl’z} N f~1(1) and D]% = S]{cl’z} N f~1(2) are both
St diffuse.  Similarly, D} S A g71(1) and
D2 = S5 0 g71(2) are both 5§ -diffuse. It is
easy to see that g = (ZlD;ZQ)S;LZ}(ZlSél}Zz), and
;= (le}zz)S]{cm}(215'}1}22). According to Lemma
3.7, (ZlD;ZQ)S;LQ}ZQ = leézg ~ le}ZQ =
(le]lczg)S]{cl’Q}zg. It follows from Lemma 3.2 that there
are constants 051’2} and cﬁl’z} such that (ZlD;ZQ)Sgl’z}ZQ ~
031’2}5’;1’2}22 and (ZlDchZQ)S§172}ZQ ~ 6}172}S}172}Zz. Ax-
iom 5 tells us that cél’z} =
{12} denote this constant. So g ~ {12} S (2581 2,)
and f ~ 0{172}5}1’2}(215}1}2'2). Since SiM% U S~
3.7{01’2} U S}l}, 2155{1’2}(21551}22) ~ 215}1’2}(213}1}2“2).

null. It immediately follows that SJ{cl}

0}1’2}. For simplicity, we use
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Using a similar argument, we show that there is a con-
stant ¢ such that z; < ¢ < 2z and 21(55{1’2})c ~
21(32172})(2159{1}22), 21(5}1’2})0 ~ 21(8}1’2})(215}1}22).
This implies 0{1’2}(5’;1’2})0 ~ 0{1’2}(551’2})(2159{1}22),
and 0{1’2}(5}1’2})0 ~ 0{1’2}(5}1’2})(2159{1}22). So we have

shown that f ~ g. The general case when |R(f)| > 2 can be
proved similarly by an induction on the ideal split. QED

Let Br denote the set {Bely : f € F} of belief func-
tions associated with all acts. It is not necessarily true that
aBely + (1 — a)Bel, € Br. In other words, aBel; +
(1 — «)Bel, is not necessarily generated by an act. For any
a € [0, 1], define hy : Br x Br — Br as hq(Bely, Bely) =
Bel  (f,4) Where +, denotes the convex-combination func-
tion mapping (f,g) to af + (1 — a)g. Since ~ is an
equivalence relation on acts, convex combination 4+, is well
defined on the equivalence classes according to Axiom 6.
Let f. and g. denote the equivalence classes including
acts f and g, respectively. af. + (1 — a)g. = (af +
(1 — a)g)~. Itis easy to check that Bel.y : F — Br
defined as Bel()(f) = DBely is a homomorphism from
<~7:~7 (+o¢)o<€[0,1]> to <BJ:, (ha)a6[0,1]> where F.. = {f~ :
f € F}. Itis easy to show that (F.,(4+a)acjo,]) is a
mixture space, and so is (B, (ha)ae(o,1]) [Herstein and Mil-
nor, 1953]. For simplicity, we will omit the subscript . for
equivalence classes in the following whenever no confusion
arises. For any two Bely, Bel, € Br, Bely = Belg if
f > g. Assume that f > g > h. According to Lemma 3.2,
f~z§,9 ~ zg,h ~ 2 for some constants 25, 2,2, € Z
such that zy > z; > z,. There exists & € (0,1) such
that azy + (1 — )z, > z,. From Axiom 6, we know
that +,(f, h) ~ (azy + (1 — &)zp) > z4. It follows that
+a(f,h) = g. Similarly, we can show that there exists
B € (0,1) such that +5(f, h) < g. From Axioms 1 and 6, we
know that both (F., (+a)ae[o,1)) and (B, (ha)aco,1)) sat-
isfy the conditions for the mixture space theorem ([Herstein
and Milnor, 1953] or Theorem 5.11 p. 54 in [Kreps, 1988]).

Theorem 3.11 (Mixture Space Theorem) For the above mix-
ture space (F,(+a)aco,1]), there exists a function F
F — Rsuch that (1) f > g iff F(f) > F(g); and (2)
Flaf +(1—-a)g)) = aF(f) + (1 — a)F(g). We say that
F represents = on F. Moreover, F' is unique up to a positive
affine transformation: F' : F — R is a representation of >
iff ! = aF + b for constants a > 0 and b.

The above theorem has a more general form:
FXryaifi) =Y " a;F(f;) foranyacts fi, -, f, € F
and nonnegative ay, - - - ,a, such that Z?:l a; = 1. Since
F is unique up to positive affine transformation, we assume
that F(0) = 0 and F(M) = M for simplicity. With
this assumption, the commutativity of F' with convex
combinations implies that F'(z) = z for any z € Z (this
is the reason why we assume [ = (). Note that any con-
stant in Z is viewed as a constant act here. A function
u:Il={m):0<1l<m< M} — Riscalled an
interval utility if it is continuous and strictly increasing,i.e.,
u(z1, 22) > u(zy, z5) whenever 21 > 2} and 2o > 25.
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Theorem 3.12 (Representation Theorem) If the preference
relation > on F satisfies Axioms -6, then there exists a be-
lief function Bel on the state space S and an interval utility u
suchthat f = giff Y 4 g u(minf(A), maxf(A))mys(A) >
Yo acs u(min(g(A)), max(g(A)))mg(A) where my and
mgy are the corresponding mass functions of Bel ¢ and Bel,
generated by Bel w.rt. f and g (Eq. 1), respectively. More-
over, Bel is unique and u is unique up to a positive affine
transformation.

Proof. For any a € [0,1] and f € F, F(af) = F(af +
(1—«)0) = aF(f). Consider the ideal partition & := {E; :
1 < i < n} of S, each element of which is an atom. Since

L=l o P(f) = F(f 1p) 4 +F(f 1,).

In particular, M = Y7 | F(M 1g,). From Axiom 6, we
know that F(ZlEi) = F(ZZW,ET‘) for any z, 2’ € Z and hence
% is independent of the consequence M € Z. Let

Pr(E;) = % So F(z 1g,) = zPr(E;) for any z €
Z. Such defined Pr is a probability measure on &, and repre-
sents the preference relation > on the ideal events. It is easy
to show that, for any two ideal events F and E', E = E' iff
M {1g> M 1g/. This equivalence implies that the combina-
tion of Axiom 6 and those properties in Lemma 3.3 meets the
necessary and sufficient conditions for existence of a unique
measure strictly agreeing with a qualitative probability order-
ing in [Suppes and Zanotti, 19761. So Pr is the unique prob-
ability measure that represents the preference relation > on
ideal events and Bel := (Pr), is also the unique belief func-
tion that is derived from qualitative belief function in Lemma
3.4 and satisfies Axiom 6. Let R(f) = {z1,--- , 25} be the
range of f such that z; < --- < 2z, and 4; := f~1(z)(1 <
i < n). Itis easy to see that {A; : 1 < ¢ < n} is a par-
tition of S. Let N = {1,--- ,n} and {S} : 0 # J C N}
be the ideal split (Definition 3.8) of the partition {4; : 1 <
i < n}. Recall that, for any nonempty ideal £ C S }c] s
f(E) = {j : j € J}. It follows from Lemma 3.9 that
F(f) = Zf:l F(f ]S’}’) = Zf:l F(C(z771inJ7ZmaacJ) 15’}7
) = Zle c(Zmin, ZWLMJ)PT(S}Z). Note that Pr(S]{) =
mg({z; : € J}).Definew: {(I,m):0<l<m< M} —
R as u(z,y) = ¢(z,y). From Axiom 4 and Lemma 3.9,we
have that v is continuous and strictly increasing. Also we ob-
tain a version of von Neumann-Morgenstern theorem for the
mixture space (B, (ha)aco,1]) With Bel = Pr,.

QED
It is easy to check that the converse to Representation Theo-
rem also holds.

4 Related Works and Conclusion

To the best of our knowledge, we are the first to provide the
belief-function counterpart of Savage’s theorem in a classi-
cal decision model (the set-up in Section 3.1) where the state
space is finite. A decision foundation for belief functions was
given by Ghirardato [Ghirardato, 2001], however using a dif-
ferent framework from the classical decision model. He as-
sumed that acts are correspondences, assigning sets of out-
comes rather than one outcome, to states. With the expected
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uncertain utility theory from [Gul and Pesendorfer, 2014],
we advance Jaffray’s theory about decision making with be-
lief functions [Jaffray, 1989; Jaffray and Wakker, 1994]. The
conception and structure of our theory mainly comes from
[Jaffray and Wakker, 1994]. Jaffray’s model is also finite but
his semantics is Dempster’s model of multi-valued mappings
which is different from our generalized probability seman-
tics. In his set-up, the DM uses a two-stage approach to pro-
cess the information. The first stage deals with the proba-
bilistic information. A deviation from the Bayesian approach
occurs in the second stage where the principle of complete
ignorance applies. In order to achieve the von Neumann-
Morgenstern theorem for belief functions, he did not show
but postulated the “neutrality axiom” that acts are indiffer-
ent whenever they generate the same belief functions over the
consequence space. Jaffray demonstrated the incompatibility
of Savage’s sure thing principle with belief functions and as-
sumed a weakened version by restricting Savage’s principle
to unambiguous events. But his unambiguous events are too
sparse for decision making because a belief function with all
nonempty events being focal possesses only two trivial un-
ambiguous events: () and the state space S. This is the main
reason why we choose to restrict the sure-thing principle to
ideal events in a larger state space with an inner-probability
interpretation (Part 2 of Proposition 2.1). The state space in
[Gul and Pesendorfer, 2014] must be infinite because of the
Archimedean axiom (Axiom 5 there). The development of
their theory is quite different from the familiar EU theory
for probability functions. They first proved Savage’s theo-
rem on ideal events and then defined the interval utility func-
tion without considering the two important theorems in the
classical EU theory: qualitative belief theorem and the neu-
trality theorem as we do in this paper. The extensive liter-
ature about expected utilities includes many related works
including [Schmeidler, 1989; Gilboa and Schmeidler, 1989;
Zhang, 2002]. There is also a rich literature about decision
making with belief functions (See Introduction). But none of
them provides an axiomatization based on preferences over
acts in a finite classical decision model as in this paper.

Our axiomatic system (Axiom 6) extends the language of
expected (uncertain) utility theories with a definable convex-
combination operator on acts. The extension is motivated by
both our neutrality theorem and Jaffray’s idea of equating acts
with the belief functions that they generate over outcomes
[Jaffray, 1991]. One may replace Axiom 6 here with an axiom
which is similar to the state-independent preference inten-
sity axiom in Wakker’s model [Wakker, 1989] or to Assump-
tion 3 in [Gul, 1992] without the convex-combination opera-
tor. We would like to achieve a Savage-style theorem for be-
lief functions without any probabilistic interpretation [Smets
and Kennes, 1994] which incorporates recent results on de-
Finetti-style and von-Neumann-Morgenstern-style methods
[Flaminio et al., 2015; Coletti et al., 2015].
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