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Abstract

Learning new knowledge from single instructions
and being able to apply it immediately is highly de-
sirable for artificial agents. We provide the first
demonstration of spoken instruction-based one-
shot object and action learning in a cognitive
robotic architecture and briefly discuss the archi-
tectural modifications required to enable such fast
learning, demonstrating the new capabilities on a
fully autonomous robot.

1 Introduction

Quickly acquiring new knowledge during task performance,
possibly in “one-shot” from a single instruction, being able
to use it right away and also share it other agents would be
an important feat for many agent applications. While most
current artificial cognitive systems have the ability to acquire
new knowledge, some even from natural language instruc-
tions (e.g., [Kirk and Laird, 2014; Mohan et al., 2012]), they
typically make various assumptions about perceptual and ac-
tuation capabilities (i.e., what primitive percepts and actions
are available) as well as internal representations (e.g., what
concepts and relations can be represented). As a result, they
typically cannot accommodate truly novel objects or actions,
or even novel object parts or known actions performed on
those parts. Moreover, in learning new knowledge from in-
structions, an architecture also has to cope with unknown
words in the instruction, in addition to the unknown concepts
denoted by those words. This, in turn, requires the natural
language subsystem (NLS) of the architecture to be able to
cope with all aspects of unknown words: from their acoustic
features, to their syntactic properties, to their semantic mean-
ing, and possibly their pragmatic implictures. Hence, to be
able to truly learn from natural language instructions, agent
architectures need to allow for systematic representations of
unknown entities such as words, percepts, actions, etc. that
can be processed in almost every component of the archi-
tecture and subsequently refined based on the semantics of
the natural language instructions (and possibly perceptual and
other constraining contextual factors). This requires modi-
fications to the component algorithms and deep interactions
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between the NLS and other components to allow for subse-
quent refinement and further specification of those initially
incomplete representations.

We propose modifications to a cognitive robotic architec-
ture that allow it to learn new objects and actions in one
shot, i.e., from a single instruction, in such a way that (1)
the acquired knowledge about objects and actions is inte-
grated within the existing knowledge, (2) the knowledge can
be used immediately by the learning agent for task perfor-
mance, and (3) the knowledge can be shared immediately
with other agents using the same architecture.

2 Instruction-Based One-Shot Learning

Instruction-based one-shot object and action learning can be
defined as learning conceptual definitions for objects and ac-
tions as well as their aspects (e.g., object parts and action
parameters) from natural language expressions that contain
these definitions. For example, an object definition such as
“A medical kit is a white box with red cross on it and a han-
dle on top” defines a medical kit in terms of other shape,
color, and object concepts referred to by color adjectives (e.g.,
“white” and “red”), shape nouns (e.g., “box” and “cross”) and
other object types (e.g., “handle”) as well as relational ex-
pressions such as “on” and “on top” which relate the various
object parts. A vision system that knows how to recognize
and determine the various ingredients used in the definition
can then recognize the new object by way of recognizing its
constituent parts and their relationships (cp. to [Krause er al.,
2014]). Similarly, a definition such as “To follow means to
stay within one meter of me”, again assuming that all con-
cepts after “means” are known, should allow an action execu-
tion component to construct an action script that captures the
procedural meaning of the expression (cp. to [Cantrell ef al.,
2011]).

Definition[Natural language object and action definition].
Let Wo be a set of natural language expressions denoting
objects, object properties, or object parts in a set O, W,. be
a set of relation expressions denoting relations in [ among
object parts O, and W, be a set of natural language expres-
sions denoting actions and action sequences as well as action
modifications in a set of actions V. Then the natural language
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expression U (w, W,,, W,., W,,) is a definition of a concept de-
noted by w if U contains w in a way that marks w as the
definiendum (i.e., w is used to denote what is being defined
such as saying in “A table is...” or “I will teach you how to
pick up...”) and the rest of the U, the definiens, involves any
number of expressions from W,, W,., and W, in a composi-
tional fashion (e.g., “white box with red cross on it” or “stay
within one meter”) such that the composite meaning denoting
a new object or action can be determined from the meaning
of its parts.

One-shot object and action learning then amounts to (1)
learning the linguistic aspects of the definiendum w, (2) de-
termining the semantics of the definiens U, possibly recurs-
ing on unknown words, and (3) associating the constituent
parts of the definiens U with different data representations
in the agent architecture. Assuming that the architecture has
all functional representations and processes for all W, W,.,
W, (e.g., object, object part and relation detectors in the vi-
sion system and action primitives and parameters in the ac-
tion execution system), then invoking w in subsequent utter-
ances will lead to retrieval and application of these data struc-
tures. In other words, by being able to understand natural lan-
guage definitions of concepts cast in terms of either known
concepts or other unknown concepts that are themselves de-
fined in natural language, an agent can quickly acquire new
knowledge by combining existing knowledge in a way pre-
scribed by those definitions. To make this also practically
possible, several changes and additions must be made to var-
ious architectural components to enable the agent to handle
new words, generate novel data structures based on expres-
sions that refer to other knowledge, and associate those data
structures in ways that future invocations of the word will
trigger the right kind of retrieval and application processes
of the knowledge. For example, the speech recognizer must
learn the acoustic signature of the new word on its first occur-
rence and be able to recognize it subsequently, the syntactic
and semantic parsers have to be able to assign a grammati-
cal type, syntactic structure and descriptive semantics to the
word, and depending on whether it denotes an action or ob-
ject, the new term has to be associated with knowledge in the
vision and action components. Moreover, the agent has to de-
tect when new knowledge is presented and understand from
the utterance what type of knowledge it is.

3 Required Architectural Modifications

In this section, we very briefly describe some of the architec-
tural changes required to allow for genuine one-shot learn-
ing and how we addressed them (for details, please refer to a
longer version of this paper that appeared in 2017 [Scheutz et
al., 2017]).

3.1 Speech Recognition

The speech recognizer must be able to reliable detect un-
known out-of-vocabulary words and generate new token en-
tries for those words in its dictionary while also generating
prototypes of the acoustic signals for subsequent recognition
of the word (to avoid the addition of new tokens for the dif-
ferent instances of the same word).

5355

We address this challenge by adding a special recognizer
for words not recognized by standard speech recognizers
based on the acoustic DP-ngram algorithm [Oosterveld et al.,
2017; Aimetti, 2009], which will generate a new token for
each novel word (e.g., “UT1”) that is added to the ASR dic-
tionary and passed on down the language processing chain for
each subsequently recognized occurrence of the word.

3.2 Parsing

The parser must be able to handle new words without parts-
of-speech (POS) tags and attempt to infer their POS tags from
the lexcial parsing context, and then generate descriptive se-
mantic representation for the unknown words for subsequent
refinement (i.e., through explicit definitions).

We address this challenge by determining whether the new
word token is used as an action or as on object/object part
based on its lexical context, then we generate Combinatory
Categorial Grammar (CCG) types for the unknown word
based on the assumption that the utterance was grammatically
correct and generate generic lambda terms for noun phrases
or generic actions based on the arity of the action expressions
using extensions of the parser from [Dzifcak et al., 2009].

3.3 Vision Processing

The vision system must be able to combine existing image
processing algorithms based on natural language description
to detect objects and parts determine potential grasp points on
novel objects.

We address this challenge by using natural language in-
structions to determine how existing detectors and image pro-
cessors in the vision system have to be combined to allow for
the detection of novel objects (e.g., [Krause et al., 2014]) and
use a convolutional neural network to make grasp predictions
based on projections of the portion of the point cloud con-
tained between the fingers (e.g., [Gualtieri er al., 2016])).

3.4 Action Processing

The action system needs to recursively generate action scripts
from natural language instructions and determine appropriate
action arguments, while interacting with the vision system to
generate actions performed on the right object parts.

‘We address this challenge by incrementally assembling ac-
tion scrips based on whether an utterance contains actions vs.
control instructions (e.g., “while” or “if”’) and inferring action
script signatures from the syntactic CCG representation (i.e.,
how many arguments an action requires, see also [Cantrell
et al., 2011]) and inferring their types based on the language
context as well as the actual types used in the scripts.

4 Demonstration: Recursive One-Shot
Learning

In this section, we briefly walk through an example
(see Fig. 1) of recursively learning how to perform a
complex action sequence, assume that the robot just
learned what a plate is (a video demonstration is available at
https://hrilab.tufts.edu/movies/recursiveoneshotlearning.mp4).
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Human: Pass the plate.
Robot:  Sorry, I do not know how to do that.
Human: OK, I will teach you how to pass the plate.
Robot:  OK.
Human: Pick up the plate.
Robot:  Sorry, I do not know how to do that.
Human: OK, I will teach you how to pick up the plate.
Robot:  OK.
Human: First, find the plate.
Robot:  OK.
Human: Then grab the plate.
Robot:  OK.
Human: Move the plate up.
Robot:  OK.
Human: That is how you pick up the plate.
Robot:  OK.
Human: Move the plate forward.
Robot:  OK.
Human: Release the plate.
Robot:  OK.
Human: That is how you pass a plate.
Robot:  OK.

Figure 1: The demo learning interaction.

The ASR recognizes the utterance except for “pass” and
creates a new unique identifier “UT1” for it. The recog-
nized text “UT1 the plate” is sent to the Parser which gen-
erates semantics of the form “UT1(self,.(x).plate(x))” (where
t(z) determines the definite reference that is subsequently re-
solved to the plate in front of the robot) and passes it on to
the Dialogue system. The utterance is interpreted as a lit-
eral command, acknowledged (“OK”) and passed on to the
KR and Inference component which generates a new goal
“UT1(self,c(x).plate(x))” that is sent to Action Manager. The
Action Manager however does not have an action script for
“UT1”, hence action selection fails and control is returned to
the Dialogue manger, where a response is generated to ad-
dress the action failure by saying “I do not know how to do
that”. The subsequent “I will teach you how to pick up the
plate” in an indication for the action component to start as-
sembling a new action script and start monitoring the subse-
quent utterance for action instructions or control instructions.
Note that from the utterance it is possible to infer the argu-
ment structure of the new action: “pass(actor,object)” (and
also note that this is only a simplified version of passing
an object, a more complex version includes the recipient as
well). Since the first instruction contains another unknown
action, learning proceeds recursively and the robot continues
to learn the “pick up” action next. Currently the system needs
an explicit instruction to look for the object (“find the plate”),
otherwise it would not look for one when the script is be-
ing executed (although this can be inferred when attempts to
pick up objects fail because the system does not know which
object to pick up). The end of each instruction sequence is in-
dicated by “This is how you...”, at which point a new script is
assembled, indexed, and available for immediate execution.
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5 Discussion

The above walk-throughs show how new, initially meaning-
less token representations are generated as part of the learn-
ing process and become increasingly associated with different
meaning representations. Note that instructions do not have to
pertain to a particular set of sensors or actuators and that they
do not depend on a particular robotic platform either. Nor
do instructions have to be contained in one sentence, but can
be spread over multiple sentences and dialogue interactions.
Moreover, learning can be implicitly triggered using a novel
word that the robot does not understand, making the robot
prompt the user for a definition, in which case new acoustic,
syntactic, and formal semantics representations will be gener-
ated that get associated with the content representations of the
instructed knowledge after the relevant parts of the utterances
were semantically analyzed (e.g., the visual representations
of object part or the action script representation of the ac-
tion sequence). Note that since all knowledge representations
(i.e., the associations with the new token learned as part of
the learning process) are purely additive, i.e., do not modify
existing knowledge, it is possible to transmit the knowledge
directly to other agents who do not yet have that knowledge
for integration into their architectural components (e.g., see
[Scheutz, 2014] for a discussion on how to do this).

It is also important to point out that the proposed ar-
chitectural augmentations and the resultant one-shot learn-
ing scheme are not limited to the particular simple exam-
ple demonstrated in the above walk-through. Rather, being
implementations of the general one-shot learning definition
in Section 2, they are very general themselves, only limited
by the robot’s knowledge of natural language as well as its
perceptual and actuation capabilities. This raises then the
question of how a system like the proposed system which
implements a formally correct algorithm (i.e., using mean-
ing expressions in logical definitions cast in natural language
to associate the definiendum with the definiens) should then
be evaluated. Clearly, empirical runs are important in the
robotic case, since implementation details as well as real-
time and real-world constraints matter. For this purpose, we
provided an uncut video showing the algorithms at work in
real-time on a fully autonomous robot. And the discussion
of the NLS showed that the architecture can truly handle new
words acoustically, syntactically, and semantically as well on
the natural language side.

Itis an interesting question to determine the extent to which
knowledge acquired through one-shot learning is robust, and
is another interesting aspect deserving of further investiga-
tion. The demonstrations discussed above has a nearly 100%
success rate when repeatedly instructed after the initial learn-
ing instructions (i.e., if the robot is repeatedly taught how to
pass an object). Similarly robust results are obtained using
other definitions, but note that ultimately the robustness of
application of a newly learned knowledge item depends on
the robustness of its constituent parts (e.g., the detectors in
the vision system that detect objects and their parts, the action
and manipulation algorithms that plan motion parts and carry
out action sequences, etc.). Critically, these are not evaluation
criteria for one-shot learning, but rather evaluation criteria for
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the learned content and should thus not be conflated with the
latter. However, they might be useful in deciding whether
knowledge learned quickly through one-shot instructions is
sufficiently robust for a task or whether it will have to be al-
tered or augmented to reach the required level of robustness.

There are also interesting open questions about knowledge
transfer between robots ensuring that transferred knowledge
leads to consistent knowledge bases (because it is still possi-
ble, that even though learned knowledge is additive, it could
lead to inconsistencies in other systems that do not share ex-
actly the same knowledge bases as the learner), but these will
have to be left for another occasion. The important point here
is that different from other learning schemes (e.g., neural net-
works) where new information can alter existing information,
the learner itself will remain consistent (to the extent that con-
sistent knowledge is instructed) and can extend its knowledge
quickly from a series of instructions.

6 Related Work

While research involving teaching robots through spoken nat-
ural language instructions has achieved some successes for
both navigation-based tasks [Lauria et al., 2001] and more
general tasks [Huffman and Laird, 1995], as well as through
more highly structured dialogues which mimic programming
[Mericli et al., 2013], instruction-based one-shot learning is
still in its infancy. Current approaches to one-shot learning
are very limited with respect to the allowable teaching inputs
and usually can only learn simple behaviors, not complex
action sequences (e.g., [Cantrell et al., 2011]). And when
more complex tasks can be learned through dialogues, addi-
tional assumptions are typically made (e.g., the words for the
new concepts are already in the speech recognizer, the parser
already knows what to do with the word, etc.). Moreover,
several of the so-called “one-shot” learning approaches re-
ally require multiple trials (e.g., most approaches that focus
on visual category, object, and concept learning, in particu-
lar, those based on Bayesian approaches, e.g., [Fei-Fei et al.,
2006; Lake et al., 2012]).

7 Conclusion

We presented a general one-shot learning scheme together
with modifications to various component representations and
algorithms in a cognitive robotic architecture that allow for
true one-shot learning of new objects and actions from spo-
ken natural language instructions. Specifically, we demon-
strate how the proposed mechanisms allowed different robots
to recursively learn how to manipulate an object and immedi-
ately apply the acquired knowledge. Different from previous
work for instruction-based learning, the proposed modifica-
tions allow a cognitive robotic architecture to truly acquire
new knowledge at every level: from the unknown word and
its linguistic properties, to the denoted object concepts and
how to manipulate it, to how to perform whole sequences of
instructed actions. Moreover, by way of how the newly ac-
quired knowledge is represented and integrated with existing
knowledge, it can be shared immediately with other agents
running the same architecture.
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